
A Latency-levelling Load Balancing Algorithm for Fog and Edge
Computing

Gabriele Proietti Mattia

Marco Magnani

Roberto Beraldi

proiettimattia@diag.uniroma1.it

beraldi@diag.uniroma1.it

Department of Computer, Control and Management,

Engineering "Antonio Ruberti", Sapienza University of Rome

Rome, Italy

ABSTRACT
When deploying a distributed application in the Fog or Edge com-

puting environments, the average service latency among all the

involved nodes can be an indicator of how much a node is loaded

with respect to the other. Indeed, only considering the average

CPU time, or the RAM utilisation, for example, does not give a

clear depiction of the load situation because these parameters are

application- and hardware-agnostic. They do not give any infor-

mation about how the application is performing from the user

perspective and they cannot be used for a QoS-oriented load bal-

ancing of the system. Moreover, due to the displacement of the

nodes and the heterogeneity of the computing devices the necessity

of a load balancing algorithm is clear. In this paper, we propose a

load balancing approach that is focused on the service latency with

the objective to level it across all the nodes in a fully decentralized

manner, in this way no user will experience a worse QoS than the

other. By providing a differential model of the system and an adap-

tive heuristic to find the solution to the problem, we show both

in simulation and in a real-world deployment that our approach

is able to level the service latency among a set of heterogeneous

nodes organized in different topologies.

CCS CONCEPTS
• Computing methodologies→ Distributed algorithms; Mod-
eling and simulation; • Networks→ In-network processing.

KEYWORDS
edge computing; fog computing; load balancing; service latency

1 INTRODUCTION
Service latency plays a crucial role in modern distributed applica-

tions [9]. In particular, in the Edge and Fog Computing environ-

ments, due to geographic displacement of the nodes, some of them

can be subjected to more traffic than others. In these situations, for

designing an effective and QoS-oriented load balancing algorithm,

it is not possible to consider only the typical hardware parameters

that regard, for example, the CPU load, the RAM utilisation or the

network traffic. This is because all of these performance indicators

are both hardware and application-agnostic, they do not consider

that the devices may be heterogeneous, and the same application

on different hardware performs differently. Suppose that we have

two Edge or Fog nodes Node A and Node B with two different

CPUs, CPU A and CPU B respectively. Suppose that we designed

an algorithm that enables nodes to cooperate, and some nodes can

forward part of their flow of tasks to be executed to another node.

Also, suppose that we designed an algorithm which is able to level

the CPU time and in the end both CPU A and B are levelled to 50%.

If there are no differences in network delays, what we can say about

the application that is running on both devices? Will the users that

make task requests to Node A experience the same service latency

as the ones that will make requests to Node B? Yes, but only in one

case, the CPU A must be equal to CPU B, a characteristic of the

system which is not common in Edge or Fog computing and even if

we deploy the same hardware, we will never have exactly the same

performances, due to background processes of the OS and intrinsic

hardware differences. Given these conditions, it is necessary to

change the performance indicators which drive the balancing, we

need to design an algorithm which is able to balance the QoS that

each user will experience: each user, independently from the node

at which it will request the service, will have to experience the

same service latency. The latency can be intended as a performance

parameter which best describes how the application is behaving,

independently of the effective load situation. Therefore by levelling

the latency of the service, we will probably not balance the CPU

load. Indeed, slower devices will be, in general, less loaded than the

faster ones because they will saturate when the load is lesser than

the faster ones. But in general, we will be sure that each user will

experience the same QoS as the others since there will be no user

that will experience a higher or a lower service latency than the

other. The motivation of this work is clear, and our principal focus

is designing, in a fully decentralized environment (that particularly

fits the Fog and Edge Computing models) with no central entity,

a load balancing algorithm that is able to level the service latency

across all the nodes by tuning the percentage of tasks that a node

can forward to another, a percentage that we call the migration
ratio. In other words, each node can decide if and at which level it

can cooperate with others offloading part of its work for reducing

its service latency until it reaches a stable value that is equal across

all the neighbours when this is possible, or at least closer to the

value of the others.

The contributions of the papers can be summarized as follows.

• A continuous-time model which describes the dynamics

of the system by using a system of differential equations

https://orcid.org/0000-0003-4551-7567
https://orcid.org/0000-0001-8129-6971
https://orcid.org/0000-0002-9731-6321

Gabriele Proietti Mattia, Marco Magnani, & Roberto Beraldi

that reaches the stability when all the nodes experience the

same service latency;

• An heuristic algorithm which tries to find a solution to the

problem in a real environment by continuously adapting

the migration ratios in rounds of fixed duration;

• Simulation results of the proposed heuristic algorithm;

• Results of the implementation of the proposed algorithm

in a testbed of Raspberry Pis which shows the efficacy of

the solution even in a real setting.

The rest of this paper is organized as follows. In Section 2 we

present some related work, then in Section 3 we define the system

model by describing its dynamic relying on differential equations.

This model does not give us an algorithm for finding the solution in

a real deployment, and therefore we propose a heuristic in Section 4

that is tested in a simulator. Then in Section 5 we show results of the

proposed heuristic in a real environment and finally, the conclusions

will be drawn in Section 6.

2 RELATEDWORK
The main area in which this work lies is the problem of load bal-

ancing in Edge and Fog computing [10] [12] [8] [7]. In our work,

we design a load balancing algorithm that is QoS oriented, which

targets the delay that users experience when using the deployed ap-

plication. Similar works, like [11] propose the (OLBA) framework,

which takes into account turn-around time and service delay and

relies on Particle Swarm Optimization (PSO) for finding the best

load balancing strategy but the approach is not fully decentralized,

the same approach is followed by [5]. Then, Tripathy et al. in [23]

focus on the QoS parameters but in a smart city setting and a smart

allocation scheme is performed through a genetic algorithm. How-

ever, the approach is not “online”, and the scheduling decision is

not taken for every task. More technological approaches instead,

like the one proposed in [18], design algorithms specifically tar-

geting well-known frameworks like Kubernetes. In that case, the

authors propose a proxy-based approach that periodically monitors

the pods’ state, and according to the load, it forwards the requests

to balance it; however, the approach does not consider node het-

erogeneity which can have the same load but generates different

service latency. Similarly, Singh et al. in [20] propose a container-as-

a-service (CaaS) load balancing strategy that is focused on energy

efficiency, however, the approach is based on two steps service level

agreement, while our tries to use only one, moreover the results

are only provided in simulations. A game theory-based approach is

proposed by [25], however, no simulation or real implementation

results are provided. Sthapit et al, in [21] propose a modelling of

Edge computing layer as a set of queues and design a load balanc-

ing strategy which targets the job completion rate and the energy

consumption, however, only simulation results are provided, like

in [24].

A set of works, instead, focus on healthcare [19] and the “internet

of healthcare things” [4]. For example, [15] proposes a load balanc-

ing framework which is able to avoid any failure in responsiveness

and [13] which targets a smart city. Both the approaches focus on

the quality of service but they do not directly target the service

latency, which is critical when having heterogeneous computing

nodes.

By introducing even the Cloud layer [17] we increase the com-

putation capability, although the cloud is not used in this work, we

can still refer to the load balancing strategies offered by different

works. For example, [1] proposes an Edge-Fog-Cloud algorithm for

distributing the traffic in all of the three layers but the focus is not

the latency optimisation, [9] provides a model based on queuing

theory, [3] studies a load balancing approach for the Fog-Cloud

environment classifying requests in real-time, important and time-

tolerant but again the approach is not focused on latency levelling,

then [14] proposes a scheduling approach based on blockchain

and [6] a strategy to cope with failures by using Software-Defined

Networks (SDN).

In conclusion, the last set of works worth mentioning focuses on

load balancing by using intelligent approaches like reinforcement

learning [22], [2], [16]. The heuristic proposed in this work (Sec-

tion 1) is not explicitly using reinforcement learning but it follows

a strategy that mimics a learning process since the migration ratios

are continuously adapted to meet a goal by using a learning rate 𝛼 .

