
1

Power of random choices made efficient for fog
computing

Roberto Beraldi, Gabriele Proietti Mattia
DIAG, La Sapienza University of Rome, Italy

F

Abstract—In this paper, we consider a load balancing protocol based
on the power of random choices that is adapted to a fog deploy in which
several independent fog nodes equipped with a set of servers or VM
are serving the same geographical area. The protocol is based on a
simple but effective mechanism based on a threshold T . When a fog
node receives a unit of computation or a job, it immediately executes the
job if the number of its occupied servers is lower than T , otherwise the
node executes a randomized algorithm by probing F other fog nodes in
the area, and delegates the execution of the job to the least loaded one,
provided the workload is lower than the probing node.

Through a mathematical analysis we show that probing just one
node (F = 1) when there are less than two free VMs provides the same
performance of the well known power-of-two random choices centralized
algorithm, but at a much lower delay and control overhead costs. Also,
simulations are used to address the node heterogeneity and, with a real
testbed, we offer results that prove the effective benefit of the proposed
solution in practical applications.

1 INTRODUCTION

The ongoing advances in the ICT, from 5G to powerful
open-source software libraries, e.g., open Computer Vision
and TensorFlow, are creating the prerequisites for software
applications positioned in the left upper corner of the la-
tency bandwidth Cartesian product with use cases in dif-
ferent vertical domains, e.g., ranging from IoT, smart cities,
AR/VR based applications with haptic interactions, as well
as Tactile Internet, [1]. Fog computing is widely considered
the key enabler for such applications as it makes backend
capabilities physically close to the end-users and integrated
with the usual cloud services. Fog computing is seen as an
integrated intermediate layer along the thing-to-cloud path
[2], [3], [4], [5]; readers may refer to [6] for an overview and
tutorial on fog computing.

Fog enabled applications are a composition of units of
computation, e.g., adhering the Function as a Service (FaaS)
delivery model, with the time-critical parts deployed on fog
nodes, [7]. OpenFog’s Fog computing Reference Architec-
ture [8], recently adopted as the IEEE-1934 standard, envi-
sions fog nodes to form a mesh to provide load balancing
and minimization of cloud communication. In particular,
they may communicate laterally in a peer to peer fashion.
For example, in the 5G architecture, a high number of
devices are networked by a capillary network, and nearby
Radio Access Network, equipped with Fog computing capa-
bilities, (F-RAN) may communicate directly, through the so-

X2

5G CORE NETWORK (CONNECTION TO THE CLOUD)

Fog Node

Fog Node

Fog Node

Fog Node

Fog Node

EU
EU

Figure 1: An illustration of the inter-node communication
among 5G fog nodes, that can support the load balancing
discussed in the paper.

called X2 or X2* interfaces, [9], [10], see Figure 1. This inter-
node communication carries both control and user planes,
and allows for increasing the fraction of the service require-
ments that can be responded locally, without interacting
with the cloud computing center via the fronthaul links.
For example, a computation request generated from an End
User (EU) connected to an F-RAN can be served by another
nearby F-RANs, even via a virtual multi-hop connection,
where the number of hops is limited to some units.

Also, in the industrial standard ETSI’s Multi-access Edge
Computing (MEC) reference architecture, the envision or-
chestration leverages on code relocation and traffic steering
to dynamically move application code or data, [11].

Motivated by the above scenarios, in this paper, we
study the problem of how load balancing jobs among a set
of fog computation resources that provide the same com-
putation service, for example, the object detection service
described in [12]. Load balancing in fog computing is, in
fact, an open issue that may play an important role to enable
fog based applications, [6], [13], [14], [15].

In more detail, we focus on a fog layer composed of
N nearby fog nodes, with K identical servers. The fog
nodes are willing to share their resources with the goal of
reducing the fraction of jobs forwarded for execution to a
distant cloud. Incentives to cooperate and the benefit of such
sharing are discussed for example, in [16]. In addition, jobs

2

have no information related to their deadlines, computation
requirements or priorities. It worth to note that N can
potentially be high. For example, in the 5G architecture, the
higher frequencies than 4G are not capable of traveling large
distances. This requires placing 5G RAN every few hundred
meters in order to utilize such higher frequency bands.

The proposed algorithm is an adaptation of the LL(d) al-
gorithm (Least Loaded among d random nodes) to the above
fog model. A fog node normally executes jobs received
from its direct users without any load balancing action.
However, when its workload is higher than a threshold T , a
node tries to delegate the execution of a job to another less
loaded node among F randomly probed nodes 1. We refer
to this algorithm as LL(F, T). This threshold regulation
is a simple yet effective mechanism that reduces remote
scheduling overhead remarkably, avoiding the inefficiency
arising when autonomous schedulers compete on sharing a
common set of resources, [17], [18], [19].
Contribution of the paper:
• Definition of LL(F, T), Least Loaded among F nodes

with threshold T , a new scheduling algorithm the
fog computing model based on the power-of-random
choices randomization principle.

• Mathematical analysis of the algorithm showing how
LL(1,K − 2), i.e., probing just one node when one or
two servers out of the K are idle, reduces up to one
order of magnitude the control and delay overhead
with respect to a vanilla randomized load balancing
implementation of the power-of-two random choices
algorithm.

The paper is organized as follows. In the next section, we
report related works. Section III proposes LL(F, T) and its
performance model, while in Section IV we report a study
on the effect of T on the behavior of randomization, and in
Section V performance results. Conclusions are then given
in Section VI.

2 RELATED WORK

Our proposal has its root in the randomized algorithms
based on the power-of-d choices result, [4]. Load balancing
algorithms based on this result, adopt a unique scheduler
that receives jobs to be dispatched to one of N equivalent
workers. Scheduling decisions are performed by sampling
the state of d workers and selecting the most convenient
one according to their workloads. The main success of this
strategy is that it avoids keeping the state of all the workers
while being remarkable effective, which is particularly use-
ful when N is high. A rich and sound literature has studied
the property of these algorithms for N → ∞. In this limit
[20] shows the asymptotic independence among queues,
which allows simplifying the analysis of these systems. Our
analysis assumes this ansatz.

