
Towards Testbed as-a-Service: design and
implementation of an unattended SoC cluster

Gabriele Proietti Mattia, Roberto Beraldi
Department of Computer, Control and Management Engineering “Antonio Ruberti”,

Sapienza University of Rome,
Email: proiettimattia@diag.uniroma1.it, beraldi@diag.uniroma1.it

Abstract—The current computing power of single-board com-
puters (SBCs) is relevant, and if this factor is associated with the
very low cost of installing and operating such devices, building
a cluster is a natural consequence. Very often in fog computing,
researchers need to run and test their distributed solutions
and algorithms in real hardware and software, rather than by
simulations and doing this in a cluster of SBCs is feasible and
inexpensive. This paper addresses most of the problems and issues
that arise when building a self-contained, remote controllable and
unattended cluster of Raspberry Pi that minimizes the physical
intervention of a human operator, which enables the notion of
Testbed as-a-Service. The solution envisioned here is to set up the
cluster in a desktop computer case, which needs addressing power
management and to allow remote configuration of experiments.
Moreover, the paper proposes several guidelines for installing a
suitable operating system and software for running any kind of
distributed application.

Index Terms—testbed, Raspberry Pi, single board computer,
cluster, fog computing.

I. INTRODUCTION

A crucial aspect of designing distributed algorithms for fog
or edge computing is to provide results that efficiently run,
aside from a simulation, in a real setup with real hardware and
software. Most of the time trying to set up such kind of testbed
could appear costly and time-consuming, but it is not always
the case. Indeed, thanks to the current hardware technologies,
there are many types of single-board computers (SBCs) which
have a non-negligible computing power and they are available
at a very low cost, like for example Raspberry Pi1. Building
a cluster with this kind of device is reasonable but if we want
to build a stable, long-term, and stand-alone solution there are
different issues that must be addressed: (i) decide a proper
enclosure or chassis which will hold all the components of
the cluster, and this must bring with it a suitable solution for
managing the power supply of the entire system since it can
be unfeasible to have a single power adapter for every single-
board PC; (ii) the entire cluster should be managed, under
the hardware point of view, like a server rack component
which can be easily added or removed for example from
a server cabinet; (iii) the ability to power on and off the
cluster remotely, and this feature introduces an entire new
set of problems that regards software management; (iv) the
system is to be unattended or there is a low probability of the
intervention of an operator who manually has to remove the

1https://www.raspberrypi.org/

single-board PCs from the cluster enclosure and reinstall the
operating system, indeed in this kind of low power devices,
the software resides on external storage, like a microSD,
therefore installing the operating system requires the software
to be flashed in the storage support. All these needs are
the prerequisite to set up a general cluster that can be used
remotely to run experiments, i.e., a concept that we dubbed
Testbed as-a-Service.

This paper is the result of an experience done to realize
the envisioned cluster by using Raspberry Pi SBCs. The main
contributions of this work can be summarized as follows:
• delineation of hardware and software requirements for a

long-term, unattended and remote controllable solution
for implementing a Raspberry Pi cluster;

• design of a power supply board for using a desktop
computer power supply (called ATX) for powering up
to eight Raspberry Pi boards;

• design of a remote Ethernet switch system for remote
controlling the power of the cluster to be associated with
the power supply board;

• propose a way to define the testbed configuration and
an experiment via JSON configuration files, towards a
Testbed-as-a-Service paradigm;

• show the results of the benchmark of a distributed
scheduling algorithm installed in the cluster.

The paper is structured as follows. In Section II is presented
a summary of other works in literature that involve the design
and the implementation of a SBCs cluster, especially regarding
Raspberry Pi boards, Section III shows the hardware design
of the cluster with a focus on the power supply system.
Instead, Section IV presents the software management issues
and a proposal of a testbed configuration file architecture.
Finally, in Section V we will show the results of a distributed
scheduling algorithm benchmark and we will draw conclusions
in Section VI.

II. RELATED WORK

There are different approaches in literature for building a
Raspberry Pi cluster, indeed the low realization and operational
costs make it usable for learning parallel computing [1], [2],
run distributed algorithms [3], [4] or just for studying the
energy and the computation power system [5], [6], [7].

In particular, [1] and [2] describe a Raspberry Pi cluster
that is built for learning purposes. The devices are arranged

in a cart and they make use of the MPI messaging protocol
for the intercommunication. However, this solution is not self-
contained and it does not provide a practical solution to the
power management.

