
proiettimattia@diag.uniroma1.it

A random walk based load balancing
algorithm for Fog Computing
Roberto Beraldi*, Claudia Canali˟, Riccardo Lancellotti˟, Gabriele Proietti Mattia*
*Department of Computer, Control and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, Italy
˟Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy

The Fifth International Conference on Fog and Mobile Edge Computing (FMEC 2020)
June 30th - July 3rd, 2020
Paris, France

mailto:proiettimattia@diag.uniroma1.it

Outline

1. Context and challenges
Introduction to the context and challenges in the Fog architecture

2. Proposed Algorithm
Solving the load balancing problem with a simple yet efficient algorithm

3. Results
Simulation results and findings

4. Conclusions
Final conclusions

Introduction 2

Context and Challenges1

A random walk based load balancing algorithm for Fog Computing • FMEC 2020

Fog architecture

4

Context

[2] Context and challenges

D E V I C E S

C L O U D

F O G

~100ms
Average

round-trip-time
cloud-to-device

Fog architecture

5

Context

[2] Context and challenges

D E V I C E S

C L O U D

F O G
~5ms
Average

round-trip-time
fog-to-device

Load balancing

6

Challenges

[2] Context and challenges

Geo
grap

hic
 domain

Intense Load Light Load

How can nodes cooperate with the lowest overhead?

Proposed Algorithm2

A random walk based load balancing algorithm for Fog Computing • FMEC 2020

System Model
For modelling the system we assume:

- a set of N nodes
- each node is represented as an M/M/1/K queue, with max queue length K
- each node receives a poisson flow of jobs with rate λ
- service time is exponentially distributed with µ = 1
- obviously a node acts both as a scheduler () and as a worker ()

We set:
- M as the maximum number of hops before executing the job
- Θ as the cooperating threshold, namely each node starts to cooperate only

when its load is higher than T

[3] Proposed Algorithm 8

λ

Sequential Forwarding

[3] Proposed Algorithm 9

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

Poissonian
arrivals to

every node

λ

JobJob Job

λ

λ

[1] A node receive a new job
to execute, with rate λ

Sequential Forwarding

[3] Proposed Algorithm 10

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

Poissonian
arrivals to

every node

λ

JobJob Job

λ

λ[2] The node checks its load and if
it is higher than the threshold it

blindly forwards the job to a
random node

Sequential Forwarding

[3] Proposed Algorithm 11

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

Poissonian
arrivals to

every node

λ

JobJob Job

λ

λ

[3] The remote node again checks
its load and cooperate when it is

higher than the threshold Θ

Sequential Forwarding

[3] Proposed Algorithm 12

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

Poissonian
arrivals to

every node

λ

JobJob Job

λ

λ

[4] This stops when: the number
of hops reaches M or we find a
node with load lesser than the

threshold Θ

Performance Model

[3] Proposed Algorithm 13

λi = λ
1 + πΘ ∑M−1

k=0 πk
Θ =

1 − πM+1
Θ

1 − πΘ
i ≤ Θ

πM
Θ i > Θ

0 1 2 … Q-1 Q

λ0 λ1 λ2 λQ-2 λQ-1

µ0 µ1 µ2 µQ-2 µQ-1

Continuous Time Markov Chain representing a single node (Birth-death process)

Birth rates for a node in the state i

Adaptive Sequential Forwarding
The second proposed algorithm is a variation of the already presented one but the
threshold value Θ is not fixed but varies at every hop in such a way it grows
linearly with the number of steps.

[3] Proposed Algorithm 14

Algorithm 2 Adaptive Forwarding Algorithm

Require: ! , Job
" ← System.QueueLen()
Θ ← ⌈Job.Steps * "/!⌉
SequentialForwarding(! , Θ, Job)

Metrics
For understanding the performance of the proposed algorithm we are interested in:

- S — average number of steps before executing a job
- WQ — average queue length
- pB — blocking probability or loss rate, namely the percentage of job that cannot

be served
- Tr — average total service time
- 𝒥 — fairness, from the Jain index

We both provided numerical results and simulation results of the proposed load
balancing strategy.

[3] Proposed Algorithm 15

Results3

A random walk based load balancing algorithm for Fog Computing • FMEC 2020

Simulations Setting
Simulations have done both with a simplified scenario in which we evaluated the
model and with a realistic scenario which reflects a true deployment of 20 fog nodes
and 100 sensors in the city of Modena, Italy.

[3] Results 17

 44.6

 44.61

 44.62

 44.63

 44.64

 44.65

 44.66

 44.67

 44.68

 44.69

 44.7

 44.71

 10.86 10.88 10.9 10.92 10.94 10.96 10.98 11 11.02 11.04 11.06

La
tit

ud
e

Longitude

Figure. Placement of Fog
nodes in the realistic
scenario simulations.
Here we assume that the time
needed for two nodes to
communicate is proportional to
their distance

Loss Rate, Response Time and Steps

18

Results

[3] Results

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9

R
e
sp

o
n
se

 t
im

e
 [
s]

Threshold Θ

Simulation M=3
Simulation M=8

Model M=3
Model M=8

No LB

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 1 2 3 4 5 6 7 8 9

L
o
s
s
 r

a
te

Threshold Θ

Simulation M=1
Simulation M=8

Model M=1
Model M=8

No LB

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 3 4 5 6 7 8 9

S
te

p
s

Threshold Θ

Simulation M=3
Simulation M=8

Model M=3
Model M=8

~70%

Loss Reduced

Critical Value

Adaptive Sequential Forwarding

19

Results

[3] Results

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 2 3 4 5 6 7 8 9

F
a

ir
n

e
ss

 o
f

P
U

 u
til

iz
a

tio
n

 ρ

Threshold Θ / Max Hops M

Sequential Fwd M=5
Adaptive Fwd

NoLB

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 1 2 3 4 5 6 7 8 9

L
o
ss

 r
a
te

Threshold Θ / Max Hops M

Sequential Fwd M=5
Adaptive Fwd

NoLB

Increase in Fairness

Decrease in Loss Rate

Conclusions4

A random walk based load balancing algorithm for Fog Computing • FMEC 2020

Conclusions
- we proposed two algorithms, namely sequential forwarding and the adaptive

sequential forwarding for load balancing in a Fog environment
- we tested our algorithms both with a mathematical model and with

simulations
- results shows that in the simplified scenario the model is validated against the

simulations
- in the realistic scenario the algorithms outperforms the case in which no load

balancing is adopted: loss rate drops from 25% to 0.5% for the seq. for. and 0%
for the adaptive

- the adaptive sequential forwarding, with its threshold self-tuning mechanism
can provide stable performances in terms of low response time and low loss
rate, also guaranteeing fairness (Jain index close to 1)

[4] Conclusions 21

A random walk based load balancing
algorithm for Fog Computing
Roberto Beraldi*, Claudia Canali˟, Riccardo Lancellotti˟,
Gabriele Proietti Mattia*

P R E S E N T A T I O N
Gabriele Proietti Mattia

*Department of Computer, Control and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, Italy
˟Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy

