
proiettimattia@diag.uniroma1.it • gpm.name

Leveraging Reinforcement Learning for 
online scheduling of real-time tasks in the 
Edge/Fog-to-Cloud computing continuum
Gabriele Proietti Mattia, Roberto Beraldi 
Department of Computer, Control and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, Italy

The 20th IEEE International Symposium on Network Computing and Applications (NCA 2021) 
23 - 26 November, 2021 
Virtual

mailto:proiettimattia@diag.uniroma1.it
https://gpm.name
https://diag.uniroma1.it
https://www.uniroma1.it


Outline

1. Context and Challenge 

2. System Model 

3. Reinforcement Learning for online scheduling 

4. Results 

5. Conclusions 

Outline 2



Introduction1

Leveraging Reinforcement Learning for online scheduling of real-time tasks in the Edge/Fog-to-Cloud computing continuum • NCA 2021



Context

1. Introduction 4

(QG�'HYLFHV

+

Z

Z

Z

Z

+

Z

Z

Z

Z
(GJH

&ORXG

+

Z

Z

Z

Z

+

Z

Z

Z

Z

Ed
ge

/F
og

-t
o-

C
lo

ud
 C

on
ti

nu
um

Figure 1.1 The Edge-to-Cloud continuum environment considered as computing scenario



The challenge
We now focus on the design a single cluster, we 
envisioned: 

- a scheduler (H) node which receives the tasks 
requests and chooses which worker should 
execute them; 

- a set of heterogeneous workers (wi) nodes 
which execute tasks requests. 

In the paradigm of Edge/Fog Computing devices 
are heterogeneous and it is not easy to estimate 
the exact computational power of a worker node, 
because it can vary over time, moreover our 
scheduler must react if a fail suddenly happen.

1. Introduction 5

+

Z�

Z�

Z�

Z�

&OXVWHU

&ORXG

(QG�'HYLFHV

6�� ����

6�� ����

6�� ����

6�� ����

D�

D�
D�

D�

D�

6FKHGXOHU
1RGH

:RUNHUV
1RGHV

(GJH

5/�$JHQW

ZLWK

Z�

D�

6�� ����

Figure 1.2 An hypothetical single cluster configuration



Objectives
The purpose of our work is to design a scheduling algorithm based on 
Reinforcement Learning: 

- which is able to cope with node heterogeneity 
- which does not know in advance the computational power of the worker 

nodes 
- which is able to satisfy precise application requirements in terms of service 

requests rate (e.g. fps) 
- which is able to perform an online decision making (per-task request) 
- which can decide to forward a task to a local worker in the cluster, to the 

cloud or to another cluster (computing continuum) 

The designed scheduling algorithm is then run on simulation.

1. Introduction 6



State-of-the-art
- X.  Xiong et al. in “Resource  allocation  based on  deep  reinforcement  learning  in  IoT  edge  

computing” present a deep reinforcement approach for resource allocation in a MEC system but the 
allocation scheme is based on time slices 

- X.  Chen et al. in “Performance  optimisation  in  mobile-edge  computing  via  deep  reinforcement 
learning”  focus on base stations that must be selected by the client in a ultra high-dense network 

- S. Sheng et al. in “Deep reinforcement learning-based task scheduling in iot edge computing” specifically 
studies the task scheduling in the edge computing by using the approach uses the deep 
reinforcement learning but the scheduling is not done online  

- S. Huang et al. “Scheduling  for  mobile edge  computing  with  random  user  arrivals — an  
approximate  mdp  and reinforcement learning approach” studies the scenario in which mobiles can 
appear randomly in a cell 

- Y. Zhang et al. “Online scheduling optimization for dag-based requests through reinforcement  
learning  in collaboration edge networks” focuses on online scheduling and using time differential 
learning, but the tasks do not have to meet a deadline 

- A. Luckow et al. “Exploring task placement for edge-to-cloud applications using emulation” 
introduces a specific study on the task placement in the edge-to-cloud computing continuum

1. Introduction 7



System Model2

Leveraging Reinforcement Learning for online scheduling of real-time tasks in the Edge/Fog-to-Cloud computing continuum • NCA 2021



RL Rationale
The idea is to make each scheduler of a cluster a learner agent, model the problem 
as a Markov Decision Process and solve the learning task with a RL framework. All 
of the following entities must be defined.

2. System Model 9

Agent Environment

State

Action

Reward

observation

execution

assignment

Figure 2.1 The classic Markov Decision Process representation



Tasks and delay model
In our model, each task is the processing a 
frame. We have different users to which 
corresponds a traffic flow tfi that is periodic 
because it follows the frame generation. 