Works [8] and [3] show an implementation of a cluster of
Raspberry Pi that is assembled with Lego bricks, the former
also introduces a software management system called PiCloud
and the latter uses the cluster for running a tourism data
aggregation application. In both cases, a self-enclosing and
an unattended design and structure is not considered.

“Iridis-Pi” is a cluster of 64 Raspberry Pi presented in [9].
The authors performs a benchmark of the cluster trying to
derive the total computing power of the entire architecture, but
for doing that different issues are addressed, like the power
supply, the network capability and a shared and distributed
storage.

A series of challenges when building a Raspberry Pi cluster
is listed in [10]. The paper, after describing the design and the
setup of the cluster, performs a series of benchmarks regarding
the total computational power of the system.

Concluding, [5] studies a Raspberry Pi cluster as a high-
performance computing (HPC) cluster, considering the com-
puting and the electric power the work provides performance
results regarding the number of cores and the number of
computing nodes in a cluster.

III. HARDWARE

A. Enclosure

The first decision that is needed to take when building the
cluster regards a suitable physical structure that is able to hold
the essential components, namely the SBCs and the power
supply unit. There are many solutions that can satisfy our
needs but they are often offered at a very high cost, relatively
to the cost of the boards. For this reason, in this work, we
tried to re-use a desktop PC case and its power supply unit.
Figure 1 shows a preliminary set up of the cluster enclosure.
We can observe that the single Raspberry Pis are arranged
in (black) cases which have a single screw on the side, then
all of these are attached to a rigid plastic structure that fits
the standard holes of a Standard-ATX motherboard, which are
specified by Intel [11]. The case has also been enriched with
two fans for favouring the airflow.

The case that has been used is a standard ATX case but it is
not rack-able (i.e. it cannot be arranged in a server rack). For
a better space management, there are also available rack-able
ATX cases of 4 units that could be easily installed in a server
cabinet. However, switching to this kind of case does not alter
anything of the work presented here.

B. Power board design

The main issue of using a PC case as an enclosure is the
usage of the ATX power supply unit, this because having
eight power adapters for eight Raspberry Pis is not a feasible
solution, especially in terms of space. A standard ATX power
supply has different connectors that are usually attached to
the motherboard and to all the peripherals. There are many

Fig. 1: Preliminary set up of the cluster

vendors and types (in our case we used a “Trustech TR-
20787”, whose specifications are listed in Table I) but in
general all of the connectors are cascade arranged in at least
in 4 lines, in the following way:

(a) ATX 24pin motherboard
connector

(b) 4pin peripheral connector

Fig. 2: Desktop PC power supply unit connectors

L1) this line has one 24-pin port (Figure 2a) for the mother-
board power;

L2) this line has two 4-pin ports for powering the peripherals
(Figure 2b) and two ports for powering SATA disks;

L3) same as L2);
L4) this line has one 4 (or 4+4) pins port powering the CPU.

All of these lines are made up of 20 AWG cables (which
corresponds to 0.50mm2 of section) and they have 20 cores.
According to [12], in normal conditions, each of these cables
can bring up to 3.5A, considering 5V that is the voltage needed
for the Raspberry Pi. Moreover, a Raspberry Pi 4 needs 3A
for operating correctly2, this means that for powering up to 8
Raspberry Pi 4 we need 24A and 7 cables from the +5V rail
of the PSU (whose colour is red) and at least 7 cables for the

2https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
specifications/

Trustech TR-20787

Voltage Current FrequencyAC Input 230Vac 6A Max 50Hz

+3.3V +5V +12V -12V -5V +5VSBMax DC Output 22A 28A 28A 0.8A 0.6A 2.5A

TABLE I: The specification label on the PSU (Power Supply
Unit)

negative pole (whose colour is black). We can gather all the
needed cables from the PSU connectors, in particular we can:

• pick 5 red +5V cables and 8 black negative cables from
the 24pin connector;

• pick 2 red +5V cables and 2 black negative cables from
the two lines in which we have the peripheral 4pin
connector.

This configuration would allow powering up 8 Raspberry
Pi since the PSU can support at maximum 28A on the +5V
rail (Table I).

