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Abstract—The computing continuum model is a widely ac-
cepted and used approach that make possible the existence of
applications that are very demanding in terms of low latency
and high computing power. In this three-layered model, the
Fog or Edge layer can be considered as the weak link in
the chain, indeed the computing nodes whose compose it are
generally heterogeneous and their uptime cannot be compared
with the one offered by the Cloud. Taking into account these
inexorable characteristics of the continuum, in this paper, we
propose a Reinforcement Learning based scheduling algorithm
that makes per-job request decisions (online scheduling) and
that is able to maintain an acceptable performance specifically
targeting real-time applications. Through a series of simulations
and comparisons with other fixed scheduling strategies, we
demonstrate how the algorithm is capable of deriving the best
possible scheduling policy when Fog or Edge nodes have different
speeds and can unpredictably fail.

I. INTRODUCTION

Delay-sensitive applications are characterised by tasks that
must be completed in a given deadline and, as such, they
cannot be processed in the Cloud. The network latency that is
experienced for reaching the cloud server is inadmissible for
these scenarios, let us think about real-time applications like
Augmented Reality (AR) or Virtual Reality (VR). As seen in
the last decade, the only way for coping this physical limitation
is to add another layer in between the users and the cloud. This
layer that is called Fog or Edge computing layer [1], according
to the nuances of where the computation is located, has the
principal characteristic that is placed near to the entities which
require the service, this allows for drastically reducing the
network latency. It is obvious that big data centres cannot be
placed everywhere, as a consequence, the main distinct feature
of this intermediate layer is that it can be composed by nodes
that are smaller, have less computational power, and mostly
they are heterogeneous [2]. This means that the same task of
an application can have very different execution times when it
is executed in a node or in another one and most of the time
it is very challenging to know in advance how much time the
execution will last, even if we know which are the technical
specifications of the devices, like the CPU cores, the CPU
clock rate, its architecture, the quantitative of RAM or we are
perfectly aware of the code and of the libraries that the task
may use. Moreover, these nodes have an underlying operating
system and background software that can momentarily and

unpredictably reduce the CPU time available for the tasks,
protracting their execution time.

In this work we assume that we have an AR or VR
application and a task is a frame processing. This kind of tasks
must be real-time and therefore their execution cannot exceed a
certain amount of time, because otherwise its output is useless,
since the frame must be shown to the user in time. The solution
that we propose in this paper addresses the scheduling problem
of the tasks, that is where to schedule them, by using an online
Reinforcement Learning approach.
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Fig. 1. The Edge-to-Cloud continuum environment considered as computing
scenario.

Figure 1 illustrates the computing environment that is con-
sidered. The intermediate layer can be the Fog or the Edge,
the only requirement is that we consider it as composed by
different clusters and every cluster has a scheduler node and a
certain number of worker nodes which may vary over time. For
avoiding confusion, in this work, the intermediate computation
layer is considered and edge computing layer. In the scheduler
of each cluster we place a learning agent which, for every
task execution request that comes from the end users, it is
able to observe the state of the worker nodes and to take
an action which coincides with a scheduling decision and it
can be to execute the task in the worker node wi, execute
it in the Cloud or even reject the request. For every task



that is executed within the deadline or near the deadline, the
learner will receive a positive reward that will drive its learning
process. The online learning approach that is followed in this
work is not episodic but it is driven by the average reward that
the learner obtain over time. With this approach we make able
the Edge-to-Cloud computing continuum to adaptively apply
the best possible scheduling policy without knowing the nodes
computing power.

The main contributions of this work can be summarised as
follows.
• Design of a RL based online scheduling algorithm for

the computing continuum that is able to cope with node
inhomogeneity and to satisfy user defined processing
frame rate requirement;

• Simulation results of the proposed algorithm in two
main settings, one cluster or more clusters in the edge
layer, within a simulator that is focused on replicating
fine-grained delays that a job may encounter during its
execution path;

The rest of this paper is organised as follows. In Section II
we present some related works, in Section III we define the
system model, instead in Section IV we describe the reinforce-
ment learning approach the we propose. In Section V results
of the simulation of the proposed protocol are illustrated and,
finally, we will draw conclusions in Section VI.