The studies that characterize this randomization algo-
rithm in the context of load balancing can be divided into
two bodies depending on the model of the workers, that
either cannot or can lose jobs. The first set of results, e.g.,
[4], [21], [22], model workers as M/M/1 queues and the

1. We use a different symbol, F to indicate the number of probed
nodes to make the difference with the original protocol clearer.

selection criteria is to pick the Shortest among the d sam-
pled Queues, SQ(d). The most relevant finding is that the
average job execution delay decay doubly exponentially in
the limit as the number of servers goes to infinity, which is a
substantial improvement over a classical queue case, where
the queue size decays exponentially. A finer workload mea-
surement is used in [23]. This extraordinary improvement
has motivated the research on a different worker model, that
can somehow better fit applications to cloud computing,
e.g., [24]. The second body of works, in fact, model the
worker as a finite set of K servers, e.g., an M/M/K queue,
and a job that cannot be scheduled it is blocked, [25], [24],
[26], [22]. The selection criteria here is to pick the Least
Loaded among d queues, LL(d), where the server load is
the number of busy servers. These works analyze the effect
of randomization on the blocking probability, which is the
counterpart of average delay. However, all models assume
a single centralized dispatcher, and hence threshold-based
control cannot be applied. The work in [27] is the most
one related to our idea. In the studied protocol if a job
execution request arrives at an overloaded fog node, the job
is forwarded to a neighboring node with some probability.
Hence, contrary to our protocol no power-of-choice is used.
In [28] we have used power-of-random choices to enable
cooperation among different fog providers. No thresholds
are used and the protocol is limited to unitary fanout. In [29]
random choices are used for a p2p load balancing protocols.

Load balancing for the fog model has been stud-
ied in several papers. In [30] an algorithm called Multi-
tenant Load Distribution Algorithm for Fog Environments
(MtLDF) has been proposed to optimize load balancing in
Fogs environments considering specific multi-tenancy re-
quirements. However, the proposed load balancing scheme
adopts a centralized fog management layer that receives all
the state information about the fog nodes.

In [31], the tasks that the nodes are called to complete,
are characterized according to their computational nature
and are subsequently allocated to the appropriate host. Edge
networks communicate through a brokering system with
IoT systems in an asynchronous way via the Pub/Sub mes-
saging pattern. However, a centralized workload balancer is
used in the solution.

In [32] an approach is presented to periodically dis-
tributing incoming tasks in the edge computing network
so that the number of tasks, which can be processed in the
edge computing network, is increased, and the quality-of-
service (QoS) requirements of the tasks completed in the
edge computing network are satisfied. The model, however,
assumes that a set of tasks to be assigned is available, i.e.,
the tasks are not processed online.

In [33] a mechanism for load balancing policy is pre-
sented with a dynamic threshold, which is computed each
time the scheduling is applied.

In [34] and [35] the load balancing algorithm is based
on a BFS search, by also addressing the problem of the
secure authentication between nodes. Other works are fo-
cused on the trade-off between energy consumption and
latencies [36].

3

3 POWER OF RANDOM CHOICES LOAD BALANCING
FOR FOG COMPUTING

In this section, we describe our solution to the load balanc-
ing problem for fog computing. In general terms, the load
balancing problem consists in determining how to allocate
jobs generated by end-users to fog nodes in an efficient
way. More formally, we are given a set of N homogeneous
fog nodes with limited resource capacity, where each one
is receiving a continuous flow of computation requests, or
jobs. A job is blocked when it cannot be executed due to the
lack of available resources. We call pB the probability that
this event occurs. A load balancing algorithm is a rule that
assigns jobs to servers in a way that pB is minimized. The
efficiency of the rule is measured by the amount of control
overhead generated.

A power-of-d random choices load balancing algorithm
is a rule executed by a dispatcher to decide where the jobs
received have to be forwarded and executed, among a set of
N equivalent workers. On receiving a job, the dispatcher
probes a small subset d of workers and then sends the
job to the Least Loaded among them with ties broken at
random. The key characteristic of the algorithm is d � N
and even d = 2 has shown to be very effective compared to
probing all nodes. The algorithm, referred as LL(d) requires
an overhead as small as d control messages per job and
scalable as this overhead doesn’t depend on N .

A general fog computing deploy model is a hierarchical
multi-tier architecture where communication can also occur
among nodes of the same tier, [8]. We focus on the first tier
that provides access to end-users via N nodes. The applica-
tion of LL(d) as-is implies the existence of N dispatchers
and N workers, and this has two main drawbacks. The
first one is that in general concurrent dispatchers tend to
be inefficient as their decisions are biased towards workers
that appear lightly loaded, [17], [19]. In some extreme cases,
this implementation may even deteriorate the initial per-
formance, e.g., see [18]. The second implication is that the
dispatching operations introduce a delay overhead for any
job, even when nodes do not need to distribute the load,
for example, because most of its current servers are idle, as
discussed later in the text. For these reasons, we propose the
following algorithm that keeps the load balancing approach
unchanged but allows reducing the aforementioned draw-
backs. The design of the algorithm is based on the following
assumptions:
• A1: The communication latency among nodes, although

not negligible, is small compared with the job execution
time. This assumption follows from the observation that
for example, the time required for an image recognition
is in the order of tens of ms, while an X2 or X2* interface
that connects Fog nodes - either directly or through a
few relaying nodes, is likely to be not higher than a few
ms, see Figure 1.

• A2: Probing occurs only among N nodes in the same
tier composed of nearby fog nodes, where N can be
high. This assumption follows from the observation
that the density of fog nodes in a geographical can
be high. For example, F-RAN can cover just hundreds
of meters. If a job cannot be executed in the tier, the
job is forwarded to the cloud. The protocol aims at

reducing the probability that these events occur. Nodes
do not have a waiting queue for incoming jobs, i.e.,
the workload is measurement is the number of running
jobs.

• A3: nodes are homogeneous, they have the same num-
ber of servers K and provide the same service at the
same speed. Generalization to no homogenous case is
easy and left as future work. We will however report
simulation results that cover this case.

3.1 LL(F, T): Least Loaded with fan-out F and Thresh-
old T

In this section we describe the Least Loaded among F
random nodes with threshold T load balancing protocol,
referred to as LL(F, T). The value F is called the protocol
fan-out. The algorithm works as follows, see Figure 2.

When a node receives a job, if k < T , then the node
executes the job immediately, otherwise it probes the state
of F different random nodes and computes the minimum
among the returned values, say m. When k < K, if m ≥ k,
then the node executes the job locally; otherwise, it forwards
the job to the node reporting m, with ties broken at random.
If the receiving node, as well as the probed nodes, have no
free servers, i.e., k,m = K , the job cannot be served by this
fog layer and we count the job as being blocked. A blocked
node can trigger different actions, like sending the job to
an upper fog layer (e.g., the cloud). We limit to consider
this metric as an important performance measure of the
algorithm with higher blocking probability being associated
eventually to a worse end-user performance.

k=
current

workload
PROBE F NODES

m = LEAST LOADED

CHECK
m FORWARD JOBSERVE LOCALLY

k≤m<K

k≥T

k<T

m<k

JOB RECEIVED

JOB SERVED LOCALLY JOB SERVED REMOTELYJOB BLOCKED

m=K

Figure 2: Least Loaded among F probed nodes with
Threshold T control flow. K is the total number of servers
available, k the number of busy servers at the receiving
node. A job executed remotely means that the serving fog
node is not the node that received the job.