Figure 3 shows the circuit diagram of “ATX2RPi8”, a
printed circuit board (PCB) that we designed for powering
eight Raspberry Pi using a desktop ATX power supply unit.
The red tracks are printed at the front face of the board and
the blue ones instead to the rear face. The diagram has been
designed with EasyEDA3 and then submitted to the factory
for printing4. Aside from gathering the red and black cables
as described, also considering the thickness of the tracks
proportional to the load, the board also has the following
features:

• it distributes the 5V+ current to eight clamps, to which
will be attached the cables towards the Raspberry Pis.
These cables have been assembled with a Type C con-
nector;

• it offers two fan ports, one at 5V and one at 12V;
• it offers a clamp for the PS_ON rail that if connected to

ground cause the switching on of the PSU. This clamp
will be attached to an ethernet switch for remotely turning
on and off the cluster;

• it offers a clamp for the +5VSB rail, that is a line always
powered, even if the PSU is turned off. This line is used
for powering an ethernet relay;

• it offers an additional clamp for 12V, for general pur-
poses.

Table II shows the Bill of Materials (BOM) of the board, it
can be used for ordering the components from the supplier5.
The components are: the 24pin female connector, two fan
ports, two 4pin peripheral power connectors and eleven generic
bipole clamps. The PCB printing and the components cost for
a single board, including the shipping fees, is about 10$.

3https://easyeda.com/
4https://jlcpcb.com/
5https://lcsc.com

Fig. 3: Power supply board (ATX2RPi) (82x70mm)

C. Power control board

A relevant feature that an unattended cluster needs to have,
especially if composed by Raspberry Pi, is the ability to
remotely switching on and off the power in case there is
the necessity of force restart the devices. This capability is
included in the design of ATX2RPi8, but it must be completed
with an ethernet or wireless relay which must be connected
to the +5VSB port for being powered and to the PS_ON port
for switching on and off the PSU.

In our set-up, we used a “HW-584 Web Relay Con V2.0”
that is a relay control board and it can manage up to 16
channels. We only used one channel that has been connected to
a high/low-level trigger relay, and the relay has been connected
to the PS_ON port of the ATX2RPi8 board. The controller
exposes a web dashboard from which we can switch on and
off the relay and therefore the entire cluster.

D. Final Setup

Figure 4 shows the final configuration of the cluster that is
currently operational. As we can observe, the cluster with eight
Raspberry Pis 4B (with a quad-core Cortex-A72 CPU, 4GB
of RAM and gigabit port) have been attached to a WiFi router
(ASUS RT-AX88U, that supports up the 802.11ax standard)
which allows experiments that make use of the wireless
network, for example, smartphones or IoT. Then another two
external Raspberry Pis 3B (with a quad-core Cortex-A53 CPU,
1GB of RAM and gigabit ethernet capped to 300Mbps due to
the internal design of the RPi) have been added: the former is
used as traffic generator which can simulate a background or
noise traffic to the other SBCs, the latter is instead an entry
point, since the cluster lives in a department network, it is
necessary to have an SSH or VPN entry point from which
we can have the control of all the components of the cluster,
in this way we expose only a single node to the department’s
internal network and the cluster traffic remains confined in the
subnetwork. In particular, this Raspberry Pi has been equipped

ID Name Designator Quantity Manufacturer Part Manufacturer Supplier Supplier Part

1 CONN-TH 39281243 ATX24P 1 39281243 MOLEX LCSC C114088
2 CONN-TH 47053-1000 FAN 12V,FAN 5V 2 47053-1000 MOLEX LCSC C240840
3 CONN-TH 350211-1 4P 1,4P 2 2 350211-1 TE Connectivity LCSC C305826
4 CONN-TH 2P-P5.00 WJ500V-5.08-2P RPI* 11 WJ500V-5.08-2P-14-00A ReliaPro LCSC C8465

TABLE II: BOM for ATX2RPi(8) board

FogLab
(subnetwork)

Cluster #0

Raspberry #1
rpic00n00

Raspberry #2
rpic00n01

Raspberry #3
rpic00n02

Raspberry #4
rpic00n03

Raspberry #5
rpic00n04

Raspberry #6
rpic00n05

Raspberry #7
rpic00n07

Raspberry #8
rpic00n08

Power Switch
rpic0pwr

eth0 eth1

Raspberry Generator
rpigen00

WiFi6 Router
foglab-r00

Entrypoint Raspberry
foglab-rpie

Fig. 4: Final set up of the cluster

with a USB ethernet (eth1), beyond the embedded ethernet
port (eth0) in this way the RPi can be reachable from both the
subnetworks.