II. RELATED WORK

The Reinforcement Learning algorithm that we use in this
work is specifically tailored for a continuous learning approach
and not an episodic one, indeed the scheduling that we follow
is online and a per-job decision task must be taken. The
approach is called Differential Semi-Gradient Sarsa and it is
presented in [3]. However, there are many works in literature
that rely on Deep Q Learning for solving the task scheduling
problem in the edge or fog computing, especially because
of the high dimensionality of the state space. For example,
in [4], the authors propose a deep reinforcement approach
for resource allocation in a MEC system, differently from
our work, the allocation scheme is based on time slices and
the objective is to minimise the execution time. In [5], the
focus is instead on base stations that must be selected by the
client in a ultra high-dense network, the authors show through
numerical experiments the beneficial effect of their solution.
The authors of [6] specifically studies the task scheduling
in the edge computing and use the reinforcement learning
for deciding the order of the execution of the tasks and in
which machine they have to be executed, the approach uses
the deep reinforcement learning but the scheduling is not done
online. In [7] a solution for caching at the edge is proposed,
the authors use reinforcement learning for finding an optimal
stochastic allocation policy, the approach is tested with simu-
lations. In [8], the scenario studied is the one in which mobiles
can appear randomly in a cell, the authors take as reference
the uplink transmission, the device selection and the power
allocation. The proposed approach uses reinforcement learning
and stochastic gradient descent for the online improvement of

the system. More similar to our work is [9] which focuses on
online scheduling and using time differential learning, but the
tasks do not have to meet a deadline. Then [10] introduces
a specific study on the task placement in the edge-to-cloud
computing continuum.

Other works are still focused on scheduling but targeting
the energy consumption [11], [12], vehicular networks [13],
[14], network resources allocation [15] or security [16].

Environment

C Set of clusters
Ci Set of clusters without the cluster i
Wi Set of worker nodes in the cluster i
H Set of schedulers
Ai Set of actions without inter-cluster cooperation for cluster i
A′

i Set of actions with inter-cluster cooperation for cluster i
Tk Generic task T of type k

Learning Parameters

α, β Learning parameters of Diff. Semi-gradient Sarsa
ε Parameter of the ε-greedy strategy for action selection
Z Completed tasks window that triggers the training process

Edge/Fog Nodes

Sij Computing speed of worker j in cluster i
Bcs Bandwidth between a client and a scheduler node
Bss Bandwidth between a scheduler and another Scheduler
Bsw Bandwidth between a scheduler and a Worker
Bsc Bandwidth between a scheduler and the Cloud

Times and Delays

ωn Nominal rate of frames generation from the device (fps)
ωm Minimum frame rate requested for the application (fps)
ωe Effective frame rate for processing (fps)
de CPU time for processing a frame (ms) in a worker with Sij = 1.0
dt Total response time for processing a frame (ms)

TABLE I
LIST OF SYMBOLS USED

III. SYSTEM MODEL AND PROBLEM DEFINITION

The online scheduling problem that is configured in this
work is formalised as a Markov Decision Process (MDP) and
its solution is found by using Reinforcement Learning (RL).
No prior assumption is done on the underlying mathematical
model, therefore a model-free approach is followed. The
learning agent observe the current state of the environment,
performs an action by using its knowledge (exploitation) or
randomly (exploration). The action coincides with a schedul-
ing decision that is where a task must be executed. Then, after
the task is completed a reward signal is obtained, a value
that will drive the learning process. The entire process has
been wired in a delay-focused discrete events simulator written
by using the Simpy1 library in Python, but theoretically the
solution can be directly and easily applied to a real-world
scenario that fits the task model that we are going to present.

What follows in this section is the specification of all the
entities that come into play, that are: the environment, task
and delay model, the state, and the reward. Finally we will
define the performance metric to measure the performances of
the proposed algorithm.

