
On real-time scheduling in Fog computing: A
Reinforcement Learning algorithm with application

to smart cities
Gabriele Proietti Mattia, Roberto Beraldi

Department of Computer, Control and Management Engineering “Antonio Ruberti”,
Sapienza University of Rome,

Email: proiettimattia@diag.uniroma1.it, beraldi@diag.uniroma1.it

Abstract—Fog Computing is today a wide used paradigm that
allows to distribute the computation in a geographic area. This
not only makes possible to implement time-critical applications
but opens the study to a series of solutions which permit
to smartly organise the traffic among a set of Fog nodes,
which constitute the core of the Fog Computing paradigm. A
typical smart city setting is subject to a continuous change of
traffic conditions, a node that was saturated can become almost
completely unloaded and this creates the need of designing an
algorithm which allows to meet the strict deadlines of the tasks
but at the same time it can choose the best scheduling policy
according to the current load situation that can vary at any
time. In this paper, we use a Reinforcement Learning approach
to design such an algorithm starting from the power-of-random
choice paradigm, used as a baseline. By showing results from
our delay-based simulator, we demonstrate how such distributed
reinforcement learning approach is able to maximise the rate of
the tasks executed within the deadline in a way that is equal to
every node, both in a fixed load condition and in a real geographic
scenario.

Index Terms—fog computing, scheduling, real-time, reinforce-
ment learning, smart cities

I. INTRODUCTION

Fog Computing [1] is a well-known computing paradigm
that is, not only, but usually chosen when the computation
must be distributed in a geographic domain. This “must be”
is generally given by the fact that the application has to be
deployed as near as possible to users who have to use it.
Indeed, in such situations, a cloud approach cannot be feasible,
especially when the tasks that the application should carry
out are strict in their deadlines, for instance, when we refer
to a shared Virtual Reality (VR) [2] or Augmented Reality
(AR) experiences. Distributing the load involves the setup
of different computing nodes, called fog nodes, which, for
example, can be spread across a city. Issues that arise within
this setup essentially regard the fact that these nodes should
be able to interact in some way in order to reach a common
goal: each task requested to be executed by a user, to any
fog node, has to be able to meet its deadline. This kind of
interaction is needed not only because we want to create a
sort of an ecosystem in which the application can live, so
that it can be reachable in any fog node, but also because in
such dynamic environments, for instance, some nodes can be
overwhelmed by unpredictable traffic load, some instead can

go down or others can become idle since no user is requesting
them to execute tasks. Indeed, if we want them to be able
to cooperate, a smart scheduling algorithm should be able to
change its scheduling policy according to the current situation,
by always having in mind the same previous goal. We suppose
that each fog node receives requests to execute tasks from
the clients and we need to make a scheduling decision on
a per-task-request basis. This requires that, for making an
optimal scheduling decision, we need to know the state of the
other nodes. However, since this environment is completely
distributed and decentralised, the only way for knowing the
state (i.e. its current load level) of another node is to ask for
it explicitly.

A well-known approach, that is proven to perform efficiently
in this setting, is the power-of-random choice paradigm [3],
where every scheduling decision, that is done on a per-task
basis, is preceded by a random probing to another node, with
the purpose to retrieve its current load. Once this information
is retrieved, the task is scheduled internally or forwarded to
the random-probed node. Executing a probing for each request
is not always the best behaviour, indeed, adding a control
threshold to decide when to trigger a new probing request [4] is
shown to be an effective way to increase the performance over
the standard approach. However, even this improved algorithm
has limitations. For example, the scheduling policy (i.e. when
to trigger the probing) is a fixed step function of the current
load, e.g. the probing is performed only if the current workload
exceeds the threshold. Moreover, it is also fixed over time, so it
cannot react to load variation on the nodes, and finally, it does
not take task heterogeneity into account. The purpose of this
work is to overcome these limitations by designing a dynamic
scheduling policy based on the Reinforcement Learning (RL)
paradigm, where the probing decision is a function defined
over the whole set of load states and the task performance
requirements (expressed as deadlines).