IV. SOFTWARE

A crucial feature that a cluster of Raspberry Pi should have,
regards the ability of easily deploy and un-deploy software
when it is needed. This process could be the easiest and clean-
est as possible, we cannot allow an uncontrolled installation
of libraries, dependencies and configurations. Therefore the
use of some container management system is essential. We
chose to install within each Raspberry Pi board a software
distribution that already has included Docker and cloud-init
that is a utility used in cloud contexts for auto-configuring
nodes at boot. This distribution is open-source and it is called
Hypriot OS6. But we did not use the software as it is, we
adapted it to the following guidelines that we defined to make
the cluster unattended.

1) in order to limit a human operator intervention we need
to drastically reduce the possibility of OS corruption, for
this reason the root partition should be read-only while all
the persistent data (e.g. the Docker images and containers
data) should be moved to a new writable partition;

2) the Raspberry Pi should reboot automatically if the sys-
tem hangs or freezes (for example due to a kernel panic)
therefore the watchdog kernel module (which is natively
supported by hardware backend in RPi) must be enabled;

3) every node must auto-configure itself at boot, in particular
every node must be reachable with SSH without manually
typing username and password, this for facilitating any
set-up or benchmarking script.

6https://blog.hypriot.com/downloads/

These code changes are published as open-source7. The
final OS has been built and installed to all the Raspberry Pis
and configured to have fixed IPs under a WiFi6 router which
completed our cluster deployment.

A. Testbed-as-a-Service

For executing experiments, we installed in the cluster a FaaS
scheduling framework called P2PFaaS [13] that allows imple-
menting distributed scheduling algorithms for the FaaS job unit
model. Since the framework is fully configurable via REST
API, we can envision a JSON configuration file which sets up
the testbed environment, like the needed nodes, the topology,
the chosen scheduling algorithms and other parameters. This
JSON, which can be accompanied by another configuration
file which regards the specific experiment parameters, should
be taken as input to a hypothetical master node which is in
charge to actuate the passed configuration constraints.

Listing 1 shows the full description of a possible JSON file
for describing the testbed environment. As we can see, the
capabilities that are offered by the configuration regards:

1) the definition of the infrastructure, namely the
number of nodes to start and their specific topology which
is expressed in terms of neighbors nodes;

2) the configuration of the scheduler service envisioned
as a Docker container; therefore we need to pass the
address of the Docker image, the name of the scheduler
that will be used (to choose among a set of schedulers
implemented in the framework), the arguments of the
scheduler and other basic parameters like the maximum
number of parallel jobs that can be executed and the
maximum job queue length;

3) the configuration of the discovery service, which is
again a Docker container in charge of making nodes
aware of their neighbors; here we could configure, for
instance, the Docker image and the delay between the
heartbeats;

4) the configuration of the functions that will be made
available for testing, again envisioned as Docker con-
tainers; therefore we need to specify the Docker image
address of the function, a name, the API address that
will be call-able by clients and a set of specific fixed
deployment arguments, if needed. The list of functions is
expressed as a JSON array of JSON objects.

Our cluster is implementing a Fog environment, therefore
we emphasize that the scheduler and the discovery service (and
therefore the P2PFaaS framework) with the specified functions

7https://github.com/rpi-cluster

Listing 1 Testbed JSON configuration file
{
"infrastructure": {

"nr_nodes": "3",
"topology": {

"0": ["1","2"],
"1": ["0","2"],
"2": ["0","1"]

}
},
"scheduler": {
"image": "https://...",
"name": "SchedulerIdentificator",
"args": ["arg1", "arg2", "arg3"],
"max_parallel_jobs": 4,
"max_queue_length": 2,

},
"discovery": {

"image": "https://...",
"heartbeat": "30s"

},
"functions": [

{
"name": "My Service",
"api": "my_service",
"image": "https://...",
"args": ["arg1", "arg2", "arg3"]

},
{

"name": "My Service #2",
"api": "my_service_2",
"image": "https://...",
"args": ["arg1", "arg2", "arg3"]

},
]

}

will be spawned in every node, since every node will be able to
execute that functions by calling the respective API addresses
and to schedule the execution in other neighbors nodes.