Symbol Meaning

Model

N Set of nodes

𝐴 Adjancency matrix

𝑎𝑖 𝑗 Cell of the adjacency matrix that is 1

if node 𝑖 can communicate with node 𝑗 , otherwise 0

𝜆𝑖 Traffic to node 𝑖 (in reqs/s)

𝜇𝑖 Service rate of node 𝑖 (in reqs/s)

𝐾𝑖 Maximum queue length for node 𝑖

𝑙𝑖 (𝑡) Service latency of node 𝑖 at time 𝑡

𝑙𝑎𝑖 (𝑡) Average service latency between node 𝑖 and its

neighbours at time 𝑡

𝑚𝑖 𝑗 (𝑡) Percentage (of 𝜆𝑖) of tasks forwarded from node 𝑖 to node 𝑗 at time 𝑡

Adaptive Heuristic (Algorithm 1)

𝑀 Matrix of migration ratios

𝑚𝑖 𝑗 Current percentage (of 𝜆𝑖) of tasks forwarded from node 𝑖 to node 𝑗

𝛼 Step size

𝜖 Tolerance of the average for which the algorithm

stops the updating of the migration ratios (balance zone)

𝑇 Round duration

Trajectories and Experiments

𝑑𝑡 Average service latency

𝑑𝑎 Average service latency among all the nodes

Table 1: List of symbols used

3 PERFORMANCE MODEL
In our model, we suppose to have a setN of nodes, whose network

topology is described by the adjacency matrix𝐴, in particular, given

any two nodes 𝑖 and 𝑗 , they can communicate only if 𝑎𝑖 𝑗 = 𝑎 𝑗𝑖 = 1

since we always suppose that the communication between nodes

is bi-directional. Each node 𝑖 receives a fixed traffic rate of requests

𝜆𝑖 req/s from the underlying clients and it is able to execute 𝜇𝑖
req/s, moreover, a node 𝑖 is able to forward part of its load 𝜆𝑖 to

a given neighbour node 𝑗 , and we do not consider the network

communication latencies. We call the percentage of forwarded

requests from node 𝑖 to 𝑗 the “migration ratio” and it is expressed

as𝑚𝑖 𝑗 . We also stress the fact that a node 𝑖 cannot forward the load

A Latency-levelling Load Balancing Algorithm for Fog and Edge Computing

that it receives from other nodes and it can only forward the one

from the clients, that is 𝜆𝑖 .

We now want to mathematically model the system and for doing

so, we define which is the total load of a node 𝑖 over time, and we

call this function 𝑥𝑖 (𝑡) that models the state node 𝑖 in a given time

𝑡 :

𝑥𝑖 (𝑡) = 𝜆𝑖 −
∑︁
𝑗 ∈𝑉

𝑎𝑖 𝑗𝜆𝑖𝑚𝑖 𝑗 (𝑡) +
∑︁
𝑗 ∈𝑉

𝑎 𝑗𝑖𝜆 𝑗𝑚 𝑗𝑖 (𝑡) (1)

where the following conditions must be followed

0 ≤ 𝑚𝑖 𝑗 (𝑡) ≤ 1,
∑︁
𝑗

𝑚𝑖 𝑗 (𝑡) ≤ 1 ∀ 𝑖, 𝑗, 𝑡 (2)

and the initial condition, at 𝑡 = 0, since𝑚𝑖 𝑗 (0) = 0 ∀𝑖, 𝑗 is

𝑥𝑖 (0) = 𝜆𝑖 ∀ 𝑖 (3)

Equation 1 can be interpreted as follows. A node 𝑖 , receives

constant traffic by the clients that are connected to it, that is 𝜆𝑖 ,

then a part of this traffic can be forwarded to the neighbour nodes

(for which 𝑎𝑖 𝑗 ≠ 0) and it is subtracted, but neighbour nodes may

also decide to forward part of their traffic to 𝑖 and this part is added

to the total load of the node. For any node 𝑖 , the functions𝑚𝑖 𝑗 (𝑡) ∀𝑗
describe the portions of incoming traffic 𝜆𝑖 that are forwarded to

the neighbour nodes and they are our unknowns. By knowing

the 𝑚𝑖 𝑗 (𝑡), we will then need to find a time 𝑡∗ where 𝑚𝑖 𝑗 (𝑡) =
𝑚𝑖 𝑗 (𝑡∗), ∀𝑖, 𝑗, 𝑡 > 𝑡∗, and the values𝑚𝑖 𝑗 (𝑡∗) ∀𝑖, 𝑗 will be the final
migration ratios that each node will need to apply to reach the final

goal. At this point, we need to model this final goal: the levelling

of latencies. For finding the functions𝑚𝑖 𝑗 (𝑡), instead of trying to

define them directly, it is easier to describe their variation over time,

for this reason, we calculate the derivative with respect to the time

of Equation 1 that is:

¤𝑥𝑖 (𝑡) = −
∑︁
𝑗 ∈𝑉

𝑎𝑖 𝑗𝜆𝑖 ¤𝑚𝑖 𝑗 (𝑡) +
∑︁
𝑗 ∈𝑉

𝑎 𝑗𝑖𝜆 𝑗 ¤𝑚 𝑗𝑖 (𝑡) (4)

Equation 4, describes the dynamic of the state of node 𝑖 , that is

how the load that every node 𝑖 sees at time 𝑡 changes over time.

The formulation can be repeated for every node, thus we have

a system of |N | Ordinary Differential Equations (O.D.E.). Before

solving the system, we need to define the functions ¤𝑚𝑖 𝑗 (𝑡) that are
still unknown but we remind that the solution to the system will

allow us to know the original𝑚𝑖 𝑗 (𝑡).
Basically, we define the ¤𝑚𝑖 𝑗 (𝑡) as the multiplication of three

factors logically derived from the fact that our objective is that, in

every node, every task must have the same duration, and therefore

the average service latency of each node must be the same. More-

over, we need to keep in mind two essential behaviours of the entire

system: (i) when a node 𝑖 migrates a portion of the incoming traffic

to another node 𝑗 the node 𝑖 will see its average service latency

decrease, while in the node 𝑗 the average task service latency will

increase. This is because the service latency function is a mono-

tonically increasing function with respect to the load of a node. In

our case, we suppose, for simplicity, that nodes can be modelled as

M/M/1/K queues and the service latency at time 𝑡 of node 𝑖 can be

expressed as (given 𝜌𝑖 (𝑡) = 𝑥𝑖 (𝑡)/𝜇𝑖):

𝑙𝑖 (𝑡) =
1 − (𝐾𝑖 + 1)𝜌𝑖 (𝑡)𝐾𝑖 + 𝐾𝑖𝜌𝑖 (𝑡) (𝐾𝑖+1)

𝜇𝑖 (1 − 𝜌𝑖 (𝑡)) (1 − 𝜌𝑖 (𝑡)𝐾𝑖)
(5)

Then (ii) the average delay between neighbours nodes plays a

crucial role, because the average service latency of a given node

can be higher or lower than the average, and trying to level them

to the average proved to be the key strategy to solving the prob-

lem. But how we can level them to the average? There are three

sub-strategies that we need to adopt to reach the goal and they

concretize in three factors:

(1) the tasks migration must be performed only if the delay of

the current node 𝑖 , 𝑙𝑖 (𝑡), is greater than the average delay

between itself and its neighbors, called 𝑙𝑎𝑖 , for this reason

the first factor is:

¤𝑚𝛼𝑖 𝑗 (𝑡) = max

[
0,
𝑙𝑖 (𝑡) − 𝑙𝑎𝑖 (𝑡)

𝑙𝑖 (𝑡)

]
(6)

(2) the tasks migration must be performed only if the delay

of the current node 𝑖 , 𝑙𝑖 (𝑡), is greater than the delay of its

neighbor 𝑗 , 𝑙 𝑗 (𝑡), and therefore:

¤𝑚𝛽
𝑖 𝑗
(𝑡) = max

[
0,
𝑙𝑖 (𝑡) − 𝑙 𝑗 (𝑡)
𝑙ℎ𝑖 (𝑡)

]
(7)

(3) the tasks migration must be performed only if the delay of

the neighbor node 𝑗 , 𝑙 𝑗 (𝑡), is lesser than the average delay

between node 𝑖 and itself, and therefore:

¤𝑚𝛾
𝑖 𝑗
(𝑡) = max

[
0,
𝑙𝑎𝑖 (𝑡) − 𝑙 𝑗 (𝑡)

𝑙𝑘𝑖 (𝑡)

]
(8)

The final dynamic of the migration ratios is therefore

¤𝑚𝑖 𝑗 (𝑡) =𝑚𝛼𝑖 𝑗 (𝑡) ·𝑚
𝛽

𝑖 𝑗
(𝑡) ·𝑚𝛾

𝑖 𝑗
(𝑡) (9)

and the idea behind the formulation is that the dynamic of the

state ¤𝑥 (𝑡) stops when at least one of them becomes zero, both for

the received load and the forwarded one.

