
proiettimattia@diag.uniroma1.it • gpm.name

On real-time scheduling in Fog
computing: A Reinforcement Learning
algorithm with application to smart cities
Gabriele Proietti Mattia, Roberto Beraldi

Department of Computer, Control and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, Italy

The 1st Workshop on Adaptive, Learning PervAsive Computing Applications (ALPACA 2022)

21st March, 2022

Virtual

mailto:proiettimattia@diag.uniroma1.it
https://gpm.name
https://diag.uniroma1.it
https://www.uniroma1.it

Outline

1. Context and Challenge 

2. System Model 

3. Reinforcement Learning for online scheduling 

4. Results 

5. Conclusions 

Outline 2

Introduction1

On real-time scheduling in Fog computing: A Reinforcement Learning algorithm with application to smart cities • ALPACA 2022

Fog Computing

4

Context

1. Introduction

C L O U D

F O G

D E V I C E S

~50ms*
Average

round-trip-time

cloud-to-device

*https://geekflare.com/google-cloud-latency/

Fog Computing

5

Context

1. Introduction

C L O U D

F O G

D E V I C E S

~10ms*
Average

round-trip-time

fog-to-device

*https://geekflare.com/google-cloud-latency/

The Power-of-choice in Fog Computing

6

Context

1. Introduction

λ

λ

λ

λ

λ

λ

Poissonian
arrivals of task

requests to
every node

λ

JobJob Job

Suppose that devices can communicate with each other and have the same computing power.
They can act both as schedulers () and workers ().

Fog Node 1

Fog Node 2

Fog Node 3

Fog Node 4

Fog Node 5

Fog Node 6

Task Queue Length

(Max. K = 5)

λ

λ

λ

λ

λ

Poissonian
arrivals of task

requests to
every node

λ

JobJob Job

Suppose that devices can communicate with each other and have the same computing power.
They can act both as schedulers () and workers ().

Fog Node 2

Fog Node 3

Fog Node 4

Fog Node 5

Fog Node 6

λ

Fog Node 1

[1] A node receive a new job
to execute, with rate λ

Context

7

The Power-of-choice in Fog Computing

1. Introduction

λ

λ

λ

λ

Poissonian
arrivals of task

requests to
every node

λ

JobJob Job

Fog Node 3

Fog Node 4

Fog Node 5

Fog Node 6

Suppose that devices can communicate with each other and have the same computing power.
They can act both as schedulers () and workers ().

λ

Fog Node 1

Context

8

The Power-of-choice in Fog Computing

1. Introduction

[2] The node checks its current
queue length and if it is higher than a
threshold T it probes a random node

asking its queue length, if it is less
the task is forwarded

Fog Node 2

λ

λ

λ

λ

λ

Poissonian
arrivals of task

requests to
every node

λ

JobJob Job

Fog Node 3

Fog Node 4

Fog Node 5

Fog Node 6

The power-of-choice strategy is proven to be very performant but has limitations

λ

Fog Node 1

Context

9

The Power-of-choice in Fog Computing

1. Introduction

Fog Node 2

λ

[3] The remote node executes the
task if room, otherwise the task is

rejected

The Power-of-choice in Fog Computing • Limitations

1. Introduction 10

Challenge

However, the PoC scheduling policy (i.e. when to trigger the probing) has some
limitations:

- it is a fixed step function of the current load;

- it is also fixed over time and it cannot react to load variation on the nodes, and
finally;

- it doesn't take task heterogeneity into account.

The purpose of this work is to overcome these limitations by designing a dynamic
scheduling policy based on the Reinforcement Learning (RL).

Contribution
In the light of these challenges, the main contributions of this work are:

- Design of a decentralised RL-based scheduling algorithm to be
implemented in every fog node that is able to choose the best scheduling
decision according to the current load situation

- Study of a geographic setting which involves six fog nodes deployed in the
city of New York and in which the algorithm can be deployed.