1https://pypi.org/project/simpy/



A. Environment

As depicted in Figure 1, we envision a computing con-
tinuum environment and we place the learner agent in edge
layer. In particular, this layer is composed by computing
clusters that have exactly one scheduler node and a certain
number of worker nodes that may vary in each cluster. We
call H = {h1, h2, . . . } the set of the schedulers nodes and
Wi = {wi1, wi2, . . . } the set of worker nodes for cluster
ci, then C = {c1, c2, . . . } is the set of clusters, where, for
example, in the cluster ci we have the scheduler hi and the
set workersWi. For convenience, we also define Ci = C−ci, in
other words, the set of clusters without the current one i. The
scheduler node does not execute tasks but it only receives task
execution requests from the underlying clients (end users) and
take a decision that can be the rejection or where to execute
the task if locally in the cluster (in particular, to which worker
node), in the cloud or to forward it to another cluster. This
because all of the clusters can communicate with each other.
The scheduler node of the cluster i receives a traffic of λi
requests per second and for each of these requests a scheduling
decision is made by using RL. Regarding the worker nodes
instead, they can execute one task at a time and they have a
fixed size queue that is K. If a task is scheduled on a node
and the current number of elements in the queue is equal or
greater than K the task is rejected. A peculiarity of these
nodes is that they are inhomogeneous, therefore we associate
to every of them an execution speed Sij (of the worker i in
the cluster j) that is a time extension factor of the tasks that
are executed in that node, for example, if S11 = 0.8 and a
task has a nominal duration of 16ms, then on the worker node
1 of the cluster 1 its duration will be 16/0.8 = 20ms. The
concept of execution speed is representing, in the real world,
the available CPU time that a worker node can dedicate to
execution of the task and it may be subject of fluctuations
over time, however, in this work we consider it as fixed and
the dynamic case is left as future work.

B. Task and Delay models

In our model, we consider tasks as some work that can
be executed independently from others and even sandboxed,
matching one to one the FaaS paradigm (Function-as-a-
Service). Therefore we can see that tasks as function invoca-
tions that are then dispatched on a specific worker node. The
main characteristic of these tasks is that they have a nominal
rate of execution ωn, that is the nominal processing time on
machines in which S = 1.0 and the minimum rate of execution
ωm which is the lower-bound admissible for the task, given as
a user requirement. As presented later, in the experiments, we
define four kinds of tasks (Table IV to which are associated
different execution times and constraints.

Regarding the delays that are experienced by the task during
its execution, they are simulated by equipping each scheduler
node with a transmission queue, in which, as for the execution
queue of the workers, each transmission is elaborated one at
a time but the queue has no fixed size. Figure 2 shows the
example path when a task is forwarded to another cluster.

First of all, when the task is generated it is added (1) to
the transmission queue of s1 by using the bandwidth between
the client and the cluster Bcs, when it exits from the queue
s1 makes a decision and then the task is added again to the
transmission queue (2) in order to simulate the transmission
to the s2 and the bandwidth is Bss; now, s2 can only decide
to forward the task to a worker or to the cloud, in the image
the task is forwarded to w3 (3) and the bandwidth used is Bsw
(for the cloud it could have been Bsc). After the execution,
the task result is returned back to s2 (4), then s1 and finally
the client (6) using again the same values for the bandwidth
and the same payload size for the task.
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Fig. 2. The task request path from the client to the final worker node when
s1 decides to forward the task to another cluster. The transmission latency is
simulated with a transmission queue per scheduler node.

C. The Agent

The agent is in charge of learning a scheduling policy π
that is a function of the state:

π : S → A (1)

Therefore, given a state s ∈ S the policy returns an action
a ∈ A, given a generic set of actions A. We remind that, given
the cluster i, Wi is the set of workers node in the cluster
i. Moreover we define Ci as the set of clusters, excluding
the current cluster i. Beside the action of rejecting the task,
and forwarding it to the cloud, in the first set of experiments
(Section V-A), the task can be assigned only to the worker
nodes. The set of actions for the node i can be described as:

Ai = {reject, cloud} ∪ Wi (2)

In the second setting (Section V-B) we enable the cooper-
ation even among clusters, and therefore:

A′i = {reject, cloud} ∪ Wi ∪ Ci (3)

We remind that only the scheduler node of a cluster receives
the task requests and takes scheduling decisions.

D. State representation

The set S contains all of the possible states in which the
environment can be represented. It is fundamental for the
agent, in order to decide which action to perform, to observe
a representation of the environment that contain as much as
possible information to make the correct decision. In our
setting, the only information that we are accessed to is the



number of the current scheduled tasks in each given worker
node and of which type. This because every task must pass
within the scheduler, therefore when a task of type i arrives
and it is scheduled to a worker j, a counter for the tasks of
type i of worker j is increased by one, conversely when the
same task finishes its execution and returns to the scheduler
the counter is decreased by one. If it is true that we know the
type of the task that is arriving, we cannot know the speed of
nodes for the reasons presented in the introduction.