3.2 Protocol analysis

We study the performance of the LL(F, T) protocol under a
Poisson traffic with rate λ jobs per unit of time per node and
exponential service time with mean one. Table 1 summarizes
the main symbols used in this study.

4

Number of nodes N
Number of servers K
Arrival rate per node λ
Number of nodes running k jobs nk

Number of nodes running at least k jobs ñk =
∑k

i=1 ni

Stationary state probability for the infinity model πk
Tail of the stationary state probability π̃k =

∑K
i=k πi

Table 1: Main symbols used in the analysis.

3.2.1 Protocol analysis for N finite

This model considers a system of N homogeneous fog
nodes with K servers. The model is based on a standard
Continuous Time Markov Chain (CTMC). The state of the
system is expressed through the vector:

n = (n0, n1, . . . , nK) 0 ≤ ni ≤ N,
∑
i

ni = N

where ni is the number of nodes with i running jobs. This
direct method can only be applied to small values N,K , as
the state space of the model explodes (see the appendix for a
quantitative evaluation). However, it is anticipated that the
characteristics of the load balancing protocol appear even
with small values for N,K . The chain is solved numerically
from its canonical formulation:

πQ = 0, 1π = 1

To deal with the memory issues, we’ve avoided direct
matrix inversion and used a power method instead, as it
allows for storing the spare matrix efficiently.

Let ek be aK+1 sized vector of all 0s except 1 in position
k. The entry q(n,n′) of the infinitesimal transition matrix Q
is expressed as:

q(n,n′) =

λi(n, F) n′ = n− ek + ek+1

µi(n) n′ = n + ek−1 − ek,

−
∑
i[λi(n, F) + µi+1(n)] n = n′

0 otherwise

where µi(n) = i × µni (ni is the i-th component of n). Let
define the function:

δFNn =
n!

(n− F)!

(N − F)!

N !

with the convention that δFNn = 0 if F < 0. This number
represents the probability to extract form an urn of N balls
containing n balls of the same type, F balls of such a type
without replacement.

The birth rate is conveniently divided into the sum of
two flows. The first flow:

λ1k(n, F) = λnk

{
1 k < T

δFN−1ñk−1 k ≥ T

represents jobs that arrive directly to fog nodes. For k ≥ T
a job is served only if the state of all the F probed nodes
is at least k. Let ñk the number of jobs with at least k jobs
running. As the number of these nodes excluding the node
itself is ñk − 1, this event occurs with probability given

by δ(·) in the above expression. The second contribution
is given by:

λ2k(n, F) = λ

{
ñT (δFN−1ñk−1 − δ

F
N−1ñk+1−1) k < T

ñk+1(δFN−1ñk−1 − δ
F
N−1ñk+1−1) k ≥ T

where the term in the parenthesis is the probability that the
minimum state of at least one probed node is k.

3.2.2 Performance metrics N finite
The following performance metrics are defined in terms of
the stationary probabilities πk of the CTMC process. As far
as the delay is concerned, we approximate its evaluation by
assuming that each round trip time is a uniform Random
Variable U = (0, 1] and correlations exit among probings.
• Blocking probability, pb. This value corresponds to the

probability of the event that a job received from a node
cannot be executed, which occurs when the state of the
receiving node, as well as all the F probed nodes, is K .
As a job is blocked when the state of all the F different
probed nodes is K , we have

pb =
∑

πn:nK≥F+1

nK
N

. . .
nK − F
N − F

πn

• Average delay per job, D.
This delay is the sum of the delay due to probing, job
forwarding and result reply and it is given by:

D =
[F

F + 1

1

N

∑
n:nk≥T

nkπn

]
+

1

2
fwd

where fwd is the fraction of received jobs that are
forwarded to another node. The first term is the mean
of F uniform RV and nk

N is the probability that a job
arrives to a node whose state is k. The fraction of job
forwarded is given by:

fwd =
∑

πn:ñk>0

nk
N

(1−
min{ñk,F}∏

i=1

ñk − i
N − i

)πn

which represents the probability that a job arrival to any
of the N nodes, sees the fog node with k servers busy,
and the state of all the probed nodes is at least k.

• Overhead per job, ovh.
As probing is triggered when a job arrives to any of
the nk out of N nodes whose state is k ≥ T and the
probability such a job arrival event occurs is nk

N , we
have:

ovh =
F

N

∑
n:nk≥T

nkπn

3.2.3 Protocol analysis N infinite
We now characterize the LL(F, T) protocol in the limit of
N → ∞ fog nodes. We make the conjecture that when N
grows, the dynamics of a set of finite nodes tend to become
independent one from each other. While a formal proof of
such asymptotic independence is difficult, we remark that
this approach has been taken in other works, e.g., [24], [20],
[26] and it is the basis of the widely used mean-field theory.
We prove that the model arising from this assumption,
considered per se has a single solution. If the conjecture is

5

true, the model then provides correct results. The presented
numerical results have similar shapes compared to the
model with finiteN , thus making this conjecture reasonable.

Suppose then that queues describing our nodes are in-
dependent and let’s focus on a single tagged node. The state
of this tagged node boils down to the number of its busy
servers and changes according to a Birth-Death (BD) process
with state-dependent birth transition rates, as defined next.

Let πk the probability of the state being k, and π̃k =∑K
j=k πj the tail distribution of the state variable. The BD

process describing the state of a node should satisfy the
following set of K equations:

λkπk = (k + 1)πk+1 k = 0 . . .K − 1 (1)

where
∑
k πk = 1 and λk = λ1k + λ2k.

JOB

F
NODES

PROBE
F NODES

A

F-1
NODES

B

A

JOB

PROBE
F NODES

Figure 3: Traffic flows seen by a node A. A job is served by
the node when (i) it is received directly from A (left); (ii) it
is probed by some other node B, that then forwarded to it.

