
proiettimattia@diag.uniroma1.it • gpm.name

A study on real-time image processing
applications with edge computing
support for mobile devices
Gabriele Proietti Mattia, Roberto Beraldi

Department of Computer, Control and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, Italy

The 25th International Symposium on Distributed Simulation and Real Time Applications (DSRT 2021)

September 27th - September 29th, 2021

Valencia, Spain (Virtual)

mailto:proiettimattia@diag.uniroma1.it
https://gpm.name
https://diag.uniroma1.it
https://www.uniroma1.it

Outline

1. Context and Challenges 

2. Experimental Setup 

3. Results 

4. Conclusions 

2

Introduction1

A study on real-time image processing applications with edge computing support for mobile devices • DSRT 2021

ML Chips (NPUs/TPUs) on Mobiles

4

Context

1. Introduction

Figure 1.1 Google Pixel 4

Modern smartphones comes with a SoC
that includes dedicated chips highly
specialised for performing ML tasks.

These chips efficiently are used for
consumer applications that usually make
use for example of neural networks
computation, like image and voice
processing.

The Offloading Trade-off for ML tasks

5

Challenge

1. Introduction

Mobile

Object recognition can be executed even in real-time
by using TensorFlow Lite (with MobileNet) but what

is the impact on the energy consumption?

Figure 1.2 Object recognition on a sample
image

The Offloading Trade-off for ML tasks

6

Challenge

1. Introduction

Mobile

We could offload the task to the cloud for saving the energy but we experience
network latency in the order of 30ms, on average, for the round-trip

Cloud

~30ms

The Offloading Trade-off for ML tasks

7

Challenge

1. Introduction

Edge/Fog

The Edge/Fog layer, which is placed near to the devices, can offer lower
latency and thus it can be used for offloading

Mobile

Cloud

~5ms

Objectives
The purposes of this work are:

• investigating the current available technologies for implementing a machine
learning object recognition task based on offloading;

• implementing that technologies within an Android application and a Python
backend by using publicly available tools and pre-trained machine learning
models focused on object recognition;

• by using direct experiments, evaluating which is the energy/latency trade-off
of the task offloading.

1. Introduction 8

State-of-the-art
Neural Networks for Mobile devices

- Y. D. Kim et al. in “Compression of deep convolutional neural networks for fast and low power mobile
applications” (2015), show a method for compressing CNNs, a one-shot process that is based on 3
fundamental steps;

- A. G. Howard et al. in “Mobilenets: Efficient convolutional neural networks for mobile vision applications”
(2017), present a series of lightweight neural networks called MobileNets which use a particularly “light”
convolution algorithm, designed for running on mobile devices;

- X. Zhang et. al. in “Shufflenet: An extremely efficient convolutional neural network for mobile devices” (2018)
try to enlighten MobileNets by using “channel shuffling” for increase the efficiency of the convolutions.

Frameworks for mobile neural networks

- X. Ran et al. in “Deepdecision: A mobile deep learning framework for edge video analytics” (2018) show a

framework that allows to implement offloading of deep learning task from mobile to the edge by taking
into account energy, latency and video quality

- L. N. Huynh et al. in “Deepsense: A gpu-based deep convolutional neural network framework on commodity
mobile devices” (2016) shows a framework that is able to load and run CNNs and performing inference
directly in the mobile device by using the GPU

1. Introduction 9

Experimental Setup2

A study on real-time image processing applications with edge computing support for mobile devices • DSRT 2021

Neural Network Selection
For this experiment we chose to use two different CNNs, not only because they
require us to use two different libraries but also because they are inherently
different.

MobileNet (SSD) v1 (mAP*: 21, Parameters: 4.2M)

2. Experimental Setup 11

Feature Extraction
Final Detection Network

R-CNN/SSD* on COCO test-dev dataset

Neural Network Selection
TinyYOLOv3 (mAP*: 57.9, Parameters: 8.8M)

2. Experimental Setup 12

* on COCO test-dev dataset

TinyYolov3 divides the image into 13x13 and 26x26 grid
cells. Each grid cell has 3 anchor boxes and each anchor
box has an object score, 80 class scores, and 4 bounding
box coordinates so 2 outputs: 13*13*255 and 26*26*255

Mobile Side
For running the experiments we adapted the
TensorFlow Lite demo application in order to
take videos as input.