- Simulation results on a delay-based simulator which prove the efficiency of
the algorithm in a previously defined geographic environment compared to the
classic power-of-choice strategy

1. Introduction 11

State-of-the-art
- R. Beraldi and G. P. Mattia, “Power of random choices made efficient for fog computing” (2020) presents the

power-of-choices in fog computing with limitations as described earlier

- L. Ale et al. in “Delay-aware and energy-efficient computation offloading in mobile edge computing using deep

reinforcement learning” (2021) the authors present a Deep Reinforcement Learning approach, based on Q-
Learning for selecting the best edge server for offloading in order to minimise the energy consumption

- M. K. Pandit et al. in “Adaptive task scheduling in iot using reinforcement learning” (2020) based again on two
DNNs, but they are used for two different decisions, the first one is in charge of deciding if the task should
be offloaded to the cloud, but if not, the second decision level chooses the best suitable Fog node

- S. Park et al. in “Real-time scheduling using reinforcement learning technique for the connected vehicles” (2018)
proposes a vanilla RL approach but is not online and focused on vehicles

- T. Sen et al. in “Machine learning based timeliness-guaranteed and energy-efficient task assignment in edge
computing systems” (2019) propose again a vanilla RL approach but is based on a different environment
and focused on energy consumption

The main points of novelty of our work resides on the facts that we focus on real-time tasks (duration ~20ms)
training the learner according to the hit of a task completion deadline, we focus on online scheduling and
we set the study by using a geographic approach.

1. Introduction 12

System Model2

On real-time scheduling in Fog computing: A Reinforcement Learning algorithm with application to smart cities • ALPACA 2022

RL Rationale
The idea is to make each scheduler of a cluster a learner agent, model the problem
as a Markov Decision Process and solve the learning task with a RL framework. All
of the following entities must be defined.

2. System Model 14

Agent Environment

State

Action

Reward

observation

execution

assignment

Figure 2.1 The classic Markov Decision Process representation

RL Rationale

2. System Model 15

Fog Node 
Agent

Environment

Fog Node’s Load

State 

 
Namely the number of tasks that the node is currently executing

The action is taken by the scheduler module of the node, and it can be

schedule locally or forward the task to another node

Scheduling 
Action

Reward

observation

execution

if task executed within

the deadline

Figure 2.1 The classic Markov Decision Process representation with the assigned entities

State and Actions
Upon the arrival of a task execution request to the cluster i the action that can be
performed by the scheduler is a scheduling action, one of the following:

- reject

- forward to cloud

- forward to random node

- forward to neighbour node 1

- …

- forward to neighbour node n

When a task is forwarded we wait for its completion in order to derive the reward.

2. System Model 16

!

′
"

The actions are grouped
in two sets because we
performed two kinds of
experiments

Tasks and delay model

2. System Model 17

Figure 2.2 The logic of the delay model

$�WDVN�LV�VHQW�WR

1RGH�L�IURP�WKH

&OLHQW

7DNH�VFKHGXOLQJ

GHFLVLRQ

3URELQJ([HFXWH�/RFDOO\

7DVN�UHWXUQV�

WR�&OLHQW�1RGH

&KHFN�WKH�ORDG

7DVN�VFKHGXOHG�

ORFDOO\

4H

4S

4W

7DVN�IRUZDUGHG

WR�RWKHU�QRGH

4W

+DV�WDVN�H[HFXWHG�LQ

DQRWKHU�QRGH

1R

<HV��UHWXUQV�WR�&OLHQW

+DV�WDVN�UHWXUQHG�

WR�FOLHQW

<HV

1R

$�WDVN�LV�VHQW�WR

1RGH�L�IURP�WKH

1RGH�M

,V�WKH�WDVN�FRPLQJ�

IURP�DQRWKHU�QRGH

1R

<HV

5HPRWH�1RGH

In our model, to each node three
queues are attached:

- Qt the transmission queue used
f o r s i m u l a t i n g t h e t a s k
transmission

- Qp the probing queue used for
simulating the request of the
state to another node

- Qe the execution queue used for
simulating the execution of the
task

Performance Parameter
Reward definition

To each task we associate an execution deadline T and the reward is assigned as,
given W the completion time:

The performance taken into consideration is ɩ that is the reward gained in every
second, namely the number of jobs that are executed within the deadline in a
second.