Our tagged node executes jobs generated directly from
its users (left side in Figure 3), when k < T , or T ≤ k < K
and the state of all the F probed nodes is at least k. The
birth rate associated to these events is

λ1k = λ×

{
1 k < T

π̃Fk k ≥ T
(2)

NodeAmay also execute a job of behalf of another node,
say B in the right side of Figure 3. This occurs when B
selects A and before that B probed other F − 1 nodes. If
the state of A is k, this occurs when the state of B is higher
than k, k is also the minimum state state of other i out of
the F − 1 other probed nodes, and B selected A among the
i + 1 least loaded nodes. Since B probes other nodes when
the number of busy servers is at least T , these transitions
occur with rate

λ2k = α(k, T)

F−1∑
i=0

(
F − 1

i

)
πikπ̃

F−i−1
k+1

1

i+ 1
(3)

where

α(k, T) = λ

{
π̃T k < T

π̃k+1 k ≥ T,

3.2.4 Properties
Theorem 1 (Solution). Equations Equ. (1) have a single solu-
tion.

Lemma (Upper bound). For given F, T, λ < K, let

ˆ̃πk =
λ

(F+1)
k−T−1
F

Πk−T
i=0 (k − i)(F+1)i

then if bλc ≤ T when λ in not an integer and λ < T otherwise,
the following upper bound holds

π̃k ≤ ˆ̃πk k = T, . . . ,K

Proof. see appendix.

Lemma (Equivalence). LL(F, 1) is equivalent to LL(d), where
d = F + 1.

Proof. See appendix.

3.2.5 Performance metrics
The counterpart of the performance metrics for this model
is defined in terms of the stationary probabilities πk of the
BD process describing the LL(F, T) algorithm.
• Blocking probability, pB .

pB = πF+1
K

In fact, this value corresponds to the probability of the
event that the state of the node receiving a job as well as
all the other F probed nodes isK . Note that pB ≤ π̂F+1

K
• Average delay overhead per job, D.

D =
F

F + 1
π̃T +

1

2
fwd

where fwd is the fraction of received jobs that are
forwarded to another node. As a node with state k ≥ T
forwards a received job if the state of at least a probed
node is lower that k, and this occurs 1− π̃Fk , it is:

fwd =

K∑
T=k

πk(1− π̃Fk)

• Average number of generated probing messages per
received job, h. As F messages are generated when the
state of the job’s receiving node is at least T , this value
is hence given by:

ovh = Fπ̃T

4 POWER OF CHOICE WITH A THRESHOLD

It is known that the extraordinary efficacy of the power-of-d-
choices algorithm is because the state dynamic of a node un-
der LL(d) is radically different from when the node works
in isolation. Our LL(F, T) algorithm works in between two
extreme points. For T = 1 the algorithm is equivalent to
LL(d) with d = F + 1, and hence it completely exploits
the power of choices effect, whereas with no cooperation,
T = ∞, each node works in isolation. It is then worth
to better understand how T determines the raising of this
change, e.g., how and if it is smooth or not. We provide here
some numerical results concerning this aspect.

6

A formal way to measure how T affects the state distri-
bution is to compute the difference among the schemes as a
distance:

dist(F, T) =
(∑

k

|πk − π′k|2
) 1

2

where πk (π′k) is the state probability of LL(F, T) and LL(d)
with d = F + 1, respectively.

Table 2 reports the distance dist(F, T) for different val-
ues F, T , and K = 30, λ = 25. The difference falls sharply
as T becomes lower than λ. For example a distance of less
than 0.005 is reached when T = λ = 25. Also, the fan-out
F makes this change even stronger.

T 30 28 26 25 22
F=1 2.7e-01 1.7e-01 2.4e-02 5.0e-03 2.9e-05
F=2 3.9e-01 3.0e-01 2.1e-02 2.0e-03 1.0e-06
F=4 4.9e-01 3.8e-01 1.4e-02 4.3e-04 1.1e-08

Table 2: Distance dist(F, T) for different fan-out F and
thresholds T , K = 30, λ = 25 (top), and λ = 29 (bottom).

Though the previous distance provides an objective mea-
surement, a better understanding can be gained by analyz-
ing the whole state probability distribution function. As the
highest deviation from an isolated worker is registered with
d = 2, [37], we focus on this case. Figure 4 shows the π’s
pdf for K = 30, λ = 25 and different T . The LL(1,∞) plot
is the pdf of the M/M/K/K queue (no load balancing).

10-3

10-2

10-1

100

 20 22 24 26 28 30

π

k

LL(1,∞)
LL(1,30)
LL(1,29)
LL(1,28)

LL(2)

Figure 4: Effect of the threshold on πk, F = 1.

From Figure 4, we observe how for T < K , the state
probability after some k starts to decrease fairly sharply,
whereas this is not true for node working in isolation or
T = K . Figure 5 shows the exact and upper bound of π̃k,
and confirms how the state probability falls sharply with K .

5 PERFORMANCE RESULTS

This section reports some representative performance re-
sults of the LL(F, T) protocol, using the infinite and finite
models.

5.1 Infinity model
Figure 6 shows the blocking probability as a function of the
load for K = 50, F = 1. The way the blocking probability

10-4

10-3

10-2

10-1

100

 0 10 20 30 40 50

 ~

k

Bound T=25
Bound T=27

T=25
T=27

Figure 5: Upper bound and exact π̃k for different thresholds
T , K = 50, λ = 25

10-3

10-2

10-1

 40 42 44 46 48 50

P B

load

T=∞

T=50
T=49
T=48
T=47
T=1

Figure 6: Blocking probability vs load, F = 1

changes with the load varies remarkably when load balanc-
ing is introduced. The performance can be seen under differ-
ent angles. For example, suppose that job execution latency
is such that they cannot be executed in the cloud2 and that
jobs’ blocking probability, called target probability hereafter,
should be pB ≤ 10−3. Without load balancing, the node can
serve up to a traffic load of λ′ ≈ 33 requests per unit of
time (this value is not shown in the figure), whereas with
load balancing with T = 1, which is equivalent to a classic
Least Loaded policy, LL(2), this traffic raises to λ′′ ≈ 47,
corresponding to a traffic intensity of ρ = λ

K = 0.94. To
ensure the same pB the node should increase the number
of servers to K = 67. We can envision a scenario where
the traffic temporarily increases beyond λ′ and the node
should elastically accommodate this peak. Even assuming
a virtualized environment that allows resource scaling, the
node can benefit from load balancing during the start-up
time of the new 17 resources, which may be not negligible
(clearly the traffic of the other nodes should be less than λ′).
The plot shows how the same blocking probability can be
achieved with T = 48.

Another interpretation of this result is the following.

2. Typical values of the round trip time to hit a cloud service can be
as high as 100 ms, whereas fog-to-fog latency is likely to be as small as
a few ms.

7

10-3

10-2

10-1

 40 42 44 46 48 50

P B

load

T=∞

T=50
T=49
T=1

Figure 7: Blocking probability vs load, F = 3

 0

 10

 20

 30

 40

 50

 40 42 44 46 48 50

Pr
ob

e
me
ss

ag
es

load

T=∞

T=50
T=49
T=48
T=47
T=1

Figure 8: Probe message frequency vs traffic, F = 1.