Listing 2 represents the configuration file for running an
experiment. As in the previous case, this file should be passed
to a hypothetical master node that is in charge of executing
parallel flows of REST API calls to all the nodes in the cluster.
The configuration file should allow to properly set:

• the api address of the function to test (that has previ-
ously configured in Listing 1);

• the payload path to associate to every REST API call;
• the path (log_path) to the log directory where the test

results can be collected;
• the job arrivals configuration, that comprehends the

rate (requests/s, also referred as λ) to every specific node
and the distribution according to which the requests will
be generated, for example as a Poisson distribution; for
the sake of simplicity, we assume a fixed distribution but
we could also envision to use here a distribution that
comes from real user traffic, properly defined in a plain
text file;

• the total number of request after that the experiment can
stop, with field max_num_requests.

By having defined both the configuration files for the testbed
itself and the experiment to carry out, we envision that the
testbed usage can follow a Testbed-as-a-Service paradigm.

Listing 2 Testbed experiment JSON configuration file
{
"api": "/my_service",
"payload": "/path/to/payload",
"log_path": "/path/to/log",
"arrivals": {
"distribution": "poisson",
"rate": 1.0,
"rates": {
"0": 1.0,
"1": 2.0,
"2": 1.5,

},
"max_num_request": 2000,

},
}

V. EXPERIMENTS AND RESULTS

A. Experiments

We performed two experiments by using the presented
cluster:

1) the first experiment has been run configuring the testbed
to use a scheduler that requested no cooperation between
nodes: upon a job arrival the job is always executed
locally in the node, if there are available resources,
otherwise it is rejected. Then we chose an arrivals scheme
with no distribution behind, thus with fixed jobs inter-
arrival time. This has been done for understanding the
computational power of a single node in the cluster and
to properly choose a reasonable arrival rate for the next
experiment;

2) the second experiment is based on a power-of ran-
dom choice cooperation algorithm for scheduling (called
PowerOfN within the framework), in particular, the one
presented in [13]. We executed a benchmark for eight
different payload sizes.

For both the experiments, we tested the same function,
namely a face detection task based on the PiCo algorithm8.
The same image has been used for every job request: a
640x480 JPG with exactly four faces.

B. Results

1) Experiment 1: With this experiment, we collected the
response time of 2000 requests sent in series. We obtained an
average of 0.696s (σ = 0.01848) and the distribution depicted
in Figure 5. This means that the service rate µ for a single
node in the cluster is about 1.43 jobs/s, but this must be
multiplied by the four processing cores of the CPU, therefore
we estimated a total service rate of 1.43 × 4 = 5.72 jobs/s.
This value can be considered as a good estimation because
we assume that the kernel scheduler is fair and therefore four
parallel jobs will be approximately scheduled to four different
cores for the most of the execution time. This is also the reason
why we set the P2PFaaS framework to be allowed to execute
only four jobs in parallel (K = 4) in each node and in each
benchmark.

8https://github.com/esimov/pigo

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

N
u
m

b
e
r

o
f

jo
b

s

Time [s]

Fig. 5: Job duration distribution for a single Raspberry Pi 4B
with no cooperation scheme

2) Experiment 2: Listing 3 shows the testbed configuration
file for this experiment. As we can observe, the topology has
been declared as a fullyConnected graph, and we set the
PowerOfN scheduler which takes as input: (i) the fanout,
that is the number of random probed nodes, set to one; (ii)
the threshold (Θ), that is the limit above which cooperation is
started, set to two; (iii) if the job that cannot be executed is
discarded and not put in a waiting queue, set to true; (iv) the
maximum number of hops that job can perform before being
executed, set to one. Then we also set the maximum number
of parallel jobs to four, as four is the number of cores of the
Raspberry Pi 4B, and we set to use no additional queue, since
max_queue_length is set to zero. As far as regard the
function, the parameters input_mode and output_mode
that refers to the input and output type of the function are set to
image, therefore the input will be a binary file representing a
JPG image and the output a binary file that is the same image
with the highlighted faces.

