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Abstract—Different libraries allow performing computer vision
tasks, e.g., object recognition, in almost every mobile device that
has a computing capability. In modern smartphones, such tasks
are compute-intensive, energy hungry computation running on
the GPU or the particular Machine Learning (ML) processor
embedded in the device. Task offloading is a strategy adopted to
move compute-intensive tasks and hence their energy consump-
tion to external computers, in the edge network or in the cloud. In
this paper, we report an experimental study that measure under
different mobile computer vision set-ups the energy reduction
when the inference of an image processing is moved to an edge
node, and the capability to still meet real-time requirements.

In particular, our experiments show that offloading the task –
in our case real-time object recognition – to a possible next-to-the-
user node allows saving about the 70% of battery consumption
while maintaining the same frame rate (fps) that local processing
can achieve.

I. INTRODUCTION

Image-processing based applications for smartphones and
mobile devices are growing at an extraordinary rate due to
the level of maturity achieved by most support technologies
(e.g. computer vision, hardware, AI). Application domains
range from immersive multi-gaming, online shopping, virtual
browsing, remote assistance, etc. Experts predict that the
Augmented/Virtual Reality (AR/VR) industry will reach over
$25 billion by 2025 and that growth will continue steadily.

Cloud VR/AR services are currently offered by the main
cloud providers, but they will hardly meet both the above
conditions. Edge/Fog computation capability will likely com-
plement and improve these services, however, running these
tasks directly in mobile devices is progressively possible with
inference latencies, for example in the case of Convolutional
Neural Networks (CNN), that are comparable to the ones that
before was only expected on high-end GPUs [1] – obviously
with less but still acceptable accuracy. These results can be
achieved, not only by using the CPU and GPU resources
of the device but also by directly implementing particular
chips, also called coprocessors [2], that are designed for
executing the most recurring machine learning operations.
For example, Google, starting with the Pixel 4 smartphone,
implemented the Pixel Neural Core, a dedicated core for
efficiently performing image-related machine learning (ML)
tasks. Indeed, the most common applications for having Deep
Neural Networks (DNN) directly running in the device regard
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[3]: photo improvement [4], activity recognition and track-
ing [5], [6], image classification [7], face recognition [8],
real-time object recognition especially for supporting AR
(Augmented Reality) applications [9] (like for example the
landmark recognition). All of these applications can now easily
run on smartphones, even with very low processing latency
but this strategy has a clear downside. Indeed, running a
DNN requires a non-negligible number of operations (that
are often referred as FLOPs – floating-point operations), as
a consequence, we expect a significant impact on the power
consumption, that is a critical aspect for mobile applications.
The approach for reducing this problem is to compress the
DNN model [10], [11] by pruning the network, decomposing
layers or use quantized weights for the model. Obviously, by
losing information and model complexity, we lose something
in the accuracy of the neural network, but in some cases, this
loss is so minimal that the performances of the network are
still acceptable.

The second approach to solve the problem is the offload-
ing [12], namely making the device to execute the inference
on an external server and then locally parsing the results. Task
offloading consists of delegating part of the image processing
to a remote server. The convenience of this technique pre-
supposes three conditions: (1) the energy cost of offloading
operations at the device is less than the energy cost required
if the delegated calculation is performed on-board; (2) the re-
sponse time and more generally the processing latency should
guarantee at least the frame rate measured when processing
is all local, and does not produce a lag in the rendering of
the video; (3) the image processing precision metrics, e.g.,
accuracy, does not deteriorate.

For example, if we use a ’classic’ cloud provider we can
obtain very low inference latencies, but the network latency
can reach values of 100ms or more, and therefore this cannot
be suitable for performing VR applications. In addition, some
AR applications require shared virtual objects (also called
“cloud anchors”) that must be updated in real-time by multiple
users, which make the adoption of a low latency and a
high throughput cloud service mandatory. In these application
scenarios, edge/fog computing can provide a solution1.

In this work we report the results of the measurements of

1Google is experimenting/suggesting solutions in this sense for its AR core
SDK



some experiments conducted on real mobile devices and using
state-of-the-art and open-source video and image processing
libraries, with the aim of concretely verifying what are the
energy consumption and processing capabilities measured in
frames per second. The useful use of this study lies in
acquiring concrete data that can be used as criteria of choice
in the design of offloading algorithms.