As an example, the Figure 3 illustrates the state representa-
tion for a scheduler node with three worker nodes and two task
types. First of all, we have the task type that is an integer (e.g.
type t1 is number 1) that is going to be scheduled, then we
associate a tuple for each worker node, describing the number
of tasks of that types in the queue.

St = {0, 1, 0, 0, 2, 1, 1}

Worker 1 Worker 2 Worker 3Task Type

Number of
tasks of type 1

Number of
tasks of type 2

Fig. 3. The state representation of a scheduler node at time t with three
worker nodes.

However, the state is not used as is for the learning process,
indeed, the tiling [3] technique is used for mapping the vector
to another vector but in a 24-dimensional vector space.

As presented in section V, the task type is an information
that is defined by the specific user and it embodies all of the
characteristics of the tasks and of its traffic flow, such as, for
example, the arrival and desired execution rate.

E. Reward

The definition of the reward is crucial for obtaining the
desired results of meeting the user QoS constraints. In our
case, we focused the attention on the particular applications
in which frames are generated from the devices and they
must be processed one-by-one by a back-end server (e.g. AR
application) and the result of the elaboration is shown to the
user to a screen or to a VR headset, supposing that the refresh
rate of the screen is the same of the frame generation and they
are synchronised, namely when the screen is refreshed a frame
is sent to the server (with a minimal oscillation depending on a
Gaussian distribution). The constraint that we want to impose
is that in the client, which generates frame at ωn, there is no
lag or frame loss but we can tolerate a minimum response
frame rate from the server (called ωe) to be equal to ωm.
For understanding the best possible definition of the reward
which allows us to achieve the desired result, we analyse
which are the main situations in which the frames received.
In the Figure 4 four main possible cases are identified, the
general idea behind of the scheme is we can define three main
qualifiers for performances:

• the effective rate of frame processing ωe, which only
depends on the machine that will execute the task (i.e.
the execution time of the task in the worker node);

• the lag τ which instead mainly depends on the network
delays;

• if the order of received frames is the same of the ones
sent. This last case is not studied in this work, but in
general if a frame f1 is sent before f2 and the result of
the processing f2, r2, reaches the client before r1 then r1
may be lost and not shown to the user if the application
has no buffer, this is left as future work.

These points are used for deriving the following cases.
In case (a), the rate of the received frames ωe is the same
as the one sent ωn. Moreover responses are returned before
the next frame generation time (1/ωn), this is the best case
and the user will be allowed to have an experience without
noticing that frames are offloaded to a server, this because,
supposing that the refresh rate of the screen is the same of the
generated frame, the next frame will contain the results of the
elaboration from the server. In the case (b) instead, we suppose
that responses do not arrive before the generation of the next
frame but still ωe = ωn, in this case the user will experience
a lag, that in this work is computed in seconds but in the end,
from the user point of view, is the number of the frames that
are skipped, because the refresh of the screen. For example,
if the response r1 of f1 arrives after the generation of f2, r1
cannot be shown on the refresh tick of f2 but of f3 so one
frame has been skipped. In the case (c), we suppose that there
is again a lag but the rate of the responses is not the same of
the generation (ωe 6= ωn). The user will experience a drop in
the frame rate with a lag, and the device may adapt its ωn in
order to match the one of the server. The latest case (d), as
introduced earlier, describes the case in which the order of the
received frame is not the same rate of the generation, in this
case, depending on the application, frames can be skipped, the
study of the reward with this case is left as future work.

In the light of these cases, we defined the reward as shown
in Figure 5. Let us focus on a specific traffic flow and consider
one generated frame of this flow, say f1. Let r1 be the result of
the processing of the frame f1 received by the client, and let
dt the time elapsed from when f1 was generated. The reward
is defined as follows:

R(s, a) =


2 if dt ≤ 1/ωn

1 if 1/ωn < dt ≤ 1/ωm

−1 if dt > 1/ωm

(4)

Where s is the state seen by the scheduler when frame
arrived, a the chosen scheduling action chosen, ωn and ωm
are specific of the given traffic flow.