Metrics collected and analyzed during the benchmarks are
of two types. The first set of metrics regards the jobs’
execution, and it has been collected by using the data reported
by P2PFaaS. We have:

• drop rate (PB), the percentage of jobs that have been
rejected because they find the node to which they have
been assigned at full load (K = 4);

• total delay (dt), the total elapsed time for completing the
request as seen by the client, in our case the Raspberry
Pi Generator;

• probing delay (dp), the total elapsed time for asking to
another node its current load: it comprises the time for
transmitting the request and for receiving the response;

• forwarding delay (df), that is the total time required for
transmitting the job (only a few bytes of metadata) and
its payload to another node;

• τe that is the time between the decision to forward a job
and the effective job arrival in the remote node and it is
defined as df + dp/2.

The second set of metrics regards the nodes operating system

Listing 3 Testbed JSON configuration file for Experiment 2.
{
"infrastructure": {
"nr_nodes": "6",
"topology": "fullyConnected"

},
"scheduler": {
"image": "p2pfaas/scheduler",
"name": "PowerOfN",
"args": [1, 2, true, 1],
"max_parallel_jobs": 4,
"max_queue_length": 0

},
"discovery": {
"image": "p2pfaas/discovery",
"heartbeat": "30s"

},
"functions": [
{
"name": "Pigo Face Detector",
"api": "pigo-face-detector",
"image": "esimov/pigo-openfaas",
"args": {
"input_mode": "image",
"output_mode": "image",
"write_timeout": 100,
"read_timeout": 100

}
}

]
}

and have been collected using Telegraf9 and InfluxDB10. They
comprise:

• network activity, the bytes received and sent by the
network adapter every second;

• CPU load, the CPU time used by the system, the user
and for serving the interrupt requests (Soft IRQs);

• system load, the average load of the system as reported
by Linux in the last 1, 5 and 15 minutes.

In this experiment, we tested different payload sizes but we
used the same image in order to not change the computational
time required to detect the faces. We indeed appended spare
bits at the end of the payload to reach desired payload sizes.
The following results focus to nine different payloads, from
50kB (τe = 0.021s), the original size of the image, to 800kB
(τe = 0.135s) the maximum payload supported by the Rasp-
berry Pi Generator (we experimented that a payload greater
than this limit saturates the network adapter queue). Each test
for each payload involved 2000 requests sent with Poisson
distribution and has been repeated five times. Confidence
intervals that are shown have been computed as X̄±tα

2 ,n−1
S√
n

(where X̄ is the sample mean, S the sample variance, and t the
Student-t distribution) with α = 0.05. All the sample means
of the experiments are reported in table III. Listing 4 shows
the JSON configuration file for this experiment, notice that we
need a configuration for each payload to use, for this reason
the payload path is set as payload-Xkb.jpg.

9https://github.com/influxdata/telegraf
10https://github.com/influxdata/influxdb

Listing 4 Testbed experiment JSON configuration file for
Experiment 2.
{
"api": "/pigo-face-detector",
"payload": "./payload-Xkb.jpg",
"log_path": "./log",
"arrivals": {
"distribution": "poisson",
"rate": 5.5,
"max_num_requests": 2000,

}
}

kB PB dt df dp τe

50 0.5517 0.7545 0.0174 0.0073 0.0211
100 0.5572 0.7751 0.0284 0.0075 0.0321
200 0.5736 0.8175 0.0455 0.0075 0.0492
300 0.5958 0.8740 0.0591 0.0078 0.0630
400 0.6046 0.9159 0.0744 0.0074 0.0781
500 0.6163 0.9486 0.0867 0.0072 0.0902
600 0.6344 1.0158 0.0998 0.0074 0.1035
700 0.6452 1.0712 0.1132 0.0070 0.1167
800 0.6553 1.1401 0.1314 0.0070 0.1349

TABLE III: Summary of experimental results (Θ = 2, λ =
5.50) as a function of the payload size (kB), all times are
expressed in seconds

Figures 6 and 7 show the average drop rate and the delay
when the threshold Θ = 2 and the job arrival rate λ = 5.50
jobs/s as a function of τe. We can observe that the increase
of the job payload, and thus of the network delay that exists
between the forwarding decision and the actual arrival of the
job to the destination node, causes a twofold effect: (i) an
increase of the percentage of jobs that are dropped and (ii) a
growth of the total delay. In particular, when we deal with the
original image of about 50kB the drop rate is 55.16%, the total
delay is 754ms while τe = 21ms; when raising the payload
up to 800 kB we observed an additional 10% in the drop rate,
an increase of the total delay to 1.14s and of τe to 135ms.