Suppose that jobs are never lost as a node can delegate
job execution to the cloud if congested. A node working
in isolation can serve traffic at a rate of 47 jobs per unit of
time, but a fraction of them, corresponding to the blocking
probability, roughly 10 % according to Figure 6, is executed
in the cloud, thus expediency a longer latency. If load
balancing is used, this fraction is reduced to just 0.1 %.
Clearly, additional latency is to be considered that is due
to load balancing penalty. By using a threshold, this latency
can however reduced, as discussed next.

Figure 7 shows the blocking probability when the fan-
out is increased to F = 3. Now it’s enough to set T = 49 to
get the same fraction of blocked jobs.

Figure 8 shows the frequency of probing messages gen-
erated as a function of the traffic and different T . The
advantage of using a threshold is measured by the reduction
of probe messages. For T = 48 and λ = 47, the messages
rate decreases of a half with respect to an uncontrolled load
balancing activity, and much more for lower traffic. For
example, for λ = 40, the target pB is reached with T = 50
at the cost of just a few probe messages. At this traffic, the
node should still increase its servers (to K = 59) if working
in isolation. Besides the obvious benefit of decreasing the
control overhead, this reduction also reduces the risk of
race conditions that may weaken the effectiveness of load
balancing, as remarked in [17], [18].

Figure 9 shows the frequency of probing messages for

 0

 20

 40

 60

 80

 100

 120

 140

 160

 40 42 44 46 48 50

Pr
ob
e
me
ss
ag

es

load

T=∞

T=50
T=49
T=1

Figure 9: Probe message frequency vs traffic, F = 3.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 40 42 44 46 48 50

De
la
y

load

T=∞

T=50
T=49
T=48
T=47
T=1

Figure 10: Average control delay vs traffic, F = 1

F = 3. Under the overhead point of view, the best fan-
out is a matter of the working conditions. For example, if
the load is less than λ = 46 and the target loss fraction
is 10−3, then F = 1 or F = 3 generate almost the same
amount of control messages of less than 20 messages per
unit of time, i.e. less than a half if threshold is not used. If
the load is increased, F = 3 may be required to meet the
target blocking probability.

Figure 10 shows the average control delay penalty intro-
duced by the protocol as a function of the traffic. This delay
also reduces remarkably using a threshold. For example,
from 0.7 to 0.4 for λ = 47 and to 0.05 for λ = 40, i.e. of
one order of magnitude. Note that for T = 1 the average
delay is not one, because a job is not always forwarded (the
delay is the sum of the average probing message, i.e., 0.5,
plus the delay of job forwarding and reply, that occurs only
when a job is forwarded.

The delay for F = 3 is shown in Figure 11. Even under
high load λ = 50 corresponding to ρ = 1, using a threshold
reduces the control delay. This result corroborates the claim
that to achieve the benefit of randomization it not required
to always probe other nodes.

5.2 Finite model

This section reports the main three metrics, obtained with
N = 8,K = 14. Figure 12 shows the blocking probability

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 42 44 46 48 50

De
la
y

load

T=∞

T=50
T=49
T=1

Figure 11: Average control delay vs traffic, F = 3

10-3

10-2

10-1

 8 9 10 11 12 13 14

P B

load

T=∞

T=14
T=13
T=12
T=1

Figure 12: Blocking probability vs traffic, F = 1.

as a function of the traffic for F = 1. Load balancing allows
reducing the blocking probability considerably allowing to
serve a traffic of up to approximately 10 requests per unit
of time for our hypothetical target pB , corresponding to a
traffic intensity of 0.7. The same value is reached with T =
12.

The effect of increasing the fanout is visible in Figure 13.
Clearly, the margin for improvement is now limited by the
finite number of nodes. We can also see see that by setting
T = K − 2, the protocol reaches the same performance of
LL(d).

Figure 14 and Figure 16.(a) show the benefit of threshold
on the control overhead and delay. As for the infinity model,
this advantage is even higher for lower traffic.

Figure 15 and Figure 16.(b) shows the same performance
index when F = 2. Similarly to the results obtained from
the infinity model, increasing F allows to further reduce the
blocking probability, though the improvement is limited by
the finite number of nodes.

6 SIMULATION

In this section, we report the results of a simulated model
that considers additional details missed in the mathematical
study, concerning the effect of delay and heterogeneity
among fog nodes.

10-3

10-2

10-1

 8 9 10 11 12 13 14

P B

load

T=∞

T=14
T=13
T=12
T=1

Figure 13: Blocking probability vs traffic, F = 2.

 0

 2

 4

 6

 8

 10

 12

 14

 8 9 10 11 12 13 14

Pr
ob

e
me

ss
ag
es

load

T=14 T=13 T=12 T=1

Figure 14: Probe message frequency vs traffic, F = 1.

 0

 5

 10

 15

 20

 25

 30

 8 9 10 11 12 13 14

Pr
ob

e
me

ss
ag

es

load

T=14 T=13 T=12 T=1

Figure 15: Probe message frequency vs traffic, F = 2.

9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 9 10 11 12 13 14

de
la

y

load

T=14 T=13 T=12 T=1

(a) F = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 9 10 11 12 13 14

de
la

y

load

T=14 T=13 T=12 T=1

(b) F = 2

Figure 16: Average control delay vs traffic, finite model

We’ve used a custom discrete-event simulator, written
in Python. The system under observation is composed of
N1 fast fog nodes and N2 slower nodes that provide the
same service to a set of end users in a given restricted area.
Globally, the traffic generated by users covered by the same
fog node is a Poisson process, whereas the average execution
of the provided service requires s1 ms by fast nodes and
s2 by slow nodes3. The Poisson assumption can capture a
realistic scenario of moving end users entering and leaving
areas covered by fog nodes and requesting an application
service, i.e., object recognition for VR/AR applications, as
described for example in [12]. The parameters used for
simulations are reported in the following Table:

Total Number of Nodes 32
K 14
Traffic rate λ [jobs/s] 35,105,210
Job duration, 1

µ [ms] 300,100,50
Traffic intensity per node ρ = λ

Kµ 0.75
Task duration on a fast server [ms] 90%
Job Length [MB] 1
Device-to-Fog Delay [ms] Uniform [5,5.5]
Fog-to-Fog Delay [ms] Uniform [5,10]
Device-to-Fog Bandwidth [Mbps] 100
Fog-to-Fog Bandwidth [Mbps] 54

Each simulation lasts until at least 3000 loss events are
detected. The plots report the average among 5 independent
repetitions of a same simulation.

We have compared our protocol with a centralized
round-robin load balancing algorithm, where all fog nodes
first send their jobs to the centralized scheduler (assumed
with infinity capacity), then that applies the Round-Robin
rule (RR).