As already mentioned, the 𝑙𝑎𝑖 (𝑡) is the average delay between

the current node 𝑖 and its neighbors:

𝑙𝑎𝑖 (𝑡) =
𝑙𝑖 (𝑡) +

∑
𝑗 ∈𝑉 ;𝑖≠𝑗 𝑎𝑖 𝑗 𝑙 𝑗 (𝑡)

1 +∑𝑗 ∈𝑉 𝑎𝑖 𝑗
(10)

Finally, 𝑙ℎ𝑖 (𝑡) and 𝑙𝑘𝑖 (𝑡) are the summations of the differences

over time:

𝑙ℎ𝑖 (𝑡) = max

0,
∑︁
𝑗 ∈𝑉

𝑙𝑖 (𝑡) − 𝑙 𝑗 (𝑡)
 (11)

𝑙𝑘𝑖 (𝑡) = max

0,
∑︁
𝑗 ∈𝑉

𝑙𝑎𝑖 (𝑡) − 𝑙 𝑗 (𝑡)
 (12)

We will resort to numerical calculus to find the time trajectories

of the system of non-linear ODE described in Equation 4 with initial

conditions 𝑥𝑖 (0) = 𝜆𝑖 , ∀𝑖 but unconstrained for simplicity. Then,

after finding the numerical solution 𝑥𝑖 (𝑡),∀𝑖 , we can easily find the

effective behaviour of migration ratios over time considering that:

𝑚𝑖 𝑗 (𝑡) =
∫ 𝑡

0

¤𝑚𝑖 𝑗 (𝜉) 𝑑𝜉 (13)

We will consider the trajectory of the solution valid until the

condition expressed in Equation 2 is respected.

Gabriele Proietti Mattia, Marco Magnani, & Roberto Beraldi

3.1 Latency-levelling property
We now prove that when the trajectories of the solution of the

system at Equation 4 converge, then the latencies are aligned to

the same value. In the Appendix at Section 7 we instead prove the

existence and the uniqueness of a set of steady states 𝑥𝑖∀𝑖 for which
the latencies are levelled.

Theorem 3.1. If the solution’s trajectories of the O.D.E. system
at Equation 4 converges, i.e. ∃ 𝑡∗ s.t. ¤𝑥𝑖 (𝑡) = 0 ∀𝑡 > 𝑡∗,∀𝑖 then all
the nodes have the same service latency, i.e. 𝑙0 (𝑡) = 𝑙1 (𝑡) = . . . =

𝑙𝑖 (𝑡) ∀𝑖 and this latency is the average latency 𝑙𝑎𝑖 (𝑡∗) among all the
neighbours of each node 𝑖 at time 𝑡∗.

Proof. We can prove the theorem by contradiction. Suppose

that the system solution converged at 𝑡∗ but there exists one node 𝑖
that has not the same service latency as the other nodes, i.e. 𝑙𝑖 (𝑡) ≠
𝑙 𝑗 (𝑡),∀𝑗 ≠ 𝑖,∀𝑡 > 𝑡∗. We can distinguish two possible cases, for any

𝑡 > 𝑡∗:

(a) 𝑙𝑖 (𝑡) > 𝑙𝑎𝑖 , i.e. the service latency of node 𝑖 is higher than
the average latency between 𝑖 and its neighbours, we point

out that every other neighbour node’s latency can be higher,

equal or lower than the average latency but at least one

node must have the latency below the average. From this

fact we have that the ¤𝑚𝛼
𝑖 𝑗
(𝑡) ≠ 0 by definition, ¤𝑚𝛽

𝑖 𝑗
(𝑡) ≠ 0

and ¤𝑚𝛾
𝑖 𝑗
(𝑡) ≠ 0 because there exist at least one node with

average service latency below the average and the same

node’s latency is also lower than the latency of node 𝑖 .

This means that, from Equation 4 the negative part is not

zero, the positive part instead is zero since 𝑖 is the only

one node with latency higher than the average it will not

receive traffic from any neighbour. Therefore we showed

that ¤𝑥 (𝑡) ≠ 0 for some 𝑡 > 𝑡∗, and this is a contradiction ;

(b) 𝑙𝑖 (𝑡) < 𝑙𝑎𝑖 , i.e. the service latency of node 𝑖 is lower than
the average latency between 𝑖 and its neighbours. As in the

case (a) if the node 𝑖’s latency is below than the average

latency then there exists at least one neighbour 𝑗 whose

latency is higher than the average. The consequences are

exactly the ones of case (a) and we proved the contradiction

;

□

From these two cases emerges that the only possible case is that

𝑙𝑖 (𝑡) = 𝑙𝑎𝑖 and no other node can have a service latency that is

higher or lower than the average 𝑙𝑎𝑖 .

3.2 Trajectories and Topologies
We will now explore some configuration of nodes and parameters

that we will reuse later in the simulations and in the experimental

setting, the general idea is to show how this model can predict quite

well the behaviour of a real system. The crucial point for the results

to match is the alignment of the service latency, but the alignment

value and the migration ratios may differ as will be clearer later. In

this section we study the behaviour of the latency over time 𝑑𝑡 (𝑡),
computed by using the Equation 5 and the migration ratios𝑚𝑖 𝑗 (𝑡)
computed by using Equation 13.

We tested different network topologies, the first three are shown

in Figure 1. These small topologies are taken into consideration

because it is easy to have a direct comparison with the behaviour

shown in simulations and in the real deployment. Finally, we tested

a fully connected topology with 15 nodes.

λ 1.00
µ 2.00

λ 2.50
µ 2.00

λ 4.00
µ 2.50

0

2

1

(a) Topology A

λ 1.00
µ 2.00

λ 3.00
µ 1.50

λ 2.50
µ 1.50

λ 4.00
µ 2.50

0

1

2

3

(b) Topology B

λ 1.50
µ 1.50

λ 3.00
µ 1.00

λ 4.00
µ 2.50

1

0

3

2

λ 1.00
µ 2.00

(c) Topology C

Figure 1: The nodes topology and parameters configuration
used across the mathematical model, the simulations and
the final experimental setting.

Topology A (Figure 1a) is composed of three nodes arranged

in a fully connected graph, the Figure 2a shows the trajectories

of the latency and the migrations ratios𝑚𝑖 𝑗 of the nodes. As we

can observe, after the transient the system reaches the steady-state

at about 𝑡 = 15 where the latencies are levelled at 1.2s. From the

migration ratio, Figure 2b we can observe that the Node 1 gives 25%

of its load 𝜆1 to Node 2 since it has the higher service latency at

𝑡 = 0 and part of its load is forwarded to the node that is below the

average service latency, that is Node 2. Node 2 only has to receive

load while Node 0 and Node 1 have to lose their load in order to

balance the service latency, indeed even Node 0 forward exactly

the 5% of its load to slightly reduce the service latency.

0 10 20 30 40 50

Time

0.9

1.0

1.1

1.2

1.3

1.4

d
t

(s
)

Node 0

Node 1

Node 2

(a) Service latency 𝑑𝑡 (s)

0 10 20 30 40 50

Time

0.00

0.05

0.10

0.15

0.20

0.25

m
ij

m01

m02

m10

m12

m20

m21

(b) Migration ratios𝑚𝑖 𝑗

Figure 2: Trajectories of the average latency 𝑑𝑡 and the mi-
gration ratios𝑚𝑖 𝑗 for the three nodes described by Topology
A (Figure 1a).

Topology B (Figure 1b) comprehends four nodes connected as

a ring, the Figure 1b shows the numerical trajectories of the the

performance parameters. Each node, from 0 to 3, starts with service

latency, respectively, 0.86s, 2.06s, 1.22s and 2.18s and the end of the

transient (Figure 3a) is levelled to 1.38s. At steady state and we can

observe how (Figure 3b) Node 3 forwards about the 65% of its traffic

to nodes 0 and 2 for lowering the latency, the same is done by Node

1 which forwards a total of about 60% of its load to Nodes 2 and 1,

then Node 2 does not forward tasks because already close to the

A Latency-levelling Load Balancing Algorithm for Fog and Edge Computing

average latency while starting from 𝑡 = 10 Node 0 starts to forward

tasks to its neighbours up to the 10%. This means that the Node 1

must give back part of the load to Nodes 1 and 3 but these nodes

already forwarded part of their load to Node 0, this behaviour is

justified by the fact that the derivative of migration ratios functions

¤𝑚𝑖 𝑗 (𝑡) are always positive, therefore the only way for diminishing

them is making a node to give back the load to the sender.