However, the reward received by the agent is never imme-
diate after a scheduling action, this because only when the
task returns to the client we can know its total execution time.
For this reason, we maintain a window of Z executed tasks
and updated the weights only after all the tasks in the window
terminated and reached the client.
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Fig. 4. The frame generation and process in real-time applications, four cases
of identifying performances. In case (a) rate of frame generation is the same
of the frame result receiving and there is no lag, in case (b) a lag is introduced,
in case (c) the rate of the received frame is different by the one of the frame
sent, finally in case (d) the order of received frames is altered.
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Fig. 5. Diagram that illustrates how reward is assigned when the task is
executed and the frame f1 returns to client after being processed (r1).

F. Performance Parameters

For understanding the performance of our RL-based
scheduling algorithm, we delineated the following perfor-
mance parameters that are computed and shown over the
simulation time:

• the total reward (R), defined as in Equation 4;
• the effective frame rate (ωe) measured in frames-per-

second and computed as the sum of the total number
of frames successfully processed every second (not re-
jected);

• the total response time (dt) measured in milliseconds and

computed as the average response time of all the tasks
finished every second;

• the lag time (τ ) measured in milliseconds and computed
as (depicted in Figure 4.b):

τ = dt − 1/ωn (5)

IV. ONLINE SCHEDULING DECISIONS WITH RL

The final objective of the agent is the one of learning a
scheduling policy π that maximizes the long-term reward.
Since each decision must be taken online, we cannot envision
episodes but we treat the problem as a continuing learning
task.

In a continuing learning task it is not useful to discount
future rewards but it is better considering the current average
reward for taking the right direction. Given a state s ∈ S, we
perform the action a ∈ A, we obtain the immediate reward r
the next state is s′ ∈ S then the optimal policy (that is the
policy which maximizes the long-term reward) will result in
the optimal q∗ function defined as [3]:

q∗(s, a) =
∑
r,s′

p(s′, r|s, a)
[
r −max

π
r(π) + max

a′
q∗(s

′, a′)
]

(6)
Where r(π) is a function which returns the average reward

of the policy π. At certain time t, by using the Sarsa algorithm
for learning the policy and given the weights vector ~w, the
differential form of the error can be expressed as [3]:

δt = Rt+1 − R̄t+1 + q̂(St+1, At+1, ~wt)− q̂(St, At, ~wt) (7)

This form can be applied to any function approximation
algorithm for estimating the q∗, in our case we used the tiling
technique [3]. As already introduced, in our setup, the reward
is never immediate because we know it only after a task has
been executed or rejected and it returned to the client, for this
reason we set a window size of Z tasks and right after the
execution of every task we check if the window is reached
and every task in the window has been executed or rejected,
if this is true, then the weights are updated for all the tasks in
the window.

The Algorithm 1 is run by the scheduler i whenever a new
task to be executed arrives, supposing the set of action A′i
(with the inter-cluster cooperation). First of all, we append
the task to the array of pending tasks (“TasksArray”) then we
compute the state (as described in Section III) and we retrieve
the best action to perform given the current q(s, a, ~w). If the
action is 0, then the task is immediately rejected, if it is 1,
then the task is forwarded to the cloud, otherwise, we check
the action number and we derive the index of the worker of of
the cluster to which the task must be forwarded. In particular,
in the case in which the task is scheduled to be executed in a
worker node we check if the current queue length is equal or
exceeding the limit K, because in that case the task is rejected.
We remark that, once a task has been forwarded to a worker or
to the cloud, then it will be necessarily executed there if room,



otherwise it will be rejected, therefore no further decision is
taken for its scheduling.

Algorithm 1 Scheduling Decision (scheduler of cluster i)
Require: Scheduler, Task, TasksArray, ~w, A′

i, Wi, Ci, K
TasksArray.append(Task)
s ← aggregate(Scheduler.getWorkersLoad(), Task.getType())
a ← maxa∈A′

i
q(s, a, ~w) with prob. 1− ε otherwise random(A′

i)
Task.saveStateAction(s, a)
if a == 0 then

Scheduler.reject(Task)
else if a == 1 then

Scheduler.forwardToCloud(Task)
else if a > 1 and a < |Wi|+ 2 then

workerToForwardTo ← Scheduler.getWorker(a− 2)
if workerToForwardTo.getQueueLength() < K then

Scheduler.forwardToWorker(workerToForwardTo, Task)
else

Scheduler.reject(Task)
end if

else if a ≥ |Wi|+ 2 and a < |Wi|+ |Ci|+ 2 then
Scheduler.forwardToCluster(a− |Wi| − 2, Task)

end if

Every time that a task completed its execution (which means
that result payload of the task is returned to the client), whether
it is local or remote, Algorithm 2 is executed. First of all,
we record the task reward and then we start to iterate over
the array of pending tasks (“TasksArray”) for checking if the
first Z tasks of the array are finished, if this is not the case
the function returns, otherwise we go on by retrieving the
information about the first Z tasks by popping them from the
array. This information is used to train the weights vector ~w
using the semi-gradient differential Sarsa algorithm.

