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ML Chips (NPUs/TPUs) on Mobiles
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Context

1. Introduction

Figure 1.1 Google Pixel 4

Modern smartphones comes with a SoC 
that includes dedicated chips highly 
specialised for performing ML tasks.


These chips efficiently are used for 
consumer applications that usually make 
use for example of neural networks 
computation, like image and voice 
processing. 



The Offloading Trade-off for ML tasks
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Challenge

1. Introduction

Mobile

Object recognition can be executed even in real-time 
by using TensorFlow Lite (with MobileNet) but what 

is the impact on the energy consumption?

Figure 1.2 Object recognition on a sample 
image



The Offloading Trade-off for ML tasks
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Challenge

1. Introduction

Mobile

We could offload the task to the cloud for saving the energy but we experience 
network latency in the order of 30ms, on average, for the round-trip

Cloud

~30ms



The Offloading Trade-off for ML tasks

7

Challenge

1. Introduction

Edge/Fog

The Edge/Fog layer, which is placed near to the devices, can offer lower 
latency and thus it can be used for offloading

Mobile

Cloud

~5ms



Objectives
The purposes of this work are:


• investigating the current available technologies for implementing a machine 
learning object recognition task based on offloading;


• implementing that technologies within an Android application and a Python 
backend by using publicly available tools and pre-trained machine learning 
models focused on object recognition;


• by using direct experiments, evaluating which is the energy/latency trade-off 
of the task offloading.
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State-of-the-art
Neural Networks for Mobile devices


- Y. D. Kim et al. in “Compression of deep convolutional neural networks for fast and low power mobile 
applications” (2015), show a method for compressing CNNs, a one-shot process that is based on 3 
fundamental steps;


- A. G. Howard et al. in “Mobilenets: Efficient convolutional neural networks for mobile vision applications” 
(2017), present a series of lightweight neural networks called MobileNets which use a particularly “light” 
convolution algorithm, designed for running on mobile devices;


- X. Zhang et. al. in “Shufflenet: An extremely efficient convolutional neural network for mobile devices” (2018) 
try to enlighten MobileNets by using “channel shuffling” for increase the efficiency of the convolutions.


Frameworks for mobile neural networks

- X. Ran et al. in “Deepdecision: A mobile deep learning framework for edge video analytics” (2018) show a 

framework that allows to implement offloading of deep learning task from mobile to the edge by taking 
into account energy, latency and video quality


- L. N. Huynh et al. in “Deepsense: A gpu-based deep convolutional neural network framework on commodity 
mobile devices” (2016) shows a framework that is able to load and run CNNs and performing inference 
directly in the mobile device by using the GPU

1. Introduction 9



Experimental Setup2

A study on real-time image processing applications with edge computing support for mobile devices • DSRT 2021



Neural Network Selection
For this experiment we chose to use two different CNNs, not only because they 
require us to use two different libraries but also because they are inherently 
different.


MobileNet (SSD) v1 (mAP*: 21, Parameters: 4.2M)
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Feature Extraction
Final Detection Network


R-CNN/SSD* on COCO test-dev dataset



Neural Network Selection
TinyYOLOv3 (mAP*: 57.9, Parameters: 8.8M)
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* on COCO test-dev dataset

TinyYolov3 divides the image into 13x13 and 26x26 grid 
cells. Each grid cell has 3 anchor boxes and each anchor 
box has an object score, 80 class scores, and 4 bounding 
box coordinates so 2 outputs: 13*13*255 and 26*26*255



Mobile Side
For running the experiments we adapted the 
TensorFlow Lite demo application in order to 
take videos as input.


We used two libraries in the Android app:

• OpenCV, for loading and running 

TinyYOLOV3 (416x416 image samples)

• Tensorflow Lite, for implementing 

MobileNet (300x300 images samples)


All the CNNs used are pre-trained on the 
COCO dataset.
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Figure 2.1 A screenshot of the used application



Mobile Side
For running the experiment we used a 
sample video (720x570, total of 9000 
frames ~5 minutes) and we logged the 
power consumption of the device by 
using the internal Android API.


For testing purposes we used a 
Samsung Galaxy Note 8 equipped 
with Exynos Octa 8895 @ 2.31Ghz 
processor, 6GB of RAM and a Mali 
G71 MP20 GPU with a computing 
capability of 374GFlops and 29.80GB/
s of memory bandwidth. 
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Edge/Fog Side
The backend has been implemented in Python by using the Flask library. When the 
offloading is enabled, every frame is sent to the backend application, processed and 
then the result returned to the Client via REST API. The library used are:


• TensorFlow for implementing MobileNet

• Darknet for implementing YOLOv3


As edge device which allows performing object detection, we used a PC with 16GB 
RAM, AMD FX-8350 processor and an nVidia GTX 1070 GPU with a computing 
capability of 5.73TFlops and a memory bandwidth of 256.3GB/s. We installed all 
the neural network frameworks on Ubuntu 18.04 LTS.

2. Experimental Setup 15



Results3

A study on real-time image processing applications with edge computing support for mobile devices • DSRT 2021



Results
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DNN Framework Average Time (ms) FPS Energy Consumption

Neural Network Mobile Edge Inference Network Total Average Instant (mA) Cumulative (J)

Local

FakeNet - - - - - - 264.31 10.67
MobileNet TF Lite - 46.1 - 46.1 21.70 918.32 63.65
YOLOTinyV3 OpenCV - 423.9 - 423.9 2.36 950.97 61.28

Remote
MobileNet - TensorFlow 42.1 25.6 67.7 14.80 330.45 17.91
YOLOTinyV3 - Darknet 21.9 27.0 48.9 20.44 360.25 14.70

Table 3.1 Summary of the experiments results



Results

3. Results 18

0 2000 4000 6000 8000
Frame

1000

2000

3000

4000

5000

6000

m
J

MobileNet [L]
YOLOTinyV3 [L]
MobileNet [R]
YOLOTinyV3 [R]
Baseline

0 2000 4000 6000 8000
Frame

5

10

15

20

25

FP
S

MobileNet [L]
YOLOTinyV3 [L]
MobileNet [R]
YOLOTinyV3 [R]

Figure 4.1 The per-frame energy consumption during all the experiments Figure 4.2 Inference latency over time during all the experiments



Conclusions4

A study on real-time image processing applications with edge computing support for mobile devices • DSRT 2021



Conclusions & Future Work
- in the work presented only free and open-source frameworks have been used, 

their maturity and their ease of use have been assessed for building an 
offloading-enabled object recognition application 


- experiments demonstrated that the offloading requires 70% less of battery 
and if the network conditions are favourable it is convenient, the same FPS can 
be maintained when the task are executed locally  


Future work

- more experiments with other neural networks and frameworks

- tests edge devices with ML chips (e.g. TPUs, USB Accelerators)
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