0 10 20 30 40 50

Time

1.0

1.2

1.4

1.6

1.8

2.0

2.2

d
t

(s
)

Node 0

Node 1

Node 2

Node 3

(a) Service latency 𝑑𝑡 (s)

0 10 20 30 40 50

Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

m
ij

m01

m03

m10

m12

m21

m23

m30

m32

(b) Migration ratios𝑚𝑖 𝑗

Figure 3: Trajectories of the average latency 𝑑𝑡 and the mi-
gration ratios𝑚𝑖 𝑗 for the four nodes described by Topology
B (Figure 1b).

Topology C (Figure 1c) is a star topology and includes four nodes,

but this particular configuration of the nodes is more challenging

because one single node is connected to all the others while the oth-

ers are only connected to the same node, and therefore the node at

the centre can be overwhelmed by the load of the others. However,

the model converges to a levelled latency of 1.4s (Figure 4a) but

the solution that is reached is actually not achievable because the

condition expressed at Equation 2 is no more respected (Figure 4b),

since the model is unconstrained. This does not mean that we can-

not use the solution, indeed, it is sufficient to consider the transient

as long as the condition is still met, i.e. at 𝑡 = 26 and consider the

migration ratios there. What is clear is that the exact levelling of

the latency is not feasible but considering the solution, at 𝑡 = 26 we

still reached a point in which the latencies are closer, even if they

do not exactly match. In particular, we recall that in this solution,

the node𝑚02 is required to forward all of its traffic 𝜆0 and execute

only the traffic forwarded by the other nodes.

The last topology that we tested comprehends instead 15 nodes

in a fully connected topology with 0 ≤ 𝜆𝑖 ≤ 4, 0 ≤ 𝜇𝑖 ≤ 4 and

2 ≤ 𝐾𝑖 ≤ 6. All of these parameters are picked at random, but the

purpose of this is to understand how the system behaves with many

nodes. The SageMath
1
Python ODE solver took about 20 hours to

derive the trajectories up to 𝑡 = 100 with the numeric solver Runga-

Kutta-Felhberg on a Ryzen 9 5800X processor. Figure 5a shows the

behaviour of the latency for all the nodes and as we can see the

system reduce their variance, but again we need to cut the solution

at time 𝑡 = 31 because

∑
𝑗 𝑚𝑖 𝑗 (𝑡) ≥ 1 for some 𝑖 when 𝑡 ≥ 31 (5b).

This last result shows how the model scales with the number of

nodes, however, we do not envision modelling a system of more

than 20 Edge or Fog nodes, because aligning the latencies in a very

large set of nodesmay not be the best strategy for balancing the load.

1
https://www.sagemath.org/

0 10 20 30 40 50

Time

1.0

1.5

2.0

2.5

3.0

3.5

d
t

(s
)

Node 0

Node 1

Node 2

Node 3

(a) Service latency 𝑑𝑡 (s)

0 10 20 30 40 50

Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

m
ij

m01

m02

m03

m10

m20

m30

(b) Migration ratios𝑚𝑖 𝑗

Figure 4: Trajectories of the average latency 𝑑𝑡 and and the
migration ratios𝑚𝑖 𝑗 for the four nodes described by Topology
C (Figure 1c).

0 10 20 30 40 50

Time

0.5

1.0

1.5

2.0

2.5

d
t

(s
)

(a) Service latency 𝑑𝑡 (s)

0 10 20 30 40 50

Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ij

(b) Migration ratios𝑚𝑖 𝑗

Figure 5: Trajectories of the average latency 𝑑𝑡 and the mi-
gration ratios𝑚𝑖 𝑗 for 15 nodes in a fully connected topology.

As we can see, some nodes can be obliged to forward all of their

traffic and if the parameters 𝜆𝑖 and 𝜇𝑖 are particularly different then

it would not be possible to level the latencies, without counting

the difficulties of implementing the algorithm in the real world

where the network latencies have a significant impact. Instead, it

is more efficient to create groups of a maximum of 20 nodes and

try levelling the latencies within the groups, these groups can, for

example, represent neighbourhoods of a smart city.

4 ADAPTIVE HEURISTIC
We now want to effectively implement a strategy for levelling the

latency among the nodes. The mathematical model tells us what are,

at steady state, the migration ratios𝑚𝑖 𝑗 ∀𝑖, 𝑗 but calculating them
requires finding the trajectories of the model. Moreover, there are

other 3 points that motivate the design of an algorithm. First of all,

(1) the mathematical model assumes that we know the state of every

node but in the real world, we want to have a fully decentralized

approach, each node should be able to see the only state of its

neighbours and tune the migration ratios accordingly, also that

state must be explicitly requested when needed. Then (2) real nodes

may be subject to variation in load conditions over time, thus the

algorithm should react and re-tune the migration ratios to cope

with the changes. As the last point, (3) the model does not take into

account the communication latencies that exist between the nodes.

https://www.sagemath.org/

Gabriele Proietti Mattia, Marco Magnani, & Roberto Beraldi

Therefore, we now propose an adaptive strategy which follows a

heuristic approach to find the most suitable set of migration ratios

for every node in such a way the latency is made equal when it is

possible or at least closer when it is not feasible.

The Figure 6 summarizes the logic behind the heuristic. Firstly,

we suppose to divide the time into rounds of 𝑇 seconds each. The

Algorithm 1 is run every time a round ends and has as a final

objective the one of modifying the migration ratios when it is

needed. We also divide the algorithm into steps for describing the

rationale behind its design. The input that it takes comprehends the

index of the current node 𝑖 in which the algorithm is executed (we

remind that the algorithm is fully distributed, there is no central

entity or coordinator), the step size 𝛼 , the set of nodesN , the vector

of migration ratios ®𝑀𝑖 which describe the percentage of tasks that

is forwarded to each (neighbour) node, percentage on the average

latency that defines the balancing zone 𝜖 and the incidence vector

for node 𝑖 that is I𝑖 and describes which are the neighbours of the

current node. Suppose that the round time 𝑇 just elapsed, and the

algorithm does the following:

(1) first of all, the node computes the average latency between

itself and all the neighbours, moreover, it computes the

upper and lower average limits by multiplying the average

latency by 1±𝜖 , these limits allow us to relax the constraint

that each node must exactly match the latency of each other,

which in real scenarios is very unlikely due to the arrivals’

distribution. As the last step, it is also computed the sum of

all the migration ratios, which cannot exceed 1.0;

(2) once the average is known, we proceed to the adjusting

of the migration ratios; the first check that we perform is

to see if the current node is below the average and if it

is migrating tasks to other nodes. Indeed, if this happens,

then it means that the node is forwarding too much traffic

to the others. We remind from the mathematical model,

that the strategy for making the algorithm work is that a

node can only receive or give traffic to others at the same

time, and, in general, only the nodes that are above the

average must forward tasks to the ones that are below.

Thus, a node that is below the average and it is giving

traffic to others must reduce the ratios in such a way its

average returns the balance zone (𝑑𝑎𝑖 ± 𝜖). This is what the
algorithm does in during this step for all the neighbours

nodes by previously checking if the ratio given to the node

does not reach negative numbers and this is done by using

the auxiliary functions described in Algorithm 2. If the

adjustment is done, the function returns with no further

steps;

(3) at this point, we check if the average latency of the current

node is below the high level of the average zone, because

if this is true then it means that the node latency is in the

average zone, then no further action is needed;

(4) if we reach this step, then the node’s latency is out of bal-

ance, i.e. it is above the high level of the zone, then we need

to adjust the migration ratios for every neighbour node, but

we can distinguish the following two cases:

(a) if the average latency of neighbour node 𝑗 is above

the balance zone, then we reduce the migration ratio

towards it of the step size 𝛼 since it means that we are

forwarding too much traffic;

(b) if the average latency of neighbour node is below the

balance zone, then we increase the migration ration

towards it of the step size 𝛼 , this will cause our latency

to be reduced and its one to increase, approaching the

balancing zone.