V. RESULTS

In this section, we present the results of the simulation in the
described environment of our proposed RL-based scheduling
algorithm both in a single cluster (Section V-A) and in a multi-
cluster setting (Section V-B). The results are structured as
follows.

First of all, in the single cluster case we show that the
agent is able to learn a scheduling policy that matches the
requirements provided by the users, this is given by the fact
that it manages to learn the nodes speeds that are unknown to
it. Our approach not only make possible to reach the desired
frame rate to each traffic flow, but also minimizes the lag
time. Then, by using the same setting we simulate a failure of
a node, the faster one, and we observe that the agent is able to
recover the situation by dynamically adjusting the scheduling
policy. In the second part of the section, we apply the proposed
algorithm in a multi-cluster environment by simulating three
different clusters that can also cooperate.

In all of these experiments, the execution speeds of the
workers in the clusters, i.e. Sij , and the maximum queue
length K, have been derived from the technical parameters
of real devices as shown in Table II. Specifically, the service
rate is normalized with respect to the highest clock speed in
the group, e.g., the service rate of the Asus Tinker (1.8 GHz)

Algorithm 2 Learning with Differential Semi-Gradient Sarsa
Require: Task, TasksArray, Z, ~w, R̄, α, β

Task.setReward()
i ← 0
for all j in TasksArray do

if !j.isDone() then
return

end if
if i == Z then

break
end if
i ← i + 1

end for
i ← 0
j0 ← TasksArray.pop(0)
s ← j0.getStateSnapshot()
a ← j0.getAction()
r ← j0.getReward()
for i = 0; i < Z; i++ do
j ← TasksArray.pop(0)
s′ ← j.getStateSnapshot()
a′ ← j.getAction()
δ ← r - R̄ + q(s′, a′, ~w) - q(s, a, ~w)
R̄ ← R̄ + βδ
~w ← ~w + αδ∇q(s, a, ~w)
s← s′

a← a′

r ← j.getReward()
end for

is § = 1.8
2.0 = 0.9. The cloud instead runs always with speed

equal to 1.0.
The traffic flows arriving to each cluster is defined in

Table II. Table III, instead, shows the network parameters used
in the simulations.

Brand name Frequency Parallelism S K

Odroid-C4 2.0 GHz 4 cores 1.0 4
Asus Tinker 1.8 GHz 4 cores 0.9 4
Rock Pi N10 1.4 GHz 4 cores 0.7 4
Raspberry Pi 3 1.2 GHz 4 cores 0.6 4

TABLE II
SPECIFICATIONS OF WORKER NODES USED IN THE EXPERIMENTS.

Parameter Value Description

dc 20ms Round-trip time between Scheduler-Cloud
Bcs 200Mbps Client - Scheduler bandwidth
Bss 300Mbps Scheduler - Scheduler bandwidth
Bsw 1GBps Scheduler - Worker bandwidth
Bsc 1GBps Scheduler - Cloud bandwidth

TABLE III
THE SPECIFICATION OF THE NETWORK PARAMETERS IN THE SIMULATION.

A. Single Cluster

The setting of this series of experiments if depicted in
Figure 6. We have one single cluster which receives exactly
four flows of traffic, described in Table IV. The first three
flows, namely tf1, tf2 and tf3 represent three hypothetical users
which require respectively a processing rate ωn of 60, 30 and



15 fps and they tolerate a minimum service frame rate ωm
of 50, 20 and 10 fps, respectively. The tasks of these flows,
arriving to the cluster, are periodic and the inter-arrival time
is picked from a Gaussian Distribution with µ = 1/ωn and
σ as described in the table. Then there is a fourth flow that
is not periodic but the inter-arrival time is picked from an
exponential distribution for simulating a background traffic to
the cluster.