The probing delay remains independent from the job pay-
load, and it remains steady to about 7ms, and this reasonable
since the probing does not use any relevant data transmission.

The linear relationship between the drop rate and the delay
is reasonable and it shows the impact of the uncorrelation
between the moment in which the node takes the forwarding
decision and the moment in which the job actually arrives in
the remote node

Figures 8, 9, and 10 shows Raspberry Pi 4B node OS
statistics for a single benchmark from payload 50kB to 800kB
with 2000 requests for payload size and using Θ = 2 and
λ = 5.50 images/s. In all of these figures, the x-axis represents
the time elapsed during the benchmark, and we can notice a
periodic fall of the y-axis values. Indeed, when switching the
payload size, we observe a 60s gap during which the system is
idle: this is voluntarily done to let the OS free all the resources
and also to insert a clear recognition mark for the beginning
each different test in the chart. Analyzing these results, we can
observe the behaviour of network activity when the payload

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.02 0.04 0.06 0.08 0.1 0.12 0.14

D
ro

p
 R

a
te

τe [s]

Fig. 6: Effect of τe on PB (Θ = 2, λ = 5.50)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Ti
m

e
 [

s]

τe [s]

Total
Forwarding

Probing

Fig. 7: Effect of τe on dt, df , dp (Θ = 2, λ = 5.50)

increases, and we can note that the bytes received and sent
grow linearly with different slopes: this is justified by the
fact that the bytes sent from the node regard only (i) the
payload jobs that are forwarded and (ii) the response payload
to the traffic generator (that is always the 50kB with the face
highlighted independently from the payload of the request).
Since we increase the payload while leaving constant the job
arrival rate, the bytes sent rate also increases. In particular,
we start with and an average of 0.5MB/s when the payload
is 50kB to 1.5MB/s when the payload is 800kB. Focusing on
the bytes received rate, we observe (iii) the payload of the
jobs sent by the traffic generator and the (iv) payload of the
job forwarded by other nodes: we start with 0.5MB/s when
the payload is 50kB to 5MB/s when the payload is 800kB.
The total network traffic estimation is reasonable considering
nodes and router network capabilities.

We can conclude the analysis by observing the CPU usage
(Figure 9) and the system load (Figure 10). In particular, we
can note how the CPU usage in “user” space, which includes
the job processing, remains constant during the experiment,
while the IRQ processing and the system usage increases. This
effect is explained because, by increasing the payload size,
we require more packets to be received and to be sent: for
this reason, there is more work to be done by the kernel with
respect to the job processing. The system load, instead, reflects
the overall load of the system, and due to the increase of

 0

 1

 2

 3

 4

 5

 6

 7

00:00:00 00:10:00 00:20:00 00:30:00 00:40:00 00:50:00 01:00:00

M
B

/s

Elapsed Time

Bytes Recv
Bytes Sent

Fig. 8: Network activity for one Raspberry Pi 4B varying the
payload size

 0

 20

 40

 60

 80

 100

00:00:00 00:10:00 00:20:00 00:30:00 00:40:00 00:50:00 01:00:00

Lo
a
d

 [
%

]

Elapsed Time

Soft IRQ
User

System

Fig. 9: CPU usage for one Raspberry Pi 4B varying the
payload size every 2000 requests (about 10 minutes)

the system and IRQ processing, it grows with the payload
size. These last results again confirm the consistency of our
experiments.

VI. CONCLUSION

In this paper we showed a long-term solution for building
a cluster of Raspberry Pi that is self-enclosed and tries to
minimize the intervention of a human operator. We designed
a power supply and a control board system for using a desktop
PC case (ATX2RPi8), we presented a set of software guide-
lines, a Testbed-as-a-service configuration file architecture and

 0

 1

 2

 3

 4

 5

 6

00:00:00 00:10:00 00:20:00 00:30:00 00:40:00 00:50:00 01:00:00

Lo
a
d

Elapsed Time

1m
5m

15m

Fig. 10: System load for one Raspberry Pi 4B varying the
payload size

finally we showed an usage scenario of the cluster, namely
the implementation and the benchmarking of a distributed
scheduling algorithm in a very close to real fog computing
deployment. However, there are some aspects that should be
further investigated, in our cluster deployment, for example,
nodes configuration is static and cannot change dynamically.
Indeed, it will be needed to consider the possibility to provide
a centralized configuration solution for managing the single
SBCs operating system parameters (like adding new users or
SSH keys), for switching on/off desired nodes, or to set up a
particular network topology for running specific benchmarks
of other algorithms by using the JSON configuration files
proposal that we presented in this work.