ε

ε

A node in this zone must increase the migration
ratio towards nodes below the balance zone and
decrease the ratios towards nodes in the same

zone

A node in this zone must decrease the
migration ratio towards nodes if greater

than zero

Balance
zone

Nodes in this zone have to
forward traffic

Nodes in this zone have to
receive traffic

lai

Time

Duration

Nodes in this zone are balanced no
further action needed

Nodes in this zone are balanced no
further action needed

lai (1 + ε)

lai (1 - ε)

t

lai

lai

Figure 6: Representation of the logic behind the adaptive
heuristic for a node 𝑖 in a given time 𝑡 .We suppose the average
delay 𝑙𝑎𝑖 between the node 𝑖 and its neighbours to be fixed
during an instant time 𝑡 .

4.1 Simulations results
We now show some results of the proposed algorithm in a discrete

event simulator written in Python by using the library “Simpy”
2

and published as open source
3
. We will use the same topologies

and parameters (Figure 1) used in for computing the trajectories of

the mathematical model in order to have terms of comparison.

In the simulator, we again assume no communication delays

between the nodes and the same nodes are modelled as M/M/1/K

queues since the objective of simulations is to understand if the

migration ratios found by the heuristic match the model. All the

tests are donewith the simulator to use a round time𝑇 = 60𝑠 and the

behaviour of the average latency are filtered with a Savitzy-Golay

filter with window size 20 and polynomial degree of 4. Moreover,

the balance zone uses 𝜖 = 0.05, the step size 𝛼 = 0.01 and 𝐾𝑖 = 4 ∀ 𝑖 .
A peculiar characteristic of the simulator is that the average latency

is computed as the average of the last 10 rounds, this is done in order

to stabilize the curves, otherwise due to the exponential distribution

of the inter-arrival times and of the execution times the average

latency may be subjected to significant variations.

Figure 7 shows the results of the simulations of Topology A.

First of all, we can observe how after 25 rounds, the average latency

starts to stabilize at about 1.2s (Figure 7a), we have highlighted

in grey the balance zone that is the average delay 𝑑𝑎 ± 𝜖 and in

the chart the average it is computed across all of the nodes. We

can notice how the latency result is perfectly matching the model

2
https://pypi.org/project/simpy/

3
https://gitlab.com/gabrielepmattia/simulator-2022-mswim

https://pypi.org/project/simpy/
https://gitlab.com/gabrielepmattia/simulator-2022-mswim

A Latency-levelling Load Balancing Algorithm for Fog and Edge Computing

Algorithm 1 Adaptive Heuristic for leveling latencies

Require: 𝑖 , 𝛼 , N, ®𝑀𝑖 , 𝜖 , I𝑖
currentNode← N[𝑖]

[1. Compute the average latency among all the neighbour nodes]
averageLatency← currentNode.latency

numberOfNeighbours← 0

for all 𝑗 in |N | and I𝑖 𝑗 ≠ 0 [Loop over the neighbours] do
averageLatency← node.latency and
numberOfNeighbours← numberOfNeighbours + 1

end for
averageLatency← averageLatency / numberOfNeighbours

averageLatencyLow← averageLatency · (1.0 + 𝜖)
averageLatencyHigh← averageLatency · (1.0 − 𝜖)
totalRatiosGiven← ∑

𝑗𝑚𝑖 𝑗

[2. If under average and migrating, then reduce migration]
if currentNode.getAverageLatency() ≤ averageLatencyLow and totalRatiosGiven

> 0 then
for all 𝑗 in |N | and I𝑖 𝑗 ≠ 0 do

if N[𝑗].getAverageLatency() ≥ averageLatencyHigh then
if canBeSubtractedToNode(𝑗 , 𝛼) and canSubtract(𝛼) then
𝑚𝑖 𝑗 ←𝑚𝑖 𝑗 − 𝛼
totalRatiosGiven← totalRatiosGiven - 𝛼

end if
end if

end for
return

end if
[3. If latency below the high zone limit, then the node is balanced]
if currentNode.getAverageLatency() < averageLatencyHigh then

return
end if
[4. If latency greater or equal the high limit we need to migrate]
for all 𝑗 in |N | and I𝑖 𝑗 ≠ 0 do

[4a. Reduce the ratio to neighbour above the average high limit]
if N[𝑗].getAverageLatency() ≥ averageLatencyHigh then

if canBeSubtractedToNode(𝑗 , 𝛼) and canSubtract(𝛼) then
𝑚𝑖 𝑗 ←𝑚𝑖 𝑗 − 𝛼
totalRatiosGiven← totalRatiosGiven - 𝛼

end if
end if
[4b. Increase the ratio to neighbour below the average low limit]
if N[𝑗].getAverageLatency() ≤ averageLatencyLow then

if canBeGiven(𝛼) then
𝑚𝑖 𝑗 ←𝑚𝑖 𝑗 + 𝛼
totalRatiosGiven← totalRatiosGiven + 𝛼

end if
end if

end for

Algorithm 2 Auxiliary functions

Require: 𝑖 , 𝛼 , N, ®𝑀𝑖 , 𝑧,
¯

𝑧, I𝑖 , totalRatiosGiven
[Check if the specified amount of ration can be given]
def canBeGiven(alpha: float): boolean
return totalRatiosGiven + alpha ≤ 1.0

end def

[Check if the specified amount of ratio can be subtracted]
def canSubtract(alpha: float)
return totalRatiosGiven - alpha > 0.0

end def

[Check if the specified amount of ration can be subtracted to a node]
def canBeSubtractedToNode(j: int, alpha: float)
return𝑚𝑖 𝑗 − alpha > 0.0

end def

compared to Figure 2a, the fluctuations around the average is due

to the exponential inter-arrival times and execution times. For

levelling the latency the migration ratios found by the algorithm

are represented in Figure 7b. In particular, we can observe that𝑚12

stabilizes at around 0.24 and𝑚02 at around 0.07 while the others

are less than 0.03. Again these result matches the ones of the model

shown in Figure 2b, in which𝑚12 and𝑚02 stabilizes at 0.26 and

0.05 respectively, while the others are set to 0.

0 25 50 75 100 125 150 175
Round

0.4

0.6

0.8

1.0

1.2

1.4

d
t

(s
)

Node 0
Node 1
Node 2

(a) Service latency 𝑑𝑡 (s)

0 25 50 75 100 125 150 175
Round

0.00

0.05

0.10

0.15

0.20

0.25

M
ig

ra
tio

n
R

at
io m01

m02
m10
m12
m20
m21

(b) Migration ratios𝑚𝑖 𝑗

Figure 7: Behaviour of the average latency 𝑑𝑡 and migration
ratios for Topology A (Figure 1a) in the simulated environ-
ment.

Topology B results are shown in Figure 8. As far as regards the

average service latency (Figure 8a) we can observe how it stabilizes

at about 1.4s which is in line with the mathematical model shown

Figure 3a. The same holds for the migrations ratios, for example,

the Node 0 gives 5% of the 𝜆0 to its two neighbours respectively

that match the model, Node 1 gives about 20% of its traffic to Node

0 but the model 26% and about 45% to Node 2 while the model 34%.

The same slight differences hold for Nodes 3 and 4 and are due to

the traffic variability.

0 25 50 75 100 125 150 175
Round

1.0

1.2

1.4

1.6

1.8

2.0

2.2

d
t

(s
)

Node 0
Node 1
Node 2
Node 3

(a) Service latency 𝑑𝑡 (s)

0 25 50 75 100 125 150 175
Round

0.0

0.1

0.2

0.3

0.4
M

ig
ra

tio
n

R
at

io
m03
m01
m10
m12
m21
m23
m32
m30

(b) Migration ratios𝑚𝑖 𝑗

Figure 8: Behaviour of the average latency 𝑑𝑡 and migration
ratios for Topology B (Figure 1b) in the simulated environ-
ment.

Topology C results are shown in Figure 9. Regarding the service

latency (Figure 9) we can see how it does not converge to the same

value for each node, and this behaviour is the same presented in

the model in Figure 4a where we truncated the trajectory at 𝑡 = 26.

Indeed, the same values are obtained in the simulation, Node 0, 1

and 3 align at about 1.5s while Node 2 stabilizes to 1.3s because it

cannot receive enough traffic from Node 0 in order to increase its

latency to match 1.5s. This does happen in the model after 𝑡 = 26

but Node 0 would forward more traffic than the one that is available.