The duration time of a single task, that is a frame processing,
is again picked from a Gaussian distribution with µ = de and
σ = 0.0003, the de value differs among the different task types
and it is referring to the execution of the task in a worker
that has execution speed S = 1.0. The payload of each task,
independently from its traffic flow, it is fixed at 50kb.

H

w1

w2

w3
Cluster

Cloud

End Devices

S1 = 1.0

S2 = 0.9

S3 = 0.6

a1

a2

a3

a4
Scheduler

Node

Workers
Nodes

EdgeRL Agent

with

60fps 30fps

15fps

a0 = reject

Traffic Flows

Fig. 6. The setting of the of the experiments on a single cluster with three
workers nodes and four traffic flows (Section V-A).

ωn ωm Distr. σ de Distr. σ Payload

tf1 60 fps 50 fps G. Periodic 0.001 10 ms Gauss. 0.0003 50 kb
tf2 30 fps 20 fps G. Periodic 0.002 20 ms Gauss. 0.0003 50 kb
tf3 15 fps 10 fps G. Periodic 0.01 55 ms Gauss. 0.0003 50 kb
tf4 10 fps - Exp. - 100 ms Gauss. 0.0003 50 kb

TABLE IV
THE LIST OF TRAFFIC FLOWS USED FOR THE SIMULATION, EACH TRAFFIC

FLOWS TFi GENERATES TASKS OF TYPE i.
1) Normal Operation: The Figure 7 shows the performance

metrics of the proposed algorithm in a simulation with the
single cluster and the already discussed conditions. Metrics
are plot over the simulation time, we have the reward in the
first line, then the effective frame rate ωe, the total response
time dt and the lag time τ . Specifically, for the ωe and the
dt we also show the desired ranges in which the metrics must
reside, that are the ones requested by the users. What we can
observe is that after the initial phase in which the ε parameter
of the ε-greedy approach is progressively reduced in order to
favouring exploitation over exploration (that is choosing the
action at random), the learner in the scheduler node manages

to reach the desired requisites for the three flows tf1, tf2 and
tf3. In particular, we can see how the designed reward scheme
(Section III-E) allows, at the same time, to reach the desired
ωn and the dt and to reduce the lag time τ . We remind that,
if the reaching of the desired frame rate ωn is matching a
correct scheduling decision to the correct worker in the correct
moment, and we remark that the agent does not know which
is the speed of any of the workers in the cluster, the lag
time strictly depends on the network latency. This is why, for
example, tf3 cannot reach a low value of the lag τ .
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Fig. 7. Results of the simulation of a single cluster and three worker nodes
(Section V-A), regarding, from top to bottom, the reward, the effective frame
rate ωe, the total response time dt and the lag time τ .

The Figure 8, instead, shows the percentage of the actions
that are chosen by the agent in the scheduler node over time.
What we can observe is that the workers’ speed is learned well
and very fast, this because distribution of the action follows the
speed of the worker nodes, indeed, the worker #1, the faster, is
the most chosen, then we have worker #2 and worker #3. We
also can see that the cloud is chosen as well, this essentially
because there are the background noise of the tasks that have
no deadline.

Finally, the Table V shows the comparison of our algorithm,
after the training phase (referred as “Sarsa Trained”) and other
two scheduling strategies: the least loaded approach, which
always schedules the action to the least loaded node, i.e. with
the lowest queue length, and the random, which chooses the
worker node to schedule to the task at random. As shown in
the charts, our approach allows to meet the user requirements
and minimize the lag time τ , this because our objective is to
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Fig. 8. The distribution of the actions made by the agent on the scheduler node
in the experiments with a single cluster and three worker nodes (Section V-A).

maximize a reward based on the total response time of the
tasks.

2) Failures: In the same setting of the single cluster we
simulate that the faster worker, worker #1, after 4000s fails
and each task request sent to him is rejected. The Figure 10
shows the results of the simulation with the same structure
of Figure 7. As we can see, when the worker #1 fails there
is a drop in the reward, in the frame rate ωe and in the
response time dt, and for the tf1 the requirements are not met
anymore, tf2 finds its response time to increase but still in the
requirements and finally the lag time is increased both for tf1
and tf2 of about 5ms. However, the proposed approach finds a
new scheduling policy for solving the problem and restoring
at least the response time requirement and the effective frame
rate of tf1.
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Fig. 9. Results of the simulation of a single cluster and three worker nodes
(Section V-A), regarding, from top to bottom, the reward, the effective frame
rate ωe, the total response time dt and the lag time τ . We assume that node
#1 fails at time 4000.