We can summarise the main contributions of this work as
follows.

• Design of a decentralised RL-based algorithm to be
implemented in every fog node that is able to choose
the best scheduling decision according to the current
situation, which is a step forward the power-of-random
choice approach, that allows for more complex policies



than simple and fixed threshold-based decisions, to be
dynamic over time reacting to the current load situation
of nodes and to deal with different kinds of time-
constrained (i.e. with deadline requirements) tasks.

• Study of a Geographic setting which involves six fog
nodes deployed in the city of New York and in which the
algorithm can be deployed.

• Simulation Results on a delay-based simulator which
prove the efficiency of the algorithm in a previously
defined geographic environment compared to the classic
power-of-choice strategy.

The rest of this paper is organised as follows. In Section II
we present some related works, in Section III we define
the system model, instead in Section IV we describe the
reinforcement learning approach that we propose. Finally, we
draw conclusions in Section VI.

II. RELATED WORK

Among the different works in literature that try to solve
the task scheduling problem in a distributed environment by
using a reinforcement learning approach [5], one of the first
approaches to this kind of problem, that is also called job-
shop scheduling, is quite old [6]. Focusing on Fog Computing,
instead, in [7], the authors present a Deep Reinforcement
Learning approach, based on Q-Learning, in a MEC envi-
ronment, for selecting the best edge server for offloading in
order to minimise the energy consumption (also studied in [8])
while at the same time maximising the number of tasks that
meet the deadline. In this work, two DNNs are used: one
is kept fixed during an episode, while the other is updated
and at the end of the episode they are swapped. Authors of
[9] propose a scheduling scheme based again on two DNNs,
but they are used for two different decisions, the first one is
in charge of deciding if the task should be offloaded to the
cloud, but if not, the second decision level chooses the best
suitable Fog node to which schedule the task. The approach
followed by [10], but in the context of MEC cells, is the
one of defining the reward as the weighted sum of energy
consumption, delay and cache fetching cost, then, a Deep
Reinforcement Learning approach is followed but by using a
Deep Deterministic Policy Gradient method which solves the
problem of the state discretisation in the standard Q-Learning
approach. Instead, [11] focuses on real-time task assignment
but considers the evolution strategies approach instead of the
backpropagation for updating the weight of the DNN. In
[12], an approach based on a recurrent neural network (RNN)
is proposed, [13] illustrates a solution that targets explicitly
vehicular networks, and [14] instead to crowdsensing. In a
broader sense of scheduling, other works are instead focused
on resource allocation [15] but the task model does not fit
the one that is studied in this paper. Finally, [16] uses the
Asynchronous Advantage Actor-Critic (A3C) algorithm in an
Edge-Cloud environment.

To summarise, the main points of novelty in our work
lie in different facts. First of all, we do not rely on Deep
Reinforcement Learning, which is not needed since we reduce

as much as possible the state space. Other works that use the
same approach like [17] and [18] use the Q-Table, but the
first is focused on connected vehicles and the second on Edge
computing and energy consumption. Instead, in this work, we
focus on real-time tasks training the learner according to the
hit of a task completion deadline.

III. SYSTEM MODEL AND PROBLEM DEFINITION

In order to reach our goal of adaptability and optimality,
we frame our problem as a Markov Decision Process (MDP),
which is solved using the Reinforcement Learning (RL) tech-
nique. We use a model-free approach with the advantage
that it does not require the knowledge of the details of the
underlying mathematical model, such as the state transition
probabilities. Instead, it is enough to observe and interact
with the environment. To proceed with our discussion, we
need preliminarily to identify the two main entities of RL:
the environment and the agent.

A. Environment

The environment is composed of a set of N communicating
and nearby Fog nodes F = {F1, F2, . . . , FN} with the same
computing power. Every Fog node serves an area from where
users can require the execution of a task, and we define the
total rate of the arriving requests to a node i to be λi req/s. One
example of an application scenario for such tasks is Virtual
Reality (VR), where a user needs to execute compute-intensive
tasks like recognising and tracking objects or activities. Tasks
have a deadline T associated with them, which represents the
absolute time before which they must be processed, e.g. 10ms
in a VR scenario [2]. They also have associated a payload of
size b (e.g. an image, a set of video frames).