Regarding instead the migration ratios, shown in Figure 9b, we can

Gabriele Proietti Mattia, Marco Magnani, & Roberto Beraldi

observe that as the latency, they match with the truncated solution

of the model (Figure 4b) with slight differences. In particular,𝑚30

reaches 0.9,𝑚02 reaches 0.9 while in the model 1.0, then𝑚03 and

𝑚10 reach 0.2 respectively while in the model 0.0 and 0.2.

0 50 100 150 200 250 300
Round

1.0

1.5

2.0

2.5

3.0

3.5

4.0

d
t

(s
)

Node 0
Node 1
Node 2
Node 3

(a) Service latency 𝑑𝑡 (s)

0 50 100 150 200 250 300
Round

0.0

0.2

0.4

0.6

0.8

1.0

M
ig

ra
tio

n
R

at
io m01

m02
m03
m10
m20
m30

(b) Migration ratios𝑚𝑖 𝑗

Figure 9: Behaviour of the average latency 𝑑𝑡 and migration
ratios for Topology C (Figure 1c) in the simulated environ-
ment.

5 EXPERIMENTAL SETTING
After testing the proposed adaptive heuristic in simulations, we

finally implemented it in a testbed of Raspberry Pi 4
4
connected

with Gigabit ethernet to a dedicated subnet. Each node implements

a Python web server based on the Flask
5
library, that once deployed

with Docker, receives the traffic from a machine that acts as a traf-

fic generator. The source of the application is published as open

source
6
. The webserver implements the scheduling decision, indeed,

when a new task arrives, it decides to execute it locally or forward

it to another neighbour node according to the current configura-

tion of migration ratios. Migration ratios are updated according to

Algorithm 1 every 𝑇 seconds

For implementing the tasks of variable duration we used a loop

that performed the same operation repeated a fixed amount of

times, we measured the duration of a single iteration and from

there we compute the number of iterations to match the desired 𝜇𝑖
parameter for each node. The operation carried out in the loop is

the computation of the SHA-512 hash of the same (20 bytes) string.

We measured that, the operation in question, in a Raspberry Pi 4

has an average duration of 4.721𝜇𝑠 (on 30’000 iterations repeated

10 times). Therefore, for example, setting 𝜇 = 2 is equal to perform

(1/2)/4.721
−6 ≈ 105

′
900 loop iterations.

Deployment. The deployment process involves two phases. (I)

After the container is started in every node, the webserver is put on

wait for the configuration that is passed via POST. The configuration

is a JSON file where the main parameters are declared, for example,

the queue length 𝐾 , how many rounds are used for computing the

average latency, the round duration 𝑇 and the balance zone size

𝜖 . This structure contains also some parameters that regard the

identification of the node: the IP, the ID, the name, 𝜇, the step size

𝛼 and 𝜆. The last part regards the topology of the network that

4
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

5
https://pypi.org/project/Flask/

6
https://gitlab.com/gabrielepmattia/framework-2022-mswim

defines with which nodes the communication is possible. After

the configuration is received (II) each node starts 2 threads: the

update thread that is in charge of updating the migration ratios

at every round and collecting all statistics parameters used by the

algorithm as service latency, the number of executed tasks and the

queue length; and the worker thread that is in charge executing a

service execution request by picking the first available from the

internal queue. Now the node is ready to receive the requests from

the task generator and the adaptive heuristic (Algorithm 1) updates

the migration ratios accordingly every 𝑇 seconds.

Results. All of the topologies shown in Figure 1 have been run in

the above-mentioned framework, we will now illustrate the results

obtained. In all the experiments we set 𝐾𝑖 = 4, ∀ 𝑖 , the round time

𝑇 = 30s, the tolerance 𝜖 = 0.1, 𝛼 = 0.01 and all the curves have

been filtered with the Savitzy-Golay filter by using window size

20 and polynomial degree 4. The Figure 10 shows the behaviour

of the average service latency and of the migration ratios for the

Topology A (Figure 1a). Regarding the latency (Figure 10a) we can

observe how the alignment value is slightly different from themodel

(Figure 2a) and the simulations (Figure 7a), in particular, the average

service latency is levelled to 1.7s and this represents an increase of

0.5s with respect the other tests, but as we can notice the latency

at round 1 is not matching the simulations nor the model and this

is justified by the fact that the model of the queue M/M/1/K is not

representing well the behaviour of a real node, moreover we ignore

the eventual background work of the CPU that may interfere with

tasks that we are sampling. However, the algorithm manages to

level the latencies among all the nodes but with migration ratios

that are different from the model. Indeed, in Figure 10b we can

observe how the Node 0 forwards about the 17.5% of its traffic to

Node 2 and the Node 1 forwards about the same amount of traffic

to Node 0. This solution found by the heuristic is quite different

from the one predicted because we point out that the solution, i.e.

the combination of𝑚𝑖 𝑗 ratios may not be unique.

0 20 40 60
Round

0.0

0.5

1.0

1.5

2.0

2.5

3.0

d
t

(s
)

Node 0
Node 1
Node 2

(a) Service latency 𝑑𝑡 (s)

0 20 40 60

Round

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
ig

ra
ti

on
R

at
io m01

m02

m10

m12

m20

m21

(b) Migration ratios𝑚𝑖 𝑗

Figure 10: Behaviour of the average latency 𝑑𝑡 and migration
ratios for Topology A (Figure 1a) in the experimental setting.

The Figure 10 shows the behaviour of the average service latency

and of the migration ratios for the Topology B (Figure 1b). As the

previous result, the final alignment latency is again different, we

pass from 0.8s, 4.1s, 2.6s, 5.5s (respectively from Node 0 to 3) to 2.5s

for each node with respect 1.5s in the model and in the simulations.

The algorithm manages to level the latency by making Nodes 1

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://pypi.org/project/Flask/
https://gitlab.com/gabrielepmattia/framework-2022-mswim

A Latency-levelling Load Balancing Algorithm for Fog and Edge Computing

and 3 forward about the 30% of their traffic to Node 0, and Node 3

forward the 15% of its traffic to Node 2 at steady state.

0 10 20 30 40 50 60
Round

0

1

2

3

4

5

d
t

(s
)

Node 0
Node 1
Node 2
Node 3

(a) Service latency 𝑑𝑡 (s)

0 10 20 30 40 50 60

Round

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ig

ra
ti

on
R

at
io

m01

m03

m10

m12

m21

m23

m30

m32

(b) Migration ratios𝑚𝑖 𝑗

Figure 11: Behaviour of the average latency 𝑑𝑡 and migration
ratios for Topology B (Figure 1b) in the experimental setting.

The final test on the real deployment regards Topology C (Fig-

ure 1c) and its result is shown in Figure 10. As we can observe,

latencies (Figure 12a) are higher than the ones predicted of 1.5s,

however, the final result is the same, since Nodes 0, 1 and 3 are

aligned while Node 2 instead cannot reach the alignment latency

(see Figures 5a and 8a). This is also reflected in the migration ratios

(Figure 12b) in which we have the Node 3 which forwards the 70%

of its load to Node 0 while the Node 0 will try to forward all of its

traffic to Node 2, even if the Figure is cut to 𝑡 = 120.

0 25 50 75 100 125 150
Round

0

2

4

6

8

10

d
t

(s
)

Node 0
Node 1
Node 2
Node 3

(a) Service latency 𝑑𝑡 (s)

0 25 50 75 100 125 150

Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ig

ra
ti

on
R

at
io

m01

m02

m03

m10

m20

m30

(b) Migration ratios𝑚𝑖 𝑗

Figure 12: Behaviour of the average latency 𝑑𝑡 and migration
ratios for Topology C (Figure 1c) in the experimental setting.

Concluding, the results in a real testbed of Raspberry Pi showed

how the adaptive heuristic algorithm allows reaching the final goal

of levelling latencies with a behaviour that was predicted both in

the model and in the simulations. However, due to the absence of a

more precise model of a real node, the predicted alignment latencies

and migration ratios are not the same but this does not limit the

applicability of the proposed heuristic, rather the tests showed how

it can work even in a real deployment.

6 CONCLUSIONS
In this paper, we started with mathematical modelling of a system

of 𝑛 Fog or Edge nodes for designing a dynamic which is able to

level the service latency among all the nodes in a given topology.