Simplistically to every user i corresponds: 
- ⍵n the rate of frame generation 
- ⍵m the minimum response rate that the 

cloud continuum must satisfy 
- ⍵e the effective processing rate of the 

cloud continuum 

2. System Model 10

K�

K�

Z�
Z�

Z�

7DVN

Z�

Z�

Z�

�

�

�

�

�

�

5HVXOW

Figure 2.2 An hypothetical execution path of a frame task

During the entire execution path we simulate the delay of every hop by using 
different values of the bandwidth



Actions
Upon the arrival of a task execution request to the cluster i the action that can be 
performed by the scheduler is a scheduling action, one of the following: 

- reject 
- forward to cloud 
- forward to worker 1 
- … 
- forward to worker n 
- forward to neighbour cluster 1 
- … 
- forward to neighbour cluster m    

When a task is forwarded we wait for its completion in order to derive the reward.

2. System Model 11

!

′
"

The actions are grouped in 
two sets because we first 
test only one cluster and then 
more clusters



Reward

2. System Model 12

WLPH

I� I� I�

U�

*HQHUDWHG�)UDPHV 3RVVLEOH�UHVSRQVHV�IRU�I�

U� U�

�?ȦP

U� �� U� �� U� ���

�?ȦQ

*HQHUDWLRQ�5DQJH

Figure 2.4 Diagram that illustrates how reward is assigned when the task is executed and the frame f1 returns to client after being processed (r1).



Performance Parameters
The performance parameters that we used are the following: 

- total reward (R), as defined earlier 

- the effective frame rate (⍵e) measured in frames-per-second and computed as 
the sum of the total number of frames successfully processed every second (not 
rejected) 

- the total response time (dt) measured in milliseconds and computed as the 
average response time of all the tasks finished every second 

- the lag time (τ) measured in milliseconds and computed as:

2. System Model 13

! = "# − 1/%&



Reinforcement Learning for 
online scheduling3

Leveraging Reinforcement Learning for online scheduling of real-time tasks in the Edge/Fog-to-Cloud computing continuum • NCA 2021



RL Theoretical Stack

3. Reinforcement Learning for online scheduling 15

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Sarsa 
(on-policy)

Tiling 
Technique

Algorithms for learning the 
policy in a MDP process

Q-Learning 
(off-policy)

The MDP Process

Methods for approximating 
the Q(s, a)

…

Bellman with 
discounted reward 

(classic)

Bellman with 
average reward

…

DNNs
Define how to update the 
weights on



Time Differential Sarsa w/ avg. Reward
Decisions are taken by approximating the q(s,a) action-value function, that returns 
the value of an action a given the state s. For approximating the q(s,a) function we 
can take into consideration the difference between q(s,a)t and q(s,a)t+1 that is 
defined as (supposed we are at t+1):

3. Reinforcement Learning for online scheduling 16

!" = #"+1 − #̄"+1 + '̂(("+1,)"+1, +⃗" ) − '̂((" ,)" , +⃗" )

The immediate reward, 
right after executing the 

task

The current average reward

The value of the action 
chosen in the current state 
by using the same policy

The value of the previous 
action (that lead to St+1) in 

the previous state St



Results4

Leveraging Reinforcement Learning for online scheduling of real-time tasks in the Edge/Fog-to-Cloud computing continuum • NCA 2021



Single Cluster

4. Results 18

+

Z�

Z�

Z�
&OXVWHU

&ORXG

(QG�'HYLFHV

6�� ����

6�� ����

6�� ����

D�
D�

D�

D�6FKHGXOHU
1RGH

:RUNHUV
1RGHV

(GJH5/�$JHQW

ZLWK

��ISV ��ISV

��ISV

D�� �UHMHFW

7UDIILF�)ORZV

Figure 4.1 Single cluster experiment configuration

Brand name Frequency Parallelism ! K

Odroid-C4 2.0 GHz 4 cores 1.0 4
Asus Tinker 1.8 GHz 4 cores 0.9 4
Rock Pi N10 1.4 GHz 4 cores 0.7 4
Raspberry Pi 3 1.2 GHz 4 cores 0.6 4

!" !# Distr. $ %& Distr. $ Payload

tf1 60 fps 50 fps G. Periodic 0.001 10 ms Gauss. 0.0003 50 kb
tf2 30 fps 20 fps G. Periodic 0.002 20 ms Gauss. 0.0003 50 kb
tf3 15 fps 10 fps G. Periodic 0.01 55 ms Gauss. 0.0003 50 kb
tf4 10 fps - Exp. - 100 ms Gauss. 0.0003 50 kb

Table 4.1 The used devices speeds

Table 4.2 The list of the traffic flows for the experiment with one cluster



Single Cluster

4. Results 19

Figure 4.1 Reward/
s, effective frame 

rate ⍵t, total 
response time dt and 

lag time τ with no 
failures

Figure 4.1 Reward/s, 
effective frame rate ⍵t, 
total response time dt 
and lag time τ with 
failures: we assume that 
node #1 fails at time 
4000 for 4000 seconds