Figure 17 shows the blocking probability as a function
of the threshold (left) and the delay for the same traffic
intensity ρ = 0.75 and different execution times of a task.
When the service time of a task is much higher than the
latency of control messages, 300 ms corresponding to con-
trol delay of about 3% of the service time, the blocking
probability follows what has been predicted by the model:
as the threshold decreases, it falls sharply to its minimum
value and remain unchanged. However, as the execution
time becomes comparable with the control delay, after the
minimum, the blocking probability increases again. This is
especially evident for service time 50 ms that corresponds

3. Due to the insensitiveness to the service distribution of loss mod-
els, only the average matters.

to control delay 15%. The reason is that exactly because of
the control message transmission delay, the state of a remote
node at probing time can differ from its state when a job is
actually received. It may then happen than the workload of
a received fog node may be higher than the workload of the
sending node, hence weaken the effectiveness of the load
balancing mechanism. Also, we have noticed from inspect-
ing simulation traces that in some cases when the state of
a node is close to K a job is dropped by the probed node
because differently from what it has reported the node has
no longer idle servers. The left side of Figure 17 shows that
the blocking probability of the RR balancer is higher than
our protocol. With the optimal threshold our protocol drops
about 0.25% of message, whereas under RR about 2.5%, i.e.
one order of magnitude higher. The blocking probability of
RR did not changed with the service time (recall that the
traffic intensity is kept fixed in the experiment to 0.75).

Figure 17 also shows the delay (on the right), measured
as the time from when a job is generate by an IoT device
until the device gets the reply. This value was found slightly
higher for low thresholds, which is due to the addition job
transfer time and probing overheads. The delay of the RR
protocol is always higher than LL, hence we can obtain a
net advantage since more jobs are served without any delay
penalty.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 2 4 6 8 10 12 14

P B

Threshold

300 ms
100 ms
50 ms

RR

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14

De
la
y
[m
s]

Threshold

300 ms
100 ms
50 ms

RR 300 ms
RR 100 ms
RR 50 ms

Figure 17: Impact of the execution time on the blocking
probability and delay.

The second set of experiments measured the effect of
server heterogeneity. In this experiment half of the nodes
execute a job in 300ms (slow node) and the other half in
250 ms (fast node), i.e. half of the nodes are approximately
20% faster. Users are connected to a slow or fast node.
The load of a node is λ = 35 req/s. Figure 18 reports the
blocking probability as a function of the threshold seen by
users that send their job requests to a fast or slow node.
The figure also shows the total job’s response time, i.e. the
time elapsed from when a device sends a job execution
request until it gets the reply. We can see that the effect of
the threshold is still effective in case of server heterogeneity,
namely a threshold of T = 12 provides similar results of the
homogeneous case. Since the load balancing allocates jobs
to random servers, the response time for jobs coming from
users connected to a fast node is higher than 250 ms, i.e., the
execution time when executed on fast nodes, time because
it may occur that a job is executed on a slower server. The
advantage lays in the higher number of served jobs. For the
same reason, the response time seen by users connected to a
slow node becomes lower than when jobs are not forwarded
to any faster node.

10

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0 2 4 6 8 10 12 14

P B

Threshold

300 ms
250 ms

 250

 260

 270

 280

 290

 300

 310

 0 2 4 6 8 10 12 14

De
la
y
[m
s]

Threshold

300 ms
250 ms

Figure 18: Performance for the heterogenous case.

7 IMPLEMENTATION

An experimental test of the proposed scheduling algorithm
has been conducted on a framework, dubbed P2PFaaS,
that we conceived and designed according to our findings
described in the previous sections. Each fog node runs an
instance of such a framework, see Figure 20. The frame-
work relies on the Function-as-a-Service model (FaaS), [38]
according to which the service provided by a fog node is
exposed as a stateless function. The exported functionality
is an image detection service that is provided by all the
fog nodes, 4. Function invocation takes an image as input
returns the coordinate of a rectangle containing a face in the
passed image. The invocation of such a function bounded
to a specific image and corresponds to the unit of execution,
called job or task hereafter. Job transfer corresponds to
transfer the image to recognize to another fog node.

The framework, that is completely written in Go, is
composed by a discovery service, which allows nodes to
know each other, and a scheduler service in which the core
of the scheduling policy resides. In particular, the scheduler
service can forward image detection requests to other nodes,
do probing or schedule the function execution to the current
node. The framework implements only the scheduling logic
since the actual function execution is delegated to OpenFaaS
[40]. Both OpenFaaS and our framework rely on Docker
and Docker Swarm, for which every node represents a
swarm/cluster with only one node. This one to one map-
ping is done in order to avoid to use the Docker Swarm
pre-built scheduler, which always assigns a new job to the
least loaded node among the cluster it manages. To avoid
conflicting decisions, OpenFaaS auto-scaling is disabled and
the maximum number of concurrent functions is set to
K = 10.

A client that needs to perform a face detection task, sends
an HTTP request to a fog node. When the node receives
the request, the scheduling policy is applied: the current
number of running functions is checked and if it is below
the threshold T the request is immediately delegated to
OpenFaaS, which executes the face detection function. In
the other case, when the current load is equal to or above
the threshold T , the scheduler service picks F node IDs at
random and probes their load via parallel HTTP requests.
When all the replies have been collected, the scheduler
decides where to schedule the request, and if it is forwarded
to another node, it performs another HTTP request. When

4. The function that implements this face detection is the Pigo Face
Detector [39] function and implements the Pixel Intensity Comparison-
based Object detection that is a modification of the standard Viola-Jones
method

Scheduler Discovery

Swarm

P2PFaaS

Figure 19: P2PFaaS concept diagram, illustrating the com-
plete stack of services

this node completes the execution the result is returned via
HTTP response to the origin node which returns it to the
client. Again the client waits for the job completion and it
executes only one HTTP request, all what happens behind
it’s totally transparent to the client.

Api Gateway
Scheduler

Schedule
Pro
be

For
war

d

Request for
executing “f”

Execute

Figure 20: Scheme of execution of a function in the P2PFaaS
framework

An important optimization that has been introduced
since the initial concept version of the framework, regards
the probing. Indeed, after some tests, it resulted that serial-
izing a JSON for replying to a probe, with node load infor-
mation, is too demanding to be performed since it requires
a considerable amount of CPU time. For circumventing this
problem, load information is now passed via HTTP headers
and this allowed to drop the average probing time from
40ms to 10ms.