In this work, we investigated the energy compromise that
a deep learning task for object recognition imposes to a
mobile device and how much we can gain in terms of power
consumption when the task is completely offloaded to a
backend server equipped with a good GPU as well as the
achievable frame rate.

For doing this we set up an environment by using the
most common libraries that allow doing inference with CNNs,
like TensorFlow2, OpenCV3 and Darknet4, and a set of pre-
trained networks. From this, by using a sample video, we run
the object recognition frame by frame, testing different set-
ups, libraries and neural networks by using a custom Android
application (Figure 1) and a Python Flask backend. We have
conducted several benchmarks for deeply understanding the
energy impact of a neural network deployed in a mobile
system but also for evaluating how the offloading can have
a beneficial effect on power consumption though preserving
inference latencies. As the main source for power consumption
data, we used the values offered by the Android OS that have
been cross-checked by using a USB power meter.

Fig. 1: TensorFlow Lite Application for mobile object recog-
nition.

The rest of this paper is organized as follows. In Section II,
we give some background related to deep learning and object
recognition. In Section III, different experimental set-ups are
introduced with all the details about libraries used and the
hardware. Section IV presents the results of the experiments
and Section V shows related work to field mobile deep

2https://www.tensorflow.org
3https://opencv.org
4https://pjreddie.com/darknet/

learning, its energy efficiency and frameworks for running
mobile neural networks in mobile devices. Conclusions with
future work are proposed in Section VI.

II. BACKGROUND

The main purpose of this work is to find out when and how
offloading a deep neural network inference task is convenient,
especially under a power consumption point of view. In
particular, we focus on the object recognition, namely the task
of recognizing the highest number of objects present in a photo
and classify them by also giving the coordinates of where they
can be found. The most used pattern for classifying objects
is the one of setting up a Convolutional Neural Network
(CNN), that is a neural network which takes grid-like data
as input, and instead of performing matrix multiplications for
describing the interaction between neurons’ input and output
(like in the classic Artificial Neural Network model), they use
the convolution operation [13]. The convolution has particular
properties that make CNNs very successful with images.

When a CNN is used for classification, the final neurons
layer that is used is the fully connected layer, which has a
number of neurons equal to the number of categories that we
are classifying. Instead, performing object detection requires
that the final layer is generally replaced with a detection
network, namely another set of hidden layers which are able
to localize and classify objects inside the photography given
as input the features extracted by the CNN. The two major
examples of detection networks are Fast R-CNN [14] and
SSD [15]. This is one approach to the object detection, but
it is not the only one, indeed CNNs like YOLO [16] do not
use a final detection network, but they try to do all at once.

The performance of a neural network of the kind mentioned
above, is described by:

• the mean average precision (mAP), that is the mean
average precision across all the categories of objects that
the network can recognize;

• the FLOPS, as already mentioned, the number of opera-
tions that the network requires for generating the output.

III. EXPERIMENTAL SETUP

Our purpose is, first of all, to set up a complete environment
which allows recognizing objects that are framed by the
mobile camera. Once the environment is ready, as a first case
we consider that the mobile acts autonomously, then the device
will be “assisted” by a backend which is characterized by a
medium-level GPU and offers a very low latency communi-
cation with the device. This is the common environment that
is provided, for example, in a fog/edge infrastructure [17].

In our setup, we consider that we are offering a real-time
application, and therefore the maximum inference latency per-
frame that we can expect is ≈ 50ms. If we consider that
the device camera is able to provide 30fps, then we are
allowing that the recognition does not fall under the 20fps
limit. This is a relaxed limit since here we did not test the
most advanced hardware, but it is still acceptable for a subset
of AR applications.



In the tests that we conducted, we used two different
libraries for setting up the task environment. The two envi-
ronments make use of the following libraries for running a
CNN: Tensorflow, OpenCV and Darknet.

A. Mobile

The first step for running a mobile object recognition task
is to set up an application which is able to capture the camera
frames and process them one by one. Once the frame has been
captured, this must be passed to a neural network that tries to
find the objects and then returns their class and their position
within a box. According to the library that is used, there are
different strategies that we can follow.

OpenCV The OpenCV library is an open-source library
which implements a very high number of features that are
specifically related to the computer vision: image/video pro-
cessing and machine learning tasks. The other core feature
of the library is that it is available for almost any computing
platform, and in particular the Android version comes with
some pre-written solutions for capturing the camera frames
and running a callback function for each of them. In particular,
all the frames that pass when we are processing one frame are
lost, since a new frame is processed only when the callback
function returns.