2. System Model 18

!" (#, $) =

{
1 if & ≤ !

0 otherwise
(3)

Geographic Setting

2. System Model 19

���:

���: 0 20 40 60 80
Time Slot

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

r

Node#0
Node#1
Node#2
Node#3
Node#4
Node#5

Figure 2.3 Fog nodes position (diamond symbols) in New York
city used in the experiments, from left to right Node 0 to Node
5. The radius of the circle for each node is 1 km.

Figure 2.4 The average distribution of the traffic during the day for
the picked Fog nodes.

Reinforcement Learning for
online scheduling3

On real-time scheduling in Fog computing: A Reinforcement Learning algorithm with application to smart cities • ALPACA 2022

RL Theoretical Stack

3. Reinforcement Learning for online scheduling 21

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

Sarsa

(on-policy)

Tiling
Technique

Algorithms for learning the
policy in a MDP process

Q-Learning

(off-policy)

The MDP Process

Methods for approximating
the Q(s, a)

…

Bellman with
discounted reward

(classic)

Bellman with
average reward

…

DNNs
Define how to update the
weights on

Time Differential Sarsa w/ avg. Reward
Decisions are taken by approximating the q(s,a) action-value function, that returns
the value of an action a given the state s. For approximating the q(s,a) function we
can take into consideration the difference between q(s,a)t and q(s,a)t+1 that is
defined as (supposed we are at t+1):

3. Reinforcement Learning for online scheduling 22

!" = #"+1 − #̄"+1 + '̂(("+1,)"+1, +⃗") − '̂((" ,)" , +⃗")

The immediate reward,
right after executing the

task

The current average reward

The value of the action
chosen in the current state
by using the same policy

The value of the previous
action (that lead to St+1) in

the previous state St

Results4

On real-time scheduling in Fog computing: A Reinforcement Learning algorithm with application to smart cities • ALPACA 2022

Validity Check

4. Results 24

00
11

00
00

11
11

00
11

10
00

11
01

00
10

10
00

10
00

00
10

11
00

10
01

01
11

01
01

11
00

01
11

11
01

11
10

01
10

10
01

10
11

01
10

00
01

10
01

10
11

00
10

11
10

10
11

01
10

11
11

10
10

10
10

10
11

10
10

00
11

11
10

11
11

00
11

11
11

10
10

01
11

11
01

01
01

00
01

01
10

11
10

10
11

10
11

01
01

11
01

01
01

11
10

00
11

10
01

00
01

00
00

01
10

00
01

11
00

01
01

01
00

10
01

00
11

01
00

00
01

00
01

00
00

10
00

00
11

00
00

00
10

01
00

11
01

00
11

01
10

10
01

10
11

01
11

11
01

01
10

01
01

10
01

11
00

00
01

11
00

10
11

00
11

11
00

00
10

00
10

10
00

11
10

00
00

11
00

01
10

00
01

Scheduling Policy

0

20

40

60

80

100

Pe
rc

en
ta

ge
of

Ta
sk

s
(%

)

InDeadline
Rejected
Forwarded

Figure 4.1 Percentage of In-Deadline, Rejected and Forwarded tasks of all the possible policies with 6 nodes, a policy is encoded in binary where 1 means
probing and 0 means executing locally. In this experiment ⍴ = 0.6, deadline is 0.043s and job duration is 0.020s.