7.1 Results

We have conducted several tests by exploiting a cluster of
two servers equipped with Intel Xeon @ 2.80 GHz, which
are used to instantiate 8 VMs with assigned 1 core, 3GB of
RAM and with Debian installed. Every machine has been
equipped with Docker, OpenFaaS and our framework with
K = 10, F = 1, and they have been set up as master
nodes of single-node Docker Swarms. Then a ninth VM, the
“benchmarker”, has been instantiated in order to generate
the traffic of the requests and collect all the data. All VMs are
connected via fast ethernet within the same local network.
A series of Python scripts generates parallel traffic of image
recognition requests to every machine, then they collect the
number of dropped requests, the average execution time
of a function and a series of other parameters that regard
probing times, forwarding times, number of http errors and
many others. The average execution time of a single image
recognition is 300ms. Each experiment consisted of sending
20.000 detection requests at rate λ = 3.00, thus having
ρ = 0.9.

11

The experiment has been repeated 7 times, due to its
duration (≈ 24hrs), and in the following figures, results are
shown by using a confidence interval with α = 0.1 and with

sample mean error of± tα
2 ,n−1

√
S2

n (where S2 is the sample
variance).

Figure 21 shows the estimated blocking probability (ratio
of dropped requests to the total number of requests gen-
erated). This experiment shows a minimum for T = 8.
As predicted by the theoretical model (see Figure 12) the
blocking probability drops sharply as T decreases; however,
rather than remaining almost constant at that value it starts
to increase when T is further reduced. The reason is that
when T is lowered, the workload due to job scheduling
at each fog node increases since the number of probe per
job increases. In the limit of T = 1, unless the fog node is
idle every job arrival triggers a probe-reply cycle. While the
length of such control messages is overall negligible, their
processing is not and it has the net effect of reducing the
CPU cycles allocated to the image detection or, equivalently,
to increase the duration job execution. This aspect is not
captured by the model. The reduced CPU execution speed
clearly increases the average execution time of served job,
as reported in Figure 22.

0 2 4 6 8 10

T

0.00

0.05

0.10

0.15

0.20

0.25

%
�

Figure 21: Blocking probability as a function of the thresh-
old.

Finally Figure 23 reports the output of the RRDTool
performance profiler used during the trials, showing the
CPU breakdown, total memory usage and control traffic of a
fog node. Each pause in the trace corresponds to decreasing
the threshold of one unit, starting from T = 10. We can see
how the CPU usage slightly increases as T decreases and
is approximately 0.9, which is consistent with the nominal
generated traffic intensity, λ

µ . Such an increase is due to
an increase in the control message processing, as outlined
above. Neither the memory nor the network is saturated,
although they both increase as the protocol becomes more
proactive.

8 CONCLUSION

This paper studied the performance of the Least Loaded
among d nodes, LL(d) when adapted to a fog computing
deploy. This adaptation consists of triggering the random-
ized search only when the workload of the current fog node

0 2 4 6 8 10

T

1.5

2.0

2.5

3.0

3.5

4.0

D
el
ay

(s
)

Figure 22: Average end to end delay as a function of the
threshold.

Figure 23: Performance profile during a test. The threshold
is varied approximately every 2 hours

that receives a new job to execute is above a threshold
value, T . The threshold is shown to be a simple way to
reduce control delays without affecting the very nature of

12

the power-of-random choices principle.
Through a mathematical analysis we show that under

Poisson arrivals and an exponential distributed service time,
setting T = K − 2, where K is the number of servers
of a node, achieves practically the same performance of
the power-of-choice’s classical implementation requiring a
single global scheduler, but at much lower delay penalty
and control overhead of up to one order of magnitude
less. Simulation experiments and a real implementation
corroborated our finding.

REFERENCES

[1] A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh,
“Realizing the tactile internet: Haptic communications over next
generation 5g cellular networks,” IEEE Wireless Communications,
vol. 24, no. 2, pp. 82–89, April 2017.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, ser. MCC
’12, 2012, pp. 13–16.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[4] A. W. Richa, M. Mitzenmacher, and R. Sitaraman, “The power
of two random choices: A survey of techniques and results,”
Combinatorial Optimization, vol. 9, pp. 255–304, 2001.

[5] H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mo-
hanty, and C.-T. Lin, “Edge of things: The big picture on the
integration of edge, iot and the cloud in a distributed computing
environment,” IEEE Access, vol. 6, pp. 1706–1717, 2017.

[6] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao,
Y. Xiang, and R. Ranjan, “Fog computing: Survey of trends,
architectures, requirements, and research directions,” IEEE access,
vol. 6, pp. 47 980–48 009, 2018.

[7] S. N. Buyya, Rajkumar et al. B. Varghese, E. Gelenbe, B. Javadi,
L. M. Vaquero, M. A. S. Netto, A. N. Toosi, M. A. Rodriguez, I. M.
Llorente, S. D. C. D. Vimercati, P. Samarati, D. Milojicic, C. Varela,
R. Bahsoon, M. D. D. Assuncao, O. Rana, W. Zhou, H. Jin,
W. Gentzsch, A. Y. Zomaya, and H. Shen, “A manifesto for future
generation cloud computing: Research directions for the next
decade,” ACM Comput. Surv., vol. 51, no. 5, pp. 105:1–105:38, Nov.
2018. [Online]. Available: http://doi.acm.org/10.1145/3241737

[8] OpenFog Consortium Architecture Working Group, “Openfog ref-
erence architecture for fog computing,” https://iiconsortium.org/
pdf/OpenFog Reference Architecture 2 09 17.pdf, Tech. Rep.
OPFRA001.020817, Feb 2017.

[9] Z. Li, M. L. Sichitiu, and X. Qiu, “Fog radio access network: A
new wireless backhaul architecture for small cell networks,” IEEE
Access, vol. 7, pp. 14 150–14 161, 2019.

[10] P. Marsch, I. Da Silva, O. Bulakci, M. Tesanovic, S. E. El Ayoubi,
T. Rosowski, A. Kaloxylos, and M. Boldi, “5g radio access network
architecture: Design guidelines and key considerations,” IEEE
Communications Magazine, vol. 54, no. 11, pp. 24–32, November
2016.

[11] ETSI Industry Specification Group (ISG), “Mobile edge
computing (mec); framework and reference architecture,”
https://www.etsi.org/deliver/etsi gs/MEC/001 099/003/01.01.
01 60/gs MEC003v010101p.pdf, ETSI, Standard ETSI GS MEC
003 V1.1.1, mar 2016.

[12] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri,
“Hetero-edge: Orchestration of real-time vision applications on
heterogeneous edge clouds,” in IEEE INFOCOM 2019-IEEE Con-
ference on Computer Communications. IEEE, 2019, pp. 1270–1278.