A Fog node Fi has a performance profile defined by
its queue capacity Ki, representing the maximum number
of pending tasks waiting to be processed, and the rate of
execution of the tasks that is µ task/s that is supposed to be
equal for each node. A fog node is capable of executing one
task at a time, but since it has a queue of Ki this is exactly
equal to saying that it can execute Ki tasks at a time in time-
sharing with no queue, that is a mechanism closer to reality.

The total load to a specific node i is:

ρi =
λi

µ
(1)

Nodes can communicate with each other and each transmis-
sion requires a time interval dt, determined by the data rate, r
of the link connecting the two communicating nodes (dt = b

r ).
Moreover, node A can probe another node B, meaning that
A can ask B its current queue length to make a scheduling
decision. The queue length of a node is usually referred to as
its current “state”.

B. Agent

Upon each task request arrival to a Fog node from a client, a
scheduling decision must be taken. This is an online decision
process carried out by an agent, running at each Fog node.
Each agent has associated the same set of actions A that can



perform. The action a ∈ A to take is determined by a function
π(s), called policy, of the current observed state s ∈ S.

π : S → A (2)

1) Observed states: The agent running on node Fi can
observe its current state, referring to the number of tasks in
its execution queue Qe at time t, i.e. kti ≤ Ki. Moreover, we
consider the case in which tasks of multiple types can arrive in
the node. For this reason, the final observed state by the agent
is the aggregation of the number of tasks in the queue for
each type and the type of the newly arrived task. This means
that the decision about the action to choose is only made by
observing the queue length of the current node.

Finally, the state derived as described and used for the learn-
ing process is not taken as is. Indeed the tiling technique [19]
is used for representing it as a vector v ∈ N8.

2) Actions: We studied separately two sets of actions that
the agent can perform. In the first case (i), the agent selects
an action from the set A = {0, 1}, where 0 means to execute
the task locally, while 1 to probe another node at random and
offloading the execution of the task to that node only if its
queue length is lesser than the one of the current node (we
call this strategy “probe-and-forward”) otherwise the task is
executed locally. In the second case (ii) instead, the agent of
node i selects an action from A′

i = A∪Fi, where Fi contains
additional direct forwarding actions that depends on the Fog
node i. The action fj ∈ Fi means to directly forward a task
to the neighbour j without probing, obviously with j ̸= i.

It is worth reminding that, in any case, when the task is
scheduled to be executed locally, despite being forwarded from
another node, it can be rejected if there is no room for being
executed, i.e. the queue is full (at a certain time t, kti = Ki).

C. Reward

The immediate reward given to a specific action is given by
the fact that the task has been executed within the deadline
or not. Therefore, the reward is a function of the state and
the action performed given the state. For a given task j, the
reward assigned to action a performed when the state was s
is, given the total completion time W :

Rj(s, a) =

{
1 if W ≤ T

0 otherwise
(3)

The agent cannot know the reward until a task has been
completed its execution path, and in the meanwhile, other
tasks may arrive and need to be scheduled. Moreover, even if
two tasks are scheduled sequentially, the second can terminate
before the first, altering the causal order for the decision path.
To overcome this problem, the learning step is put on hold
until a number equal to Z (the window size) of tasks have
been completed. This is discussed in Section IV.

For measuring the performances of the algorithm, we use
the reward rate, also called the in-deadline rate ι that is the
average reward per second.

D. Delay model

Dealing with deadlines requires a fine-grained model of the
delays. In our study, the environment is simulated as a network
of N nodes in which every node is composed of three different
internal queues:

• the execution queue (Qe) represents the queue of tasks
that have been scheduled to be run in the current node;
a node can execute one task at the time and the total
time that a task spends on this queue is de, but the
actual execution time of a single task follows a Gaussian
distribution;

• the transmission queue (Qt) represents the queue of tasks
that are in the transmission phase; the transmission can
occur: (i) from client to node, (ii) from node to node, (iii)
from node to client. The total time that a task spends on
this queue is dt, and it follows a Gaussian distribution
with µ equal to dt;

• the probing queue (Qp) represents the queue of tasks for
which there is a probing request to run; the total time
that a task spends on this queue is dp;

The flow according to which a task transits among the
queues is represented in Figure 1.

A task is sent to
Node i from the

Client

Take scheduling
decision

ProbingExecute Locally
Task returns 

to Client/Node

Check the load

Task scheduled 
locally

Qe

Qp

Qt
Task forwarded
to other node

Qt

Has task executed in
another node

No

Yes, returns to Client

Has task returned 
to client

Yes

No

A task is sent to
Node i from the

Node j

Is the task coming 
from another node

No

Yes

Remote Node

Fig. 1. The logic of the delay model.

The total time of a task to be executed, from the client
perspective, is the summation of all the time spent in all the
queues during its entire execution path, it is referred as W and
it is measured in seconds.

E. Geographic Scenario

A peculiar characteristic of Fog computing is that nodes can
be positioned in a geographic scenario [1]. In order to evaluate
the adaptivity of our solution in a real environment, we used
open data of New York city1 to estimate the average daily
traffic in specific points of the city. The data is referred to taxi
trips of the year 2013, and for every trip, we considered the

1https://web.archive.org/web/20210424121526/https://chriswhong.com/
open-data/foil nyc taxi/



start coordinates, the end coordinates, and the total trip time.
Then we placed six Fog nodes, as in Figure 2, considering 1
km of radius for the service to be available. This is in line
with the capability of an RRU to which has been attached a
computing node. We estimated the taxi traffic by dividing the
day into 15-minute time slots (for a total of 96 time slots) and
counting the number of taxis within the area of the nearest
Fog nodes during their trip. We used the first three months of
data by averaging the daily traffic within each time slot for
every Fog node.

74°W

74°W

Fig. 2. Fog nodes position (diamond symbols) in New York city used in the
experiments, from left to right Node 0 to Node 5. The radius of the circle for
each node is 1 km.

By normalising in the range between 0 and 0.9 the final
traffic distribution is represented in Figure 3. This range is
given for simplicity and derives from a reasonable assumption
that Fog nodes never saturate, leaving the opposite case as
future work. Moreover, the final curves have been smoothed
with Savitzky–Golay filter, using an order 4 polynomial and
a window of size 17.

0 20 40 60 80
Time Slot

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ρ

Node#0
Node#1
Node#2
Node#3
Node#4
Node#5

Fig. 3. The average distribution of the traffic during the day for the picked
Fog nodes.

The final result of this study has been used in our simulation
environment by setting the load to a specific Fog node i (ρi) to

be equal to the value of the respective traffic curve (Figure 3)
in that precise moment of the simulation.

IV. ONLINE SCHEDULING DECISIONS WITH RL
The agent’s final objective is to learn a scheduling policy

π that maximizes the long-term reward. Since each decision
must be taken online, we cannot envision episodes, but we treat
the problem as a continuing learning task. It is not useful to
discount future rewards in this specific setting, but it is better
to consider the current average reward for taking the right
direction. Given a state s ∈ S, we perform the action a ∈ A,
we obtain the immediate reward r the next state is s′ ∈ S
then the optimal policy (that is the policy which maximizes
the long-term reward) will result in the optimal q∗ function
defined as [19]:

q∗(s, a) =
∑
r,s′

p(s′, r|s, a)
[
r −max

π
r(π) + max

a′
q∗(s

′, a′)
]

(4)
Where r(π) is a function which returns the average reward

of the policy π. At certain time t and given a weight’s vector w⃗
the differential form of the error, following the Sarsa approach
for learning the policy, can be expressed as [19]:

δt = Rt+1 − R̄t+1 + q̂(St+1, At+1, w⃗t)− q̂(St, At, w⃗t) (5)

When used in practice, the q(s, a, w⃗) is approximated by
using the linear combination of the coordinates given by the
tiling technique, as described in Section III-B. The final used
strategy for learning the policy is called Differential Semi-
Gradient Sarsa (Algorithm 2). However, the reward is never
immediate (after the learner’s decision) in our setting because
we know it only after a task has been executed or rejected.
For this reason, we set a window size of Z tasks, and right
after executing every task, we check if the window is reached
and every task in the window has been executed or rejected.

The Algorithm 1 is run whenever a new task to be executed
arrives. First of all, we append the task to the array of pending
tasks (“TasksArray”), then we compute the state (as described
in Section III), and we retrieve the best action to perform given
the current q(s, a, w⃗). If the action is 0, the task is immediately
executed locally. If it is 1, the node asks the state to a random
node, and the task is forwarded only if the random node’s state
is better than the current one. These two actions are of A1,
and in any other case, the task is directly forwarded to the
chosen node (A2) unless the picked node is the current one,
in that case, the function forwardTo() only executes the task
locally.

Every time that a task completes its execution (that means
that the result payload of the task is returned to the client),
whether it is local or remote Algorithm 2 is executed. First
of all, we record the task reward, and then we start to iterate
over the array of pending tasks (“TasksArray”) for checking
if the first Z tasks of the array are finished. If this is not the
case, the function returns, otherwise, we go on by retrieving
the information about the first Z tasks by popping them from



Algorithm 1 Scheduling Decision
Require: Node, Task, TasksArray, w⃗, A

TasksArray.append(Task)
s ← aggregate(Node.getLoad(), Task.getType())
a ← maxa∈A q(s, a, w⃗) with prob. 1− ϵ otherwise random(A)
Task.saveStateAction(s, a)
if a == 0 (Execute Locally) then

Node.execute(Task)
else if a == 1 (Probe-and-Forward) then

RandomNode ← pickRandom(Node.getNeighbors())
if RandomNode.getLoad() < Node.getLoad() then

forwardTo(RandomNeighbor, Task)
else

Node.execute(Tasks)
end if

else
Node ← pickNodeFromAction(a)
forwardTo(Node, Tasks)

end if

the array. This information is used to train the weights vector
w⃗ using the semi-gradient differential Sarsa algorithm.

Algorithm 2 Learning with Differential Semi-Gradient Sarsa
Require: Task, TasksArray, Z, w⃗, R̄, α, β

Task.setReward()
i ← 0
for all j in TasksArray do

if !j.isDone() then
return

end if
if i == Z then

break
end if
i ← i + 1

end for
i ← 0
j0 ← TasksArray.pop(0)
s ← j0.getStateSnapshot()
a ← j0.getAction()
r ← j0.getReward()
for i = 0; i < Z; i++ do

j ← TasksArray.pop(0)
s′ ← j.getStateSnapshot()
a′ ← j.getAction()
δ ← r - R̄ + q(s′, a′, w⃗) - q(s, a, w⃗)
R̄ ← R̄ + βδ
w⃗ ← w⃗ + αδ∇q(s, a, w⃗)
s← s′; a← a′; r ← j.getReward()

end for

V. RESULTS

The results that we will present in this section follow the
assumption that there are 6 Fog Nodes (N = 6), and for every
fog node i, the maximum queue length is Ki = 5. Moreover,
the arrival distribution of the tasks is a Poisson with mean µi.
We suppose that nodes are connected with a link of 1Gbps, the
payload of each task is 100kb, and the probing delay is 5ms.
Qt and Qp are unlimited in size for each node. The rationale
behind this number of nodes is that to avoid a high offloading
delay among nodes, the cooperating nodes are physically close
one with the other, and hence they amount to a few units. In
other words, cooperation occurs only among nearby nodes.

In all of these experiments, the proposed RL algorithm is
labelled as “Sarsa” while the power-of-choice one “Pwr2”,
that is specifically referring to the power-of two choices since
only one node is probed random and therefore, the scheduling
decision is between the current node (possible choice #1) and
the probed one (possible choice #2).

A. Homogeneous Loads

The first approach that we followed is supposing the load
is constant to every fog node. The learning agent AG, that we
remind is present in every Fog node, can choose among the
two actions in A. Then, if the agent chooses to probe a random
node, only if the queue length of the remote node is lesser
than the current one, the job will be forwarded to it (we call
this approach, “probe-and-forward”) otherwise, the task will
be executed locally. In this context, the policy π can be easily
binary encoded π = (a0, a1, . . . aK), where ai ∈ A = {0, 1}
is the action executed when the state of the agent is i. For
example, for K = 5 the policy 000111 means that the task is
executed locally when the state is 0, 1, or 2 (action 0), and
forwarded otherwise (action 1).

For comparison with the learning algorithm, we tested every
possible scheduling policy statically, without the learning
framework but leaving all the infrastructure valid. This means
that the environment, the set of actions and the reward function
are the same, and we only consider the policy static. We set
the mean task duration for every fog node i as 1/µi = 0.023s,
the load as ρi = 0.6 and the deadline T = 0.042s. The bar
plot in Figure 4 compares the reward of each possible policy,
expressed as in the form of rate of in-deadline tasks ι. We
can observe that the optimal policy is 001111 (ι = 0.8164)
that is the one of performing the random probing if the
load is greater or equal to 2. This is a sort of cooperation
threshold that perfectly matches the results of [4], although it
considered no deadlines. However, this policy is very similar,
in terms of performances, also to 001110 (ι = 0.8147), 001100
(ι = 0.8145) and 001101 (ι = 0.8114) which respectively
disable the cooperation when the load is equal to 5, 4 and 5,
and only 4. This is justified by the fact that the rewards gained
in such situations that are referring to load values greater than
4 are negligible with respect the other states.

In the same set-up, we used the learning approach described
in Section IV. At the end of the simulation, the policy learned
by the learner is the one in Figure 5, i.e. 001110. This is not
the optimal policy, but this is again justified by the fact that
the contribution of state 5 is so small that is not appreciable by
the learner. For this reason, we defined decision confidence by
just taking into account how many times the decision has been
made in each possible state. Given that sj is the number of
tasks whose scheduling decision has been made when the state
was j, and J the total number of jobs, the value in the cell i, j
of the heat map is given by the following choice confidence
function of the action in i when in state j:

C(i, j) =

{
sj
J if i = 0 (Non-Probe)
−(1− sj

J ) =
sj
J − 1 if i = 1 (Probe)

(6)



00
11

00
00

11
11

00
11

10
00

11
01

00
10

10
00

10
00

00
10

11
00

10
01

01
11

01
01

11
00

01
11

11
01

11
10

01
10

10
01

10
11

01
10

00
01

10
01

10
11

00
10

11
10

10
11

01
10

11
11

10
10

10
10

10
11

10
10

00
11

11
10

11
11

00
11

11
11

10
10

01
11

11
01

01
01

00
01

01
10

11
10

10
11

10
11

01
01

11
01

01
01

11
10

00
11

10
01

00
01

00
00

01
10

00
01

11
00

01
01

01
00

10
01

00
11

01
00

00
01

00
01

00
00

10
00

00
11

00
00

00
10

01
00

11
01

00
11

01
10

10
01

10
11

01
11

11
01

01
10

01
01

10
01

11
00

00
01

11
00

10
11

00
11

11
00

00
10

00
10

10
00

11
10

00
00

11
00

01
10

00
01

Scheduling Policy

0

20

40

60

80

100
Pe

rc
en

ta
ge

of
Ta

sk
s

(%
)

InDeadline
Rejected
Forwarded

Fig. 4. Percentage of In-Deadline, Rejected and Forwarded tasks of all the possible policies with 6 nodes, a policy is encoded in binary where 1 means
probing and 0 means executing locally. In this experiment ρ = 0.6, deadline is = 0.043s and job duration is 0.020s.

This formulation allows us to understand the confidence
in the choice of the agent. In particular, from Figure 5 we
can appreciate how the choices in the lower states are more
confident since the states have been more frequent.

01 11 21 31 41 51
State

Non-Probe

Probe

A
ct

io
n

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

D
ecision

C
onfidence

Fig. 5. The policy learned by the agent in the same setting of Figure 4

B. Heterogeneous Loads

During the previous experiments, we assumed only one kind
of task, which has deadline 43ms and its average duration
is 20ms. By using the same framework, we switched to two
kinds of tasks, one (type 0) that is expected to run at 60fps,
and therefore we supposed that it has a deadline of 16ms and
mean duration 8ms (σ = 0.4ms) and one (type 1) that is
expected to run at 30fps and therefore it has deadline 40ms
and mean duration 20ms (σ = 0.4ms). Increasing the number
of tasks does not lead to validity issues, instead, it leads
to the increasing of the state space, but this will be further
investigated in future works.

When dealing with heterogeneous loads, the best policy
learned by the agent is still the one of power-of-choice
with a threshold equal to two. We do not report the results
in this paper, but we directly show we can achieve better
performances. A possible way for achieving better results
is to increase the agent’s action space. For this reason, we

introduced the set of actions A′
i. Figure 6 shows the behaviour

of the in-deadline rate when the loads are not balanced, as in
the previous experiment, but stationary over time. The only
difference here is that the agent can choose to directly forward
tasks to a given node. After the first 1000s, which is the
period in which the ϵ is greater than 0.1 (the lower limit),
we can observe how ι is fixed over time, and it is equal to
every node. This means that even the nodes with the policy
001111 could have a better reward. They are not selfish but
voluntarily decrease their reward for making the others achieve
the best reward. We believe that this behaviour is inherent to
the distributed usage of the reinforcement learning approach
since every node can understand the situation only from the
reward, which declares the goodness of the chosen action. This
means that by allowing the nodes to forward directly (set of
actions A′

i), we make them understand which is the best node
to forward the jobs in a given time, and this enables the fact
that acting like selfish will deteriorate its reward. This aspect
will be further studied in future work.

C. Geographic Scenario

As described in Section III the open data for New York
City has been used for generating the traffic to six fog nodes
positioned as in Figure 2. Starting from this setting, by using
the same assumptions of the previous experiment, we only
enable the load to change according to the derived distribution
for the open data (Figure 3). In Figure 7 we can observe that
the behaviour that was shown in the fixed load case is again
confirmed even if the load follows a variable distribution.
Every node reaches the same level of the reward, even if
following the policy 001111 (power-of-choice with threshold
2) could make a node reach a better reward, and this behaviour
is invariant to the traffic variability.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of extending
the power-of-choice distributed scheduling scheme with Re-
inforcement Learning to schedule real-time and deadline-
constrained tasks efficiently. Starting from the simple approach



0.0

0.5

1.0
ι

N
ode

#0

0.0

0.5

1.0

ι

N
ode

#1

0.0

0.5

1.0

ι

N
ode

#2

0.0

0.5

1.0

ι

N
ode

#3

0.0

0.5

1.0

ι

N
ode

#4

1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0.0

0.5

1.0

ι

N
ode

#5

Sarsa
Pwr2 (T=2)

Fig. 6. Comparison between Sarsa and Pwr2: behaviour of the in-deadline
rate ι for every node when load is fixed but heterogeneous

0.0

0.5

1.0

ι

N
ode

#0

0.0

0.5

1.0

ι

N
ode

#1

0.0

0.5

1.0

ι

N
ode

#2

0.0

0.5

1.0

ι

N
ode

#3

0.0

0.5

1.0

ι

N
ode

#4

1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0.0

0.5

1.0

ι

N
ode

#5

Sarsa
Pwr2 (T=2)

Fig. 7. Comparison between Sarsa and Pwr2: behaviour of the in-deadline
rate ι for every node when the load is variable according to the geographic
scenario, Figure 3

in which the agent learns a known policy, we arrived to provide
simulation-based results that the approach works even if the
load conditions are typical of an actual fog deployment in
a smart city. We showed that a fully distributed scheduling
approach based on reinforcement learning, in which every
node is an agent and does not have any load information about
the others, can maximise the performances of every single
node by not behaving selfishly. However, other environmental
characteristