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Challenge

However, the PoC scheduling policy (i.e. when to trigger the probing) has some 
limitations: 

- it is a fixed step function of the current load; 

- it is also fixed over time and it cannot react to load variation on the nodes, and 
finally; 

- it doesn't take task heterogeneity into account. 

The purpose of this work is to overcome these limitations by designing a dynamic 
scheduling policy based on the Reinforcement Learning (RL).



Contribution
In the light of these challenges, the main contributions of this work are: 

- Design of a decentralised RL-based scheduling algorithm to be 
implemented in every fog node that is able to choose the best scheduling 
decision according to the current load situation 

- Study of a geographic setting which involves six fog nodes deployed in the 
city of New York and in which the algorithm can be deployed. 

- Simulation results on a delay-based simulator which prove the efficiency of 
the algorithm in a previously defined geographic environment compared to the 
classic power-of-choice strategy
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State-of-the-art
- R. Beraldi and G. P. Mattia, “Power of random choices made efficient for fog computing” (2020) presents the 

power-of-choices in fog computing with limitations as described earlier 
- L. Ale et al. in “Delay-aware and energy-efficient computation offloading in mobile edge computing using deep 

reinforcement learning” (2021) the authors present a Deep Reinforcement Learning approach, based on Q-
Learning for selecting the best edge server for offloading in order to minimise the energy consumption  

- M. K. Pandit et al. in “Adaptive task scheduling in iot using reinforcement learning” (2020) based again on two 
DNNs, but they are used for two different decisions, the first one is in charge of deciding if the task should 
be offloaded to the cloud, but if not, the second decision level chooses the best suitable Fog node  

- S. Park et al. in “Real-time scheduling using reinforcement learning technique for the connected vehicles” (2018) 
proposes a vanilla RL approach but is not online and focused on vehicles 

- T. Sen  et al. in “Machine learning based timeliness-guaranteed and energy-efficient task assignment in edge 
computing systems” (2019) propose again a vanilla RL approach but is based on a different environment 
and focused on energy consumption 

The main points of novelty of our work resides on the facts that we focus on real-time tasks (duration ~20ms) 
training the learner according to the hit of a task completion deadline, we focus on online scheduling and 
we set the study by using a geographic approach. 
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RL Rationale
The idea is to make each scheduler of a cluster a learner agent, model the problem 
as a Markov Decision Process and solve the learning task with a RL framework. All 
of the following entities must be defined.

2. System Model 14
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Figure 2.1 The classic Markov Decision Process representation



RL Rationale
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Fog Node 
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Environment

Fog Node’s Load 
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Namely the number of tasks that the node is currently executing

The action is taken by the scheduler module of the node, and it can be 
schedule locally or forward the task to another node  

Scheduling 
Action

Reward

observation

execution

if task executed within  
the deadline

Figure 2.1 The classic Markov Decision Process representation with the assigned entities



State and Actions
Upon the arrival of a task execution request to the cluster i the action that can be 
performed by the scheduler is a scheduling action, one of the following: 

- reject 
- forward to cloud 
- forward to random node 
- forward to neighbour node 1 
- … 
- forward to neighbour node n   

When a task is forwarded we wait for its completion in order to derive the reward.
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performed two kinds of 
experiments



Tasks and delay model
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Figure 2.2 The logic of the delay model
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In our model, to each node three 
queues are attached: 

- Qt the transmission queue used 
f o r s i m u l a t i n g t h e t a s k 
transmission 

- Qp the probing queue used for 
simulating the request of the 
state to another node 

- Qe the execution queue used for 
simulating the execution of the 
task



Performance Parameter
Reward definition 
To each task we associate an execution deadline T and the reward is assigned as, 
given W the completion time: 

The performance taken into consideration is ɩ that is the reward gained in every 
second, namely the number of jobs that are executed within the deadline in a 
second. 
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!" (#, $) =

{
1 if & ≤ !

0 otherwise
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Geographic Setting
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Figure 2.3 Fog nodes position (diamond symbols) in New York 
city used in the experiments, from left to right Node 0 to Node 
5. The radius of the circle for each node is 1 km. 

Figure 2.4 The average distribution of the traffic during the day for 
the picked Fog nodes. 
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RL Theoretical Stack

3. Reinforcement Learning for online scheduling 21

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Sarsa 
(on-policy)

Tiling 
Technique

Algorithms for learning the 
policy in a MDP process

Q-Learning 
(off-policy)

The MDP Process

Methods for approximating 
the Q(s, a)

…

Bellman with 
discounted reward 

(classic)

Bellman with 
average reward

…

DNNs
Define how to update the 
weights on



Time Differential Sarsa w/ avg. Reward
Decisions are taken by approximating the q(s,a) action-value function, that returns 
the value of an action a given the state s. For approximating the q(s,a) function we 
can take into consideration the difference between q(s,a)t and q(s,a)t+1 that is 
defined as (supposed we are at t+1):

3. Reinforcement Learning for online scheduling 22

!" = #"+1 − #̄"+1 + '̂(("+1,)"+1, +⃗" ) − '̂((" ,)" , +⃗" )

The immediate reward, 
right after executing the 

task

The current average reward

The value of the action 
chosen in the current state 
by using the same policy

The value of the previous 
action (that lead to St+1) in 

the previous state St
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Figure 4.2 The policy learned by the agent in the same setting of Figure 4.1
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Figure 4.3 Comparison between Sarsa and Pwr2: behaviour of the in-
deadline rate ɩ for every node when the load is fixed and the same to 
every node

In these experiments the agent can only choose among three actions: reject, execute locally and probe-and-forward.

The learned policy is 001110
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Figure 4.4 Comparison between Sarsa and Pwr2: behaviour of the in-deadline 
rate ɩ for every node when load is fixed but heterogeneous

Figure 4.5 Comparison between Sarsa and Pwr2: behaviour of the in-
deadline rate ɩ for every node when the load is variable according to the 
geographic scenario

In these experiments the agent can only choose to: reject, execute locally, probe-and-forward and directly forward to a given node.

These nodes gain more reward than 
power-of-choice

For this node instead is the same

This node sacrifices its reward

Every node, in the end, gain the same reward

Learning curve
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Figure 4.4 Comparison between Sarsa and Pwr2: behaviour of the in-deadline 
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Figure 4.5 Comparison between Sarsa and Pwr2: behaviour of the in-
deadline rate ɩ for every node when the load is variable according to the 
geographic scenario

In these experiments the agent can only choose to: reject, execute locally, probe-and-forward and directly forward to a given node.

The same holds when the traffic 
is variable in time
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Conclusions & Future Work
- in the presented work we designed and run in simulation a fully distributed 

reinforcement learning based algorithm for dealing with online scheduling in the 
fog computing environment 

- we showed how the algorithm can take a step forward the standard power-of-
choice approach by inferring the best scheduling policy 

- we showed how the approach can level the reward of every node making them 
not behaving selfishly  

Future work 
- consider variable communication delay between nodes  
- increase the complexity of the state 
- consider tasks with different deadlines  
- study the learning time, how fast the algorithm learn the policy  

5. Conclusions 29
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