REFERENCES

[1] K. Doucet and J. Zhang, “Learning cluster computing by creating
a raspberry pi cluster,” in Proceedings of the SouthEast Conference,
ser. ACM SE ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 191–194. [Online]. Available: https:
//doi.org/10.1145/3077286.3077324

[2] K. Doucet and J. Zhang, “The creation of a low-cost raspberry
pi cluster for teaching,” in Proceedings of the Western Canadian
Conference on Computing Education, ser. WCCCE ’19. New York,
NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3314994.3325088

[3] M. d’Amore, R. Baggio, and E. Valdani, “A practical approach to
big data in tourism: A low cost raspberry pi cluster,” in Information
and Communication Technologies in Tourism 2015, I. Tussyadiah and
A. Inversini, Eds. Cham: Springer International Publishing, 2015, pp.
169–181.

[4] J. Saffran, G. Garcia, M. A. Souza, P. H. Penna, M. Castro, L. F. W.
Góes, and H. C. Freitas, “A low-cost energy-efficient raspberry pi cluster
for data mining algorithms,” in Euro-Par 2016: Parallel Processing
Workshops, F. Desprez, P.-F. Dutot, C. Kaklamanis, L. Marchal, K. Moli-
torisz, L. Ricci, V. Scarano, M. A. Vega-Rodrı́guez, A. L. Varbanescu,
S. Hunold, S. L. Scott, S. Lankes, and J. Weidendorfer, Eds. Cham:
Springer International Publishing, 2017, pp. 788–799.

[5] A. Mappuji, N. Effendy, M. Mustaghfirin, F. Sondok, R. P. Yuniar,
and S. P. Pangesti, “Study of raspberry pi 2 quad-core cortex-a7 cpu
cluster as a mini supercomputer,” in 2016 8th International Conference
on Information Technology and Electrical Engineering (ICITEE), 2016,
pp. 1–4.

[6] P. Abrahamsson, S. Helmer, N. Phaphoom, L. Nicolodi, N. Preda,
L. Miori, M. Angriman, J. Rikkilä, X. Wang, K. Hamily, and S. Bu-
goloni, “Affordable and energy-efficient cloud computing clusters: The
bolzano raspberry pi cloud cluster experiment,” in 2013 IEEE 5th
International Conference on Cloud Computing Technology and Science,
vol. 2, 2013, pp. 170–175.

[7] M. F. Cloutier, C. Paradis, and V. M. Weaver, “A raspberry pi cluster
instrumented for fine-grained power measurement,” Electronics, vol. 5,
no. 4, p. 61, 2016.

[8] F. P. Tso, D. R. White, S. Jouet, J. Singer, and D. P. Pezaros, “The
glasgow raspberry pi cloud: A scale model for cloud computing infras-
tructures,” in 2013 IEEE 33rd International Conference on Distributed
Computing Systems Workshops, 2013, pp. 108–112.

[9] S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, and
N. S. O’Brien, “Iridis-pi: a low-cost, compact demonstration cluster,”
Cluster Computing, vol. 17, no. 2, pp. 349–358, 2014. [Online].
Available: https://doi.org/10.1007/s10586-013-0282-7

[10] E. Wilcox, P. Jhunjhunwala, K. Gopavaram, and J. Herrera, “Pi-crust:
a raspberry pi cluster implementation,” Technical report, Texas A&M
University, Tech. Rep., 2015.

[11] Intel, “Atx motherboard specification, v2.2,” Tech. Rep.
[Online]. Available: https://web.archive.org/web/20120725150314/http:
//www.formfactors.org/developer/specs/atx2 2.pdf

[12] E. ToolBox. (2003) Awg wire gauges current ratings. [Online]. Avail-
able: https://www.engineeringtoolbox.com/wire-gauges-d 419.html

[13] R. Beraldi and G. Proietti Mattia, “Power of random choices made
efficient for fog computing,” IEEE Transactions on Cloud Computing,
pp. 1–1, 2020.

