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System Model
For modelling the system we assume: 

- a set of N nodes 
- each node is represented as an M/M/1/K queue, with max queue length K 
- each node receives a poisson flow of jobs with rate λ 
- service time is exponentially distributed with µ = 1 
- obviously a node acts both as a scheduler (     ) and as a worker (     )   

We set: 
- M as the maximum number of hops before executing the job 
- Θ as the cooperating threshold, namely each node starts to cooperate only 

when its load is higher than T 
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of hops reaches M or we find a 
node with load lesser than the 

threshold Θ
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Adaptive Sequential Forwarding
The second proposed algorithm is a variation of the already presented one but the 
threshold value Θ is not fixed but varies at every hop in such a way it grows 
linearly with the number of steps.
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Algorithm 2 Adaptive Forwarding Algorithm

Require: ! , Job
" ← System.QueueLen()
Θ ← ⌈Job.Steps * "/!⌉
SequentialForwarding(! , Θ, Job)



Metrics
For understanding the performance of the proposed algorithm we are interested in: 

- S — average number of steps before executing a job 
- WQ — average queue length 
- pB — blocking probability or loss rate, namely the percentage of job that cannot 

be served 
- Tr — average total service time 
- 𝒥 — fairness, from the Jain index 

We both provided numerical results and simulation results of the proposed load 
balancing strategy.
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Simulations Setting
Simulations have done both with a simplified scenario in which we evaluated the 
model and with a realistic scenario which reflects a true deployment of 20 fog nodes 
and 100 sensors in the city of Modena, Italy.
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Figure. Placement of Fog 
nodes in the realistic 
scenario simulations. 
Here we assume that the time 
needed for two nodes to 
communicate is proportional to 
their distance
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Conclusions
- we proposed two algorithms, namely sequential forwarding and the adaptive 

sequential forwarding for load balancing in a Fog environment 
- we tested our algorithms both with a mathematical model and with 

simulations 
- results shows that in the simplified scenario the model is validated against the 

simulations 
- in the realistic scenario the algorithms outperforms the case in which no load 

balancing is adopted: loss rate drops from 25% to 0.5% for the seq. for. and 0% 
for the adaptive 

- the adaptive sequential forwarding, with its threshold self-tuning mechanism 
can provide stable performances in terms of low response time and low loss 
rate, also guaranteeing fairness (Jain index close to 1) 
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