0 2000 4000 6000 8000 10000

0

100

200
R

ew
ar

d

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

w
e

(f
ps

)

0 2000 4000 6000 8000 10000

20

40

60

80

100

d t
(m

s)

0 2000 4000 6000 8000 10000
Time (s)

10

20

30

40

50

t
(m

s)

tf1

tf2

tf3

0.25

0.50

0.75

e

0 2000 4000 6000 8000 10000

0

100

200

R
ew

ar
d

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

w
e

(f
ps

)

0 2000 4000 6000 8000 10000

20

40

60

80

100

d t
(m

s)

0 2000 4000 6000 8000 10000
Time (s)

10

20

30

40

50

t
(m

s)

tf1

tf2

tf3

0.25

0.50

0.75

e

Coloured ranges 
represent the user/

application 
requirements



Single Cluster

4. Results 20

Figure 4.3 Actions 
distribution over time in 

case of no failures

Figure 4.4 Actions 
distribution over time in case 
of failures: we assume node #1 
to fail at time 4000 for 4000s

0 2000 4000 6000 8000 10000
Time (s)

0

10

20

30

40

Pe
rc

en
ta

ge
of

ac
tio

ns
(%

)

Reject
Cloud
Worker #1 (S = 1.0)
Worker #2 (S = 0.9)
Worker #3 (S = 0.6)

0 2000 4000 6000 8000 10000
Time (s)

0

10

20

30

40

50

Pe
rc

en
ta

ge
of

ac
tio

ns
(%

)

Reject
Cloud
Worker #1 (S = 1.0)
Worker #2 (S = 0.9)
Worker #3 (S = 0.6)



Single Cluster

4. Results 21

Sarsa Trained Least Loaded Random

!" # $% !" # $% !" # $%

tf1 54.08 19.63 20.57 37.85 48.75 96.05 29.61 65.23 100.71

tf2 28.15 36.00 35.69 19.04 72.22 110.50 15.72 88.35 109.64

tf3 13.17 76.34 84.71 9.52 120.35 148.80 8.11 142.38 144.25

Table 4.3 Comparison regarding the effective frame rate (⍵e), the lag time (τ) and the total response time (dt) between our algorithm "Sarsa 
Trained" and other two approaches: scheduling to the least loaded node and random scheduling.



Multiple clusters
In the multiple clusters setting we suppose 
that schedulers of clusters can decide to 
forward other clusters without knowing 
nothing about them.  

We suppose to have three clusters: 
- cluster #1 has three nodes with speeds 

1.0, 0.9 and 0.6; 
- cluster #2 has two nodes with speeds 

0.9 and 0.6; 
- cluster #3 has three nodes with speeds 

1.0, 0.7 and 0.6.

4. Results 22

0 2000 4000 6000 8000 10000

0

100

R
ew

ar
d/

s Cluster #1
Cluster #2
Cluster #3

0 2000 4000 6000 8000 10000
0

10

20

30

40

Pe
rc

en
ta

ge
of

ac
tio

ns
(%

) Cluster #1 Reject
Cloud
Worker #1
Worker #2
Worker #3
Cluster #2
Cluster #3

0 2000 4000 6000 8000 10000
0

10

20

30

40

Pe
rc

en
ta

ge
of

ac
tio

ns
(%

) Cluster #2

Reject
Cloud
Worker #1
Worker #2
Cluster #1
Cluster #3

0 2000 4000 6000 8000 10000
Time (s)

0

10

20

30

40

Pe
rc

en
ta

ge
of

ac
tio

ns
(%

) Cluster #3 Reject
Cloud
Worker #1
Worker #2
Worker #3
Cluster #1
Cluster #2

0.25

0.50

0.75

e

Figure 4.5 Reward/s and actions distribution over time in the multi-
clusters setting



Conclusions5

Leveraging Reinforcement Learning for online scheduling of real-time tasks in the Edge/Fog-to-Cloud computing continuum • NCA 2021



Conclusions & Future Work
- in the presented work we designed and run in simulation a reinforcement 

learning based algorithm for dealing with online scheduling in the edge/fog-to-
cloud computing continuum, addressing the problems of heterogeneity, 
failures, online decision making and application requirements (QoS) 

- we firstly tested a single cluster environment and then a multi-cluster one even 
comparing the solution with other scheduling strategies 

Future work 
- consider nodes speed not fixed over time 
- investigate the impact of frame skipping when frames returns in different 

order with respect the generation one - case Figure 2.3 (d) 
- consequences in scalability of the increasing in the number of task types

5. Conclusions 24



Leveraging Reinforcement Learning for 
online scheduling of real-time tasks in the 
Edge/Fog-to-Cloud computing continuum
Gabriele Proietti Mattia*, Roberto Beraldi* 

T A L K  &  P R E S E N T A T I O N  
Gabriele Proietti Mattia 

 
*Department of Computer, Control and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, Italy 