Then, even if from the model we are able to derive the solution, that

is the migration ratios𝑚𝑖 𝑗 from any node 𝑖 to a node 𝑗 , we designed

a fully decentralized and adaptive heuristic which is able to reach

the same solution but without the need to have a centralized entity

(which is able to run the model) and with potential capability to

adapt when the load varies over time. We run the algorithm both

in simulations and in a real deployment of Raspberry Pi boards and

we showed how the solution is very similar to the one predicted by

the mathematical model. However, further research directions are

needed to improve the proposed approach. First of all, the commu-

nication latency has to be included in the model while in our case

we only consider them in the final Raspberry Pi deployment which

justifies the differences in the results, moreover, a more precise

model for a real node must be studied since the M/M/1/K does not

approximate exactly a real computer node, and this again justifies

the discrepancy between the model and the final deployment re-

sults. Then, as the last improvements points, a load that varies over

time can be introduced in the model, instead of having a fixed 𝜆𝑖 we

can suppose to have a 𝜆𝑖 (𝑡) function and we can also consider to

jointly level even other performance parameters beyond the single

service latency.

7 APPENDIX
In the following we consider a completely connected topology, and

a generic load-delay relationship 𝑓𝑖 (𝜆) which is a monotonically

increasing continuous function, with 𝑓 (0) = 0 and lim𝜆→∞ 𝑓𝑖 (𝜆) =
𝑑𝑀𝑖

. The transmission delay is not considered, but the same proof

sketch can be used by adding the transmission delay to the defini-

tion of 𝑓𝑖 .

Property 7.1 (Existence of balanced loads). Given a vector

Λ = (𝜆1, 𝜆2, . . . , 𝜆𝑁) of loads, |Γ |
def
=

∑
𝜆𝑖 = 𝜆𝑇 it there exists another

vector Λ′ = (𝜆′
1
, 𝜆′

2
, . . . , 𝜆′

𝑁
) such that:

𝑓1 (𝜆′1) = 𝑓2 (𝜆
′
2
) = . . . = 𝑓𝑁 (𝜆′𝑁) = 𝑑, |Γ | = |Γ

′ |

Proof. Let consider the function:

𝜆′𝑇 (𝑑) = 𝑓
−1

1
(𝑑) + 𝑓 −1

2
(𝑑) + . . . + 𝑓 −1

𝑁 (𝑑)

and let 𝑑𝑀 =𝑚𝑖𝑛{𝑑𝑀𝑖
}. Due to the property of 𝑓 , this function is

continuous and increases monotonically with 𝑑 ; moreover, 𝜆′
𝑇
(0) =

0, 𝜆′
𝑇
(𝑑𝑀) = ∞. Since 𝜆′𝑇 (0) − 𝜆𝑇 < 0, 𝜆′

𝑇
(𝑑𝑀) − 𝜆𝑇 > 0, due to

the Bolzano’s theorem, it there exits a value 𝑑 < 𝑑𝑀 such that

𝜆′
𝑇
(𝑑) − 𝜆𝑇 = 0, i.e. 𝜆′

𝑇
(𝑑) = 𝜆𝑇 . □

Property 7.2 (Unicity of balanced loads). For a given 𝑑 , the
vector Λ′ is unique.

Proof. Follows from the properties of 𝑓𝑖 . □

Property 7.3 (Migration). Given two load vectors of size 𝑁 , Λ
and Λ′, |Λ| = |Λ′ |, where Λ′ is such that 𝑓𝑖 (𝜆′𝑖) = 𝑑 > 0, it there
exists at least an 𝑁 × 𝑁 migration matrix𝑀 such that:

Λ′ = MΛ

where 0 ≤ 𝑚𝑖 𝑗 ≤ 1,
∑
𝑖𝑚𝑖 𝑗 = 1.

Gabriele Proietti Mattia, Marco Magnani, & Roberto Beraldi

Proof. Since |Λ| = |Λ′ |, Λ can be partitioned in two sets,A and

B, namely the set of nodes such that 𝜆′
𝑖
≤ 𝜆𝑖 and the set of nodes

such that 𝜆′
𝑖
> 𝜆𝑖 - unless Λ = Λ′ in which case M = I.

First of all, observer that all nodes in B have 𝜆′
𝑗
> 𝜆 𝑗 , so we can

set𝑚𝑖 𝑗 = 0, 𝑗 ∈ B, 𝑖 ∈ A,𝑚 𝑗 𝑗 = 1 (these nodes only receive load

from others).

The other values𝑚𝑖 𝑗 , 𝑗 ∈ A, 𝑖 ∈ B are constrained as following:

𝜆𝑖 = 𝜆𝑖 +
∑︁
𝑗 ∈A

𝑚𝑖 𝑗𝜆 𝑗 𝑖 ∈ B

There are 𝐵 = |B| of these equations, each with 𝐴 unknowns,

𝐴 = |A|. In addition there are other𝐴 constrains on the coefficients,

i.e. (1 −∑𝑖𝑚𝑖 𝑗)𝜆 𝑗 = 𝜆′𝑗 . Of these equations one is redundant since
it must be Σ𝑖𝜆𝑖 = Σ𝑖𝜆

′
𝑖
, so only 𝐴 + 𝐵 − 1 are truly independent.

Overall, we have 𝐴𝐵 unknowns and 𝐴 + 𝐵 − 1 equations. Since

𝐴 + 𝐵 = 𝑁,𝐴𝐵 ≥ 𝐴 + 𝐵 − 1, i.e. the unknowns are at least equal to

the number of constrains. The system of equations has then either

one solution or it is undetermined and infinity solutions exist. Since

each node 𝑗 ∈ A migrates a fraction𝑚 𝑗 < 1 of 𝜆 𝑗 towards nodes

of B (this is true since 𝑓𝑖 (0) = 0 and 𝑑 > 0)𝑚 𝑗 =
𝜆′𝑖
𝜆𝑖

< 1 and all the

coefficients are <1. □

Example of migration matrix with 𝑁 = 4,A = {1, 2} showing 4

unknowns:©­­­«
𝜆′

1

𝜆′
2

𝜆′
3

𝜆′
4

ª®®®¬ =
©­­­«
1 −𝑚31 −𝑚41 0 0 0

0 1 −𝑚32 −𝑚42 0 0

𝑚31 𝑚32 1 0

𝑚41 𝑚42 0 1

ª®®®¬
©­­­«
𝜆1

𝜆2

𝜆3

𝜆4

ª®®®¬
REFERENCES
[1] Neha Agrawal. 2021. Dynamic load balancing assisted optimized ac-

cess control mechanism for Edge-Fog-Cloud network in Internet of

Things environment. Concurrency and Computation: Practice and
Experience 33, 21 (2021), e6440. https://doi.org/10.1002/cpe.6440

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6440

[2] Aseel AlOrbani andMichael Bauer. 2021. Load Balancing and Resource Allocation

in Smart Cities using Reinforcement Learning. In 2021 IEEE International Smart
Cities Conference (ISC2). IEEE, 445 Hoes Lane, Piscataway, NJ 08854-4141 USA,
1–7. https://doi.org/10.1109/ISC253183.2021.9562941

[3] Fayez Alqahtani, MohammedAmoon, and Aida A. Nasr. 2021. Reliable scheduling

and load balancing for requests in cloud-fog computing. Peer-to-Peer Networking
and Applications 14, 4 (01 Jul 2021), 1905–1916. https://doi.org/10.1007/s12083-

021-01125-2

[4] Md. Asif-Ur-Rahman, Fariha Afsana, Mufti Mahmud, M. Shamim Kaiser, Muham-

mad R. Ahmed, Omprakash Kaiwartya, and Anne James-Taylor. 2019. Toward

a Heterogeneous Mist, Fog, and Cloud-Based Framework for the Internet of

Healthcare Things. IEEE Internet of Things Journal 6, 3 (2019), 4049–4062.

https://doi.org/10.1109/JIOT.2018.2876088

[5] D. Baburao, T. Pavankumar, and C. S. R. Prabhu. 2021. Load balancing in the

fog nodes using particle swarm optimization-based enhanced dynamic resource

allocation method. Applied Nanoscience (21 Jul 2021). https://doi.org/10.1007/

s13204-021-01970-w

[6] Ernando Batista, Gustavo Figueiredo, and Cassio Prazeres. 2021. Load balancing

between fog and cloud in fog of things based platforms through software-defined

networking. Journal of King Saud University - Computer and Information Sciences
(2021). https://doi.org/10.1016/j.jksuci.2021.10.003

[7] Roberto Beraldi, Claudia Canali, Riccardo Lancellotti, and Gabriele Proietti Mattia.