The first version of our mobile application for running the
experiments has been built completely with OpenCV 4.2.0
(Figure 2). The DNN subpackage of the library allows loading
the main model formats for neural networks5 like TensorFlow,
Caffe, Torch, ONNX and Darknet. In our experiments, as
shown in Figure 2, we run the TinyYoloV3 [16] CNN a reduced
version of the YOLO network. This first kind of experiment
showed a big drawback of the OpenCV library: the lack of
GPU support. The obtained values are in line with the ones
obtained in other works [18].

The complete inference process that we built is the follow-
ing:

1) when a frame is captured by the camera the callback
function OnCameraFrame is called by passing as a
parameter the frame in the OpenCV Mat format;

2) the frame is converted to RGB (from RGBA if we use
the OpenCV camera object or YUV if we use the native
camera object), scaled to fit the neural network input size
(for example 416x416 for TinyYOLOV3, or 300x300 for
MobileNet) and set as input to the neural network;

3) the neural network is run with the forward command;
4) the output matrix is parsed and non-maximum suppres-

sion [19] is applied to the output boxes;
5) boxes are drawn in the input frame;
TensorFlow Lite TensorFlow Lite is a completely different

library with respect to TensorFlow, it supports a reduced set
of its features, but it is optimized for running with low-
power devices like smartphones or Raspberry Pi6. These
optimizations require that the TF models must be converted

5https://docs.opencv.org/master/d6/d0f/group dnn.html
6https://www.raspberrypi.org/

Fig. 2: OpenCV object detection with YOLO

in a format that is readable by the library, the “.tflite” format.
Differently from the OpenCV library, TensorFlow Lite natively
allows using the device’s GPU, thus allowing decreasing the
inference time drastically.

The TensorFlow team provides many examples of how using
their libraries, in particular for TensorFlow Lite there is an
example application which implements the real-time object
recognition by using MobileNet neural network 7 and the
mobile camera. The main difference with the OpenCV solution
is that the application offers two image layers, in the lower one
the camera frames are directly displayed, even if we are doing
inference on them, in the upper one only the object boxes are
displayed; this strategy allows making the camera stream fluid
during the inference process.

The second version of our experimental application has been
built upon the example mentioned above, some core parts have
been rewritten to implement a benchmark process that takes
as input a video file and allows analyzing it frame by frame.
Figure 1 shows two screenshots of the application. On the
left, there is the real-time object recognition with the essential
parameters displayed on the screen, and on the right, there
is the activity which we implemented for loading videos.
As we will see in Section IV, for every frame we log the
frame number, the inference and network latency, the battery
percentage, the instantaneous current (mA), residual battery
capacity (mAh) and the battery voltage (mV). The inference
process is precisely equal to the OpenCV version with the
only difference that the inference result is not directly drawn
to the frame but is passed to a layer that draws boxes on top of
the camera frame. Within the application, the neural network
that is implemented is MobileNet [20], which is a class of
CNN specifically designed for mobile and embedded devices
deployment.

B. Edge

We implemented the object recognition service by firstly
using TensorFlow and then Darknet by wrapping them with the

7https://github.com/tensorflow/examples/tree/master/lite/examples/object
detection/android



Python Flask8 library. Finally, we attached the mobile device
to a Wi-Fi hotspot created from the PC, thus simulating an
edge offloading infrastructure. The working paradigm is the
following:

1) the device captures the frame and scales it to match the
neural network input size – in this phase, the mobile
also choose the compression level of the image, that
is a critical parameter since it determines the network
latency;

2) the edge device that already loaded the neural network
performs the inference and returns the result as a re-
sponse;

3) the mobile device visualizes the results on the screen;
To natively exploit the GPU, before installing any neural

network library, we need to obtain the CUDA toolkit and the
cuDNN SDK manually. In our experiments, with the latest
nVidia drivers 440.33, we used the CUDA toolkit 10.1 and
the cuDNN 7.6.5 (compatible with TensorFlow 2.19).

TensorFlow TensorFlow is an open-source library for per-
forming machine learning tasks. As in the mobile case, we
used neural pre-trained networks model available at the Ten-
sorFlow website10.