0 0 1 0 1 0

Encoding the policy
execute locally

probe-and-forward

0 1 2 3 4 5 Number of running tasks

Best policy in theory
Policy learned by the agent (next slide)

Equivalent

Validity Check

4. Results 25

01 11 21 31 41 51
State

Non-Probe

Probe

A
ct

io
n

°0.75

°0.50

°0.25

0.00

0.25

0.50

0.75

1.00

D
ecision

C
onfidence

Figure 4.2 The policy learned by the agent in the same setting of Figure 4.1

0.0

0.5

1.0

i

N
ode

#0

0.0

0.5

1.0

i

N
ode

#1

0.0

0.5

1.0

i

N
ode

#2

0.0

0.5

1.0

i

N
ode

#3

0.0

0.5

1.0

i

N
ode

#4

1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0.0

0.5

1.0

i

N
ode

#5

Sarsa
Pwr2 (T=2)

Figure 4.3 Comparison between Sarsa and Pwr2: behaviour of the in-
deadline rate ɩ for every node when the load is fixed and the same to
every node

In these experiments the agent can only choose among three actions: reject, execute locally and probe-and-forward.

The learned policy is 001110

Results

4. Results 26

0.0

0.5

1.0

i

N
ode

#0Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#1Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#2Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#3Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#4Sarsa
Pwr2 (T=2)

1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0.0

0.5

1.0

i

N
ode

#5Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#0Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#1Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#2Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#3Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#4Sarsa
Pwr2 (T=2)

1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0.0

0.5

1.0

i

N
ode

#5Sarsa
Pwr2 (T=2)

Figure 4.4 Comparison between Sarsa and Pwr2: behaviour of the in-deadline
rate ɩ for every node when load is fixed but heterogeneous

Figure 4.5 Comparison between Sarsa and Pwr2: behaviour of the in-
deadline rate ɩ for every node when the load is variable according to the
geographic scenario

In these experiments the agent can only choose to: reject, execute locally, probe-and-forward and directly forward to a given node.

These nodes gain more reward than
power-of-choice

For this node instead is the same

This node sacrifices its reward

Every node, in the end, gain the same reward

Learning curve

Results

4. Results 27

0.0

0.5

1.0

i

N
ode

#0Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#1Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#2Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#3Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#4Sarsa
Pwr2 (T=2)

1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0.0

0.5

1.0

i

N
ode

#5Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#0Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#1Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#2Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#3Sarsa
Pwr2 (T=2)

0.0

0.5

1.0

i

N
ode

#4Sarsa
Pwr2 (T=2)

1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0.0

0.5

1.0

i

N
ode

#5Sarsa
Pwr2 (T=2)

Figure 4.4 Comparison between Sarsa and Pwr2: behaviour of the in-deadline
rate ɩ for every node when load is fixed but heterogeneous

Figure 4.5 Comparison between Sarsa and Pwr2: behaviour of the in-
deadline rate ɩ for every node when the load is variable according to the
geographic scenario

In these experiments the agent can only choose to: reject, execute locally, probe-and-forward and directly forward to a given node.

The same holds when the traffic
is variable in time

Conclusions5

On real-time scheduling in Fog computing: A Reinforcement Learning algorithm with application to smart cities • ALPACA 2022

Conclusions & Future Work
- in the presented work we designed and run in simulation a fully distributed

reinforcement learning based algorithm for dealing with online scheduling in the
fog computing environment

- we showed how the algorithm can take a step forward the standard power-of-
choice approach by inferring the best scheduling policy

- we showed how the approach can level the reward of every node making them
not behaving selfishly

Future work

- consider variable communication delay between nodes

- increase the complexity of the state

- consider tasks with different deadlines

- study the learning time, how fast the algorithm learn the policy

5. Conclusions 29

On real-time scheduling in Fog
computing: A Reinforcement Learning
algorithm with application to smart cities
Gabriele Proietti Mattia*, Roberto Beraldi*

T A L K & P R E S E N T A T I O N

Gabriele Proietti Mattia

 
*Department of Computer, Control and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, Italy 