2020. Randomized load balancing under loosely correlated state information

in fog computing. In 23rd ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM’20). Alicante, Spain.
https://doi.org/10.1145/3416010.3423244

[8] Ashish Chandak and Niranjan Kumar Ray. 2019. A Review of Load Balancing

in Fog Computing. In 2019 International Conference on Information Technology
(ICIT). 460–465. https://doi.org/10.1109/ICIT48102.2019.00087

[9] Romano Fantacci and Benedetta Picano. 2020. Performance Analysis of a Delay

Constrained Data Offloading Scheme in an Integrated Cloud-Fog-Edge Comput-

ing System. IEEE Transactions on Vehicular Technology 69 (2020), 12004–12014.

[10] Mostafa Haghi Kashani and Ebrahim Mahdipour. 2022. Load Balancing Algo-

rithms in Fog Computing: A Systematic Review. IEEE Transactions on Services
Computing (2022), 1–1. https://doi.org/10.1109/TSC.2022.3174475

[11] Shilpi Harnal, Gaurav Sharma, Nidhi Seth, and Ravi Dutt Mishra. 2022. Load
Balancing in Fog Computing Using QoS. Springer Singapore, Singapore, 147–172.
https://doi.org/10.1007/978-981-16-3448-2_8

[12] Mandeep Kaur and Rajni Aron. 2021. A systematic study of load balancing

approaches in the fog computing environment. The Journal of Supercomputing
77, 8 (01 Aug 2021), 9202–9247. https://doi.org/10.1007/s11227-020-03600-8

[13] Hasan Ali Khattak, Hafsa Arshad, Saif ul Islam, Ghufran Ahmed, Sohail Jabbar,

Abdullahi Mohamud Sharif, and Shehzad Khalid. 2019. Utilization and load

balancing in fog servers for health applications. EURASIP Journal on Wireless
Communications and Networking 2019, 1 (08 Apr 2019), 91. https://doi.org/10.

1186/s13638-019-1395-3

[14] Wenjuan Li, Shihua Cao, Keyong Hu, Jian Cao, and Rajkumar Buyya. 2021.

Blockchain-Enhanced Fair Task Scheduling for Cloud-Fog-Edge Coordination

Environments: Model and Algorithm. Security and Communication Networks
2021 (05 Apr 2021), 5563312. https://doi.org/10.1155/2021/5563312

[15] Swati Malik, Kamali Gupta, Deepali Gupta, Aman Singh, Muhammad Ibrahim,

Arturo Ortega-Mansilla, Nitin Goyal, and Habib Hamam. 2022. Intelligent Load-

Balancing Framework for Fog-Enabled Communication in Healthcare. Electronics
11, 4 (2022). https://doi.org/10.3390/electronics11040566

[16] Gabriele Proietti Mattia and Roberto Beraldi. 2022. On real-time scheduling

in Fog computing: A Reinforcement Learning algorithm with application to

smart cities. In 2022 IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events (PerComWorkshops). IEEE,
445 Hoes Lane, Piscataway, NJ 08854-4141 USA, 187–193. https://doi.org/10.

1109/PerComWorkshops53856.2022.9767498

[17] Adriana Mijuskovic, Alessandro Chiumento, Rob Bemthuis, Adina Aldea, and

Paul Havinga. 2021. Resource Management Techniques for Cloud/Fog and Edge

Computing: An Evaluation Framework and Classification. Sensors 21, 5 (2021).
https://doi.org/10.3390/s21051832

[18] Quang-Minh Nguyen, Linh-An Phan, and Taehong Kim. 2022. Load-Balancing

of Kubernetes-Based Edge Computing Infrastructure Using Resource Adaptive

Proxy. Sensors 22, 8 (2022). https://doi.org/10.3390/s22082869

[19] Hayder Makki Shakir and Jaber Karimpour. 2021. Systematic Study of Load

Balancing in Fog Computing in IOT Healthcare system. In 2021 International
Conference on Advanced Computer Applications (ACA). 132–137. https://doi.org/

10.1109/ACA52198.2021.9626813

[20] Amritpal Singh, Gagangeet Singh Aujla, and Rasmeet Singh Bali. 2021. Container-

based load balancing for energy efficiency in software-defined edge computing

environment. Sustainable Computing: Informatics and Systems 30 (2021), 100463.
https://doi.org/10.1016/j.suscom.2020.100463

[21] Saurav Sthapit, John Thompson, Neil M. Robertson, and James R. Hopgood.

2019. Computational Load Balancing on the Edge in Absence of Cloud and

Fog. IEEE Transactions on Mobile Computing 18, 7 (2019), 1499–1512. https:

//doi.org/10.1109/TMC.2018.2863301

[22] Fatma M. Talaat, Mohamed S. Saraya, Ahmed I. Saleh, Hesham Arafat Ali, and

Shereen H. Ali. 2020. A load balancing and optimization strategy (LBOS) using

reinforcement learning in fog computing environment. Journal of Ambient
Intelligence and Humanized Computing (2020), 1–16.

[23] Subhranshu Sekhar Tripathy, Rabindra K. Barik, and Diptendu Sinha Roy. 2022.

Secure-M2FBalancer: A Secure Mist to Fog Computing-Based Distributed Load

Balancing Framework for Smart City Application. In Advances in Communica-
tion, Devices and Networking, Sourav Dhar, Subhas Chandra Mukhopadhyay,

Samarendra Nath Sur, and Chuan-Ming Liu (Eds.). Springer Singapore, Singapore,

277–285.

[24] Xiaolong Xu, Shucun Fu, Qing Cai, Wei Tian, Wenjie Liu, Wanchun Dou, Xing-

ming Sun, and Alex X. Liu. 2018. Dynamic Resource Allocation for Load Balanc-

ing in Fog Environment. Wireless Communications and Mobile Computing 2018

(26 Apr 2018), 6421607. https://doi.org/10.1155/2018/6421607

[25] Fenghui Zhang, Ruilong Deng, Xinsheng Zhao, and Michael Mao Wang. 2021.

Load Balancing for Distributed Intelligent Edge Computing: A State-Based Game

Approach. IEEE Transactions on Cognitive Communications and Networking 7, 4

(2021), 1066–1077. https://doi.org/10.1109/TCCN.2021.3087178

https://doi.org/10.1002/cpe.6440
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6440
https://doi.org/10.1109/ISC253183.2021.9562941
https://doi.org/10.1007/s12083-021-01125-2
https://doi.org/10.1007/s12083-021-01125-2
https://doi.org/10.1109/JIOT.2018.2876088
https://doi.org/10.1007/s13204-021-01970-w
https://doi.org/10.1007/s13204-021-01970-w
https://doi.org/10.1016/j.jksuci.2021.10.003
https://doi.org/10.1145/3416010.3423244
https://doi.org/10.1109/ICIT48102.2019.00087
https://doi.org/10.1109/TSC.2022.3174475
https://doi.org/10.1007/978-981-16-3448-2_8
https://doi.org/10.1007/s11227-020-03600-8
https://doi.org/10.1186/s13638-019-1395-3
https://doi.org/10.1186/s13638-019-1395-3
https://doi.org/10.1155/2021/5563312
https://doi.org/10.3390/electronics11040566
https://doi.org/10.1109/PerComWorkshops53856.2022.9767498
https://doi.org/10.1109/PerComWorkshops53856.2022.9767498
https://doi.org/10.3390/s21051832
https://doi.org/10.3390/s22082869
https://doi.org/10.1109/ACA52198.2021.9626813
https://doi.org/10.1109/ACA52198.2021.9626813
https://doi.org/10.1016/j.suscom.2020.100463
https://doi.org/10.1109/TMC.2018.2863301
https://doi.org/10.1109/TMC.2018.2863301
https://doi.org/10.1155/2018/6421607
https://doi.org/10.1109/TCCN.2021.3087178

	Abstract
	1 Introduction
	2 Related Work
	3 Performance Model
	3.1 Latency-levelling property
	3.2 Trajectories and Topologies

	4 Adaptive Heuristic
	4.1 Simulations results

	5 Experimental Setting
	6 Conclusions
	7 Appendix
	References