Darknet We used Darknet [21] to run the YOLO neural
network. Darknet is a neural network runtime environment
written in C, and it is from the same authors of YOLO. The
library must be compiled and then imported it in the Python
web server script.

C. Equipment

In our experiments, we used a Samsung Galaxy Note8,
a smartphone equipped with Exynos Octa 8895 @ 2.31Ghz
processor, 6GB of RAM and a Mali G71 MP20 GPU with a
computing capability of 374GFlops and 29.80GB/s of memory
bandwidth. The OS of the device is Android 9.0 Pie.

As edge device which allows performing object detection,
we used a PC with 16GB RAM, AMD FX-8350 processor
and an nVidia GTX 1070 GPU with a computing capability
of 5.73TFlops and a memory bandwidth of 256.3GB/s. We
installed all the neural network frameworks on Ubuntu 18.04
LTS.

IV. MEASUREMENTS AND RESULTS

The experiments have not been conducted by using the
device camera but by analyzing a video. The video that we
used is a view of the Warsaw city from a car11. The original
video has been converted from the resolution of 3840x2160
to 720x576, cut to 5 minutes (or 9000 frames) and then
analyzed in the device by using the JavaCV library12, that
binds together OpenCV and other media tools, like FFmpeg,
the most common library for processing videos. The main

8https://www.fullstackpython.com/flask.html
9https://www.tensorflow.org/install/source#tested build configurations
10https://github.com/tensorflow/models/blob/master/research/object

detection/g3doc/detection model zoo.md
11https://archive.org/details/0002201705192
12https://github.com/bytedeco/javacv

reason for this conversion is due to the memory and the time
required to load the video. During the video processing, as
introduced in Section III, we logged for every frame not only
the timings but also the battery data that comes from the
BatteryManager service of the Android OS. These values have
been then cross-validated with a USB power meter, as shown
in Figure 6. As far as regards the OS battery values, from
the experiments emerged that they are not returned by every
device, but every vendor decides whether log or not to log
them. Specifically, the Samsung Galaxy Note8 device that we
used for tests, the values do not change every time they are
requested, but they are updated within a specific interval of
time, in particular, the residual battery capacity is updated in
multiple of 3.139mAh.

Results of the experiments are summarized in Table I, which
describes the environment used along with the timings and
battery data. The neural networks that we tested are:

• FakeNet, that is a placeholder of processing frame by
frame by doing nothing, this kind of test is done to
understand which is the baseline consumption of the
device;

• MobileNet, in the specific test we used a quantized
MobileNet v1.0 with SSD for the TF Lite framework13,
and for the TensorFlow framework we MobileNet v2.0
with SSD14;

• YOLOTinyV3, that is a smaller version of the YOLO
neural network [16]15.

All the neural networks that we used are pre-trained on the
COCO dataset16, a very large dataset of segmented images
with 80 objects categories.

What emerges from the experiments, as we can see in
Figure 3 and Figure 4, is that running the object detection
remotely allows to save about the 70% of the battery energy,
in particular, about 45J are saved when the object recognition
is offloaded to the edge. Moreover, across the entire test, the
recognition task has a constant energy consumption, this is
justified by the fact that the number of objects recognized has
not a great impact on the number of operation executed by the
neural network, we assume that the oscillations are due to the
underlying operating system of the device. As far as regards
the inference latencies, in our tests, the remotely deployed
TinyYOLOV3 allowed to reach about 20FPS, that is slightly
less than the locally deployed MobileNet. These values are
justified by two factor, first of all, the computational power of
the nVidia GPU and, secondly, by the network latency that is
in the order of 27ms – a value that depends on the specific
Wi-Fi protocol used by the network adapter. In Figure 5 the
behaviour of the inference latency is shown, and as we can
observe the offloading scheme of the recognition framework
allows for a more stable inference time, but this is essentially

13The codename of the network, available at the TF repository, is
coco_ssd_mobilenet_v1_1.0_quant_2018_06_29

14The codename of the network, available at the TF repository, is
ssd_mobilenet_v1_coco_2018_01_28

15https://pjreddie.com/darknet/yolo/
16https://cocodataset.org



justified by Android operating system and all the background
services that have been unpredictably activated during the test.
What emerges is also that YOLOTinyV3 in remote reaches the
same performances of the local MobileNet but with no impact
on energy, this is a clear example of the beneficial effect of
the offloading mechanism.