We used two libraries in the Android app:

• OpenCV, for loading and running

TinyYOLOV3 (416x416 image samples)

• Tensorflow Lite, for implementing

MobileNet (300x300 images samples)

All the CNNs used are pre-trained on the
COCO dataset.

2. Experimental Setup 13

Figure 2.1 A screenshot of the used application

Mobile Side
For running the experiment we used a
sample video (720x570, total of 9000
frames ~5 minutes) and we logged the
power consumption of the device by
using the internal Android API.

For testing purposes we used a
Samsung Galaxy Note 8 equipped
with Exynos Octa 8895 @ 2.31Ghz
processor, 6GB of RAM and a Mali
G71 MP20 GPU with a computing
capability of 374GFlops and 29.80GB/
s of memory bandwidth.

2. Experimental Setup 14

Frame

Total
Inference

Latency (s)
CNN

Inference
Latency

(s)

Network
Latency (s)

Battery
Level (%)

Current
Battery
Energy (mAh)

Instant
Consumption
(mAh)

Edge/Fog Side
The backend has been implemented in Python by using the Flask library. When the
offloading is enabled, every frame is sent to the backend application, processed and
then the result returned to the Client via REST API. The library used are:

• TensorFlow for implementing MobileNet

• Darknet for implementing YOLOv3

As edge device which allows performing object detection, we used a PC with 16GB
RAM, AMD FX-8350 processor and an nVidia GTX 1070 GPU with a computing
capability of 5.73TFlops and a memory bandwidth of 256.3GB/s. We installed all
the neural network frameworks on Ubuntu 18.04 LTS.

2. Experimental Setup 15

Results3

A study on real-time image processing applications with edge computing support for mobile devices • DSRT 2021

Results

3. Results 17

DNN Framework Average Time (ms) FPS Energy Consumption

Neural Network Mobile Edge Inference Network Total Average Instant (mA) Cumulative (J)

Local

FakeNet - - - - - - 264.31 10.67
MobileNet TF Lite - 46.1 - 46.1 21.70 918.32 63.65
YOLOTinyV3 OpenCV - 423.9 - 423.9 2.36 950.97 61.28

Remote
MobileNet - TensorFlow 42.1 25.6 67.7 14.80 330.45 17.91
YOLOTinyV3 - Darknet 21.9 27.0 48.9 20.44 360.25 14.70

Table 3.1 Summary of the experiments results

Results

3. Results 18

0 2000 4000 6000 8000
Frame

1000

2000

3000

4000

5000

6000

m
J

MobileNet [L]
YOLOTinyV3 [L]
MobileNet [R]
YOLOTinyV3 [R]
Baseline

0 2000 4000 6000 8000
Frame

5

10

15

20

25

FP
S

MobileNet [L]
YOLOTinyV3 [L]
MobileNet [R]
YOLOTinyV3 [R]

Figure 4.1 The per-frame energy consumption during all the experiments Figure 4.2 Inference latency over time during all the experiments

Conclusions4

A study on real-time image processing applications with edge computing support for mobile devices • DSRT 2021

Conclusions & Future Work
- in the work presented only free and open-source frameworks have been used,

their maturity and their ease of use have been assessed for building an
offloading-enabled object recognition application

- experiments demonstrated that the offloading requires 70% less of battery
and if the network conditions are favourable it is convenient, the same FPS can
be maintained when the task are executed locally

Future work

- more experiments with other neural networks and frameworks

- tests edge devices with ML chips (e.g. TPUs, USB Accelerators)

4. Conclusions 20

A study on real-time image

processing applications with edge
computing support for mobile devices
Gabriele Proietti Mattia*, Roberto Beraldi*

T A L K & P R E S E N T A T I O N

Gabriele Proietti Mattia

 
*Department of Computer, Control and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, Italy 