[13] Y. Xiao and M. Krunz, “Distributed optimization for energy-
efficient fog computing in the tactile internet,” IEEE Journal on
Selected Areas in Communications, vol. 36, no. 11, pp. 2390–2400,
Nov 2018.

[14] S. M. A. Oteafy and H. S. Hassanein, “Leveraging tactile internet
cognizance and operation via iot and edge technologies,” Proceed-
ings of the IEEE, pp. 1–12, 2018.

[15] K. Velasquez, D. P. Abreu, M. R. Assis, C. Senna, D. F. Aranha,
L. F. Bittencourt, N. Laranjeiro, M. Curado, M. Vieira, E. Monteiro
et al., “Fog orchestration for the internet of everything: state-of-
the-art and research challenges,” Journal of Internet Services and
Applications, vol. 9, no. 1, p. 14, 2018.

[16] A. N. M. Roberto Beraldi, Abderrahmen Mtibaa, “Cico: A
credit-based incentive mechanism for cooperative fog computing
paradigms,” in Globecom 2018. IEEE, 2018.

[17] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
Distributed, low latency scheduling,” in Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, ser. SOSP
’13. ACM, 2013, pp. 69–84.

[18] R. Beraldi and H. Alnuweiri, “Sequential randomization load
balancing for fog computing,” in 2018 26th International Conference
on Software, Telecommunications and Computer Networks (SoftCOM),
Sept 2018.

[19] M. Mitzenmacher, “How useful is old information?” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 11, no. 1, pp. 6–20, Jan
2000.

[20] M. Bramson, Y. Lu, and B. Prabhakar, “Asymptotic independence
of queues under randomized load balancing,” Queueing Syst.
Theory Appl., vol. 71, no. 3, pp. 247–292, Jul. 2012.

[21] F. Garcia-Carballeira and A. Calderón, “Reducing randomization
in the power of two choices load balancing algorithm,” in 2017 In-
ternational Conference on High Performance Computing and Simulation
(HPCS), 07 2017, pp. 365–372.

[22] A. Yousefpour, G. Ishigaki, and J. P. Jue, “Mean-field analysis
of loss models with mixed-erlang distributions under power-of-
d routing,” in 29th International Teletraffic Congress (ITC 29), Sept
2017.

[23] T. Hellemans and B. Van Houdt, “On the power-of-d-choices
with least loaded server selection,” Proc. ACM Meas. Anal.
Comput. Syst., vol. 2, no. 2, Jun. 2018. [Online]. Available:
https://doi.org/10.1145/3224422

[24] Y. L. Qiaomin Xie, Xiaobo Dong and R. Srikant, “Power of d
choices for large-scale bin packing: A loss model,” in Proceedings
of ACM SIGMETRICS 2015. IEEE, 2015.

[25] S. R. E. Turner, “Resource pooling in stochastic networks,” 1997.
[Online]. Available: https://ethos.bl.uk/OrderDetails.do?uin=uk.
bl.ethos.627069

[26] A. Mukhopadhyay, R. R. Mazumdar, and F. Guillemin, “The
power of randomized routing in heterogeneous loss systems,” in
2015 27th International Teletraffic Congress, 2015, pp. 125–133.

[27] C. Fricker, F. Guillemin, P. Robert, and G. Thompson, “Analysis
of an offloading scheme for data centers in the framework of fog
computing,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 1,
no. 4, pp. 16:1–16:18, Sep. 2016.

[28] R. Beraldi, H. Alnuweiri, and A. Mtibaa, “A power-of-two choices
based algorithm for fog computing,” IEEE Transactions on Cloud
Computing, pp. 1–1, 2018.

[29] S. Fu, C.-Z. Xu, and H. Shen, “Random choices for churn resilient
load balancing in peer-to-peer networks,” in 2008 IEEE Interna-
tional Symposium on Parallel and Distributed Processing, April 2008,
pp. 1–12.

[30] E. C. P. N. G. C. F. Aires, “An algorithm to optimise the load distri-
bution of fog environments,” in 2017 IEEE International Conference
on Systems, Man, and Cybernetics (SMC). IEEE, 2017.

[31] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and C. Z.
Patrikakis, “A cooperative fog approach for effective workload
balancing,” IEEE Cloud Computing, vol. 4, no. 2, pp. 36–45, March
2017.

[32] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue, “An approach
to qos-based task distribution in edge computing networks for
iot applications,” in 2017 IEEE international conference on edge
computing (EDGE). IEEE, 2017, pp. 32–39.

[33] S. K. Mishra, M. A. Khan, B. Sahoo, D. Puthal, M. S. Obaidat,
and K.-F. Hsiao, “Time efficient dynamic threshold-based load
balancing technique for cloud computing,” in 2017 International
Conference on Computer, Information and Telecommunication Systems
(CITS). IEEE, 2017, pp. 161–165.

[34] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and
A. Y. Zomaya, “Secure and sustainable load balancing of edge data
centers in fog computing,” IEEE Communications Magazine, vol. 56,
no. 5, pp. 60–65, 2018.

[35] D. Puthal, R. Ranjan, A. Nanda, P. Nanda, P. P. Jayaraman, and
A. Y. Zomaya, “Secure authentication and load balancing of

13

distributed edge datacenters,” Journal of Parallel and Distributed
Computing, vol. 124, pp. 60–69, 2019.

[36] S. K. Mishra, D. Puthal, B. Sahoo, S. Sharma, Z. Xue, and A. Y.
Zomaya, “Energy-efficient deployment of edge dataenters for
mobile clouds in sustainable iot,” IEEE Access, vol. 6, pp. 56 587–
56 597, 2018.

[37] T. Pering, Y. Agarwal, R. Gupta, and R. Want, “Coolspots: reducing
the power consumption of wireless mobile devices with multiple
radio interfaces,” in Proceedings of the 4th international conference on
Mobile systems, applications and services. ACM, 2006, pp. 220–232.

[38] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “Server-
less programming (function as a service),” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
June 2017, pp. 2658–2659.

[39] E. Simon. (2020, Jan) esimov/pigo. [Online]. Available: https:
//github.com/esimov/pigo/

[40] OpenFaaS. (2020, Jan) Openfaas - serverless functions made
simple. [Online]. Available: https://www.openfaas.com/

Roberto Beraldi He is an associate professor
at DIAG, ”La Sapienza” University of Rome,
Italy. His current research interests include mo-
bile networking, fog computing, and distributed
systems. Regularly serves as TPC member of
international conferences and journals in these
fields.

Gabriele Proietti Mattia received the BS and
MS degrees in Engineering in Computer Science
from Sapienza University of Rome, Italy, in 2017
and 2019, respectively. He is currently a PhD
student and his research interests include fog
computing and scheduling algorithms.