Summarizing, offloading the object recognition has almost
a zero-impact on the energy consumption, and in real fog/edge
deployment with latest “Wi-Fi 6” [22] technology and more
powerful GPUs could also allow reaching real-time inference
latencies, i.e. 30FPS.
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Fig. 3: Power consumption per-frame.
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V. RELATED WORK

Different works investigated the energy efficiency of neural
networks or tried to provide solutions for assisting mobile
devices in computer vision tasks.

0 2000 4000 6000 8000
Frame

5

10

15

20

25

FP
S

MobileNet [L]
YOLOTinyV3 [L]
MobileNet [R]
YOLOTinyV3 [R]

Fig. 5: Inference latency behaviour in FPS.

Fig. 6: The USB power meter and the mobile device used for
experiments

A. Mobile neural networks

Neural networks represent the core of deep learning [13],
they allow performing various machine learning tasks, starting
from the simple classification to the generation of new data
[23] by using any kind of input data, like numbers, images
and audio. The major challenge, that mobile devices open, is
the one of making the network most efficient as possible in
order to drastically reduce the power consumption but without
losing accuracy. This can be done in different ways [24] as
pruning some parts of the network, decomposing tensors and
quantizing the weights. Every optimization is done to reduce
the number of operations that needs to be performed for
running the network.

In [24] a method for compressing a CNN is proposed. The
method is composed of 3 steps and it is a one-shot process that
can be easily implemented by using publicly available tools.

In [20] are presented a series of lightweight neural networks,



DNN Framework Average Time (ms) FPS Energy Consumption

Neural Network Mobile Edge Inference Network Total Average Instant (mA) Cumulative (J)

Local
FakeNet - - - - - - 264.31 10.67
MobileNet TF Lite - 46.1 - 46.1 21.70 918.32 63.65
YOLOTinyV3 OpenCV - 423.9 - 423.9 2.36 950.97 61.28

Remote MobileNet - TensorFlow 42.1 25.6 67.7 14.80 330.45 17.91
YOLOTinyV3 - Darknet 21.9 27.0 48.9 20.44 360.25 14.70

TABLE I: Summary of the main results of the experiments.

called MobileNets, that are optimized for running in mobile
devices, in particular, they use the “depthwise separable con-
volution”, a form of factorized convolution which is able to
drastically reduce the computation load and the size of the
model.

In [1] an example of efficient neural network for mobile ap-
plication is designed and evaluated. The network uses “point-
wise group convolution” as for MobileNets, and “channel
shuffling”, a technique which allows exploiting the convolution
in a more computation-wise manner.

B. Frameworks for mobile neural networks

Another set of works is not just focused on the designing
the super light neural network but they are aimed to provide a
complete solution for allowing deep learning tasks on mobile,
both on their own and with the assistance of a backend server.
Frameworks like the ones presented in [25]–[27] support
computer vision tasks on mobiles by using the GPU and for
supporting real-time applications, in particular, they implement
an engine that is able to load and run CNN models in a fast
and energy-efficient manner. Otherwise, many solutions allow
offloading the deep learning tasks to the edge, for example
in [12] shows how is possible to have a synergy between the
mobile and the edge taking into account parameters like video
quality, battery consumption, accuracy and latency in the case
of an AR application. A similar proposal is presented in [28]
but not designed for real-time applications.

In all of these works what is missing is a clear depiction
of the actual energy consumption gain of the offloading task,
mainly when we want to use open-source frameworks that are
freely available on the web.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we set up a complete environment for allowing
a real-time object recognition task, firstly running it locally in
the device and then offloading it on the edge. We used free
and open-source frameworks, we assessed their maturity and
their ease of use. The experiments that we conducted shows
that, despite the fact that we can now rely on a big set of
neural networks deeply optimized for mobile devices, it is far
more convenient to offload a deep learning task to the fog/edge
network. This strategy is even more corroborated by the fact
that the edge environments are able to offer very low latencies.

However, this is only a first attempt to test the ground on
this field. Indeed, we envision as future work to conduct more

experiments by exploiting a wider range of neural networks
and frameworks for assessing their convenience even with
other types of computer vision tasks, also by exploiting the
WiFi6 technology that allows to drastically reduce network
latencies. Moreover, we also envision to use in edge/fog layer
less powerful computing units, like for example Raspberry Pis
equipped with specialized ML processing chips (e.g. Coral
USB Accelerator17).
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