In the Figure 10 we can appreciate which are the modifica-
tions done to the scheduling policy after the failure. Almost
immediately the percentage of actions for scheduling towards
node #1 drops, moreover, more tasks are scheduled to worker
#2, #3 and to the cloud. The change in the actions is generated
from the fact that the learner starts to receive negative reward
when scheduling to the node #1, indeed the percentage of
actions towards it progressively reaches zero, then, again the
faster worker (worker #2) receives more traffic than the other
(worker #3).
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Fig. 10. The distribution of the actions made by the agent on the scheduler
node in the experiments with a single cluster and three worker nodes
(Section V-A). We assume that node #1 fails at time 4000.

B. Multiple Clusters

In this setting we suppose to have multiple clusters which
can cooperate, therefore the set of actions used by the sched-
uler i is now A′i, for each scheduler. We suppose that each
cluster receives the flows described in the Table IV and we
use our proposed algorithm to each scheduler of each cluster.
The clusters are the following:
• cluster #1 has three nodes with speeds 1.0, 0.9 and 0.6;
• cluster #2 has two nodes with speeds 0.9 and 0.6;
• cluster #3 has three nodes with speeds 1.0, 0.7 and 0.6.
The Figure 11 shows the results of the simulations, in

particular we can observe that behaviour of the reward, but
also of the the effective frame rate ωe, the total response time
dt and the lag time τ is similar to the single cluster setting,
for this reason the chart of these last three parameters has
been omitted. However, in this setting, is relevant to notice
the behaviour of the decisions taken by the schedulers, shown
in the last three lines of Figure 11. As the first cluster setting,
the agents are able to derive the speeds of the worker nodes
and pick the best allocation but now part of the traffic goes to
the nearby cluster and more than of the one that is forwarded
to the slower nodes. This means that agents prefer to forward
some tasks to other clusters, instead of executing them in the
current one if the worker are slower, and this was perfectly
expected. We remind that the agents have no information about
the other clusters, the representation of the state is always the
same of the one presented in Section III.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach for solving the
online task scheduling in the edge or fog to cloud continuum
computing model by using the Reinforcement Learning. This



Sarsa Trained Least Loaded Random
ωe τ dt ωe τ dt ωe τ dt

tf1 54.08 19.63 20.57 37.85 48.75 96.05 29.61 65.23 100.71
tf2 28.15 36.00 35.69 19.04 72.22 110.50 15.72 88.35 109.64
tf3 13.17 76.34 84.71 9.52 120.35 148.80 8.11 142.38 144.25

TABLE V
COMPARISON REGARDING THE EFFECTIVE FRAME RATE (ωe), THE LAG TIME (τ ) AND THE TOTAL RESPONSE TIME dt BETWEEN OUR ALGORITHM

”SARSA TRAINED” AND OTHER TWO APPROACHES: SCHEDULING TO THE LEAST LOADED NODE AND RANDOM SCHEDULING.
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Fig. 11. Results of the simulation in a three clusters setting, regarding, from
top to bottom, the reward per second, the percentage of the chosen action
over time for the three clusters, in order.

approach is perfectly suiting the problems that regards this
dynamic context, as for example, heterogeneity of the nodes,
difficulties on estimating the real execution speed of the nodes,
the possible failure of the nodes, cooperation strategies and
different QoS requirements (e.g. minimum frame rate). We
showed the results of our approach both in a single cluster
and in a multi-cluster environment, illustrating that in any of
these case, given an hypothetical traffic flow the agent, placed
in the scheduler of each cluster, can derive the best scheduling
policy without nothing anything about the characteristics of the
worker nodes or of the neighbor clusters.

As anticipated in the paper, unfortunately some points have
been left open and will be further investigated, for example,
in the experiments we hypothesized that the nodes speed is
fixed but in general it fluctuates over time since every worker
node has an underlying operating system and CPU time may
be reserved for other applications, a further study should
investigate the frame skipping, that occurs when the processed
frames return to the client in an order that is different from the
generation one, and a further investigation should be focused
on the consequences of using a higher number of task types.

REFERENCES

[1] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren, and
C. Mahmoudi, “Fog computing conceptual model,” NIST, Tech. Rep.,
2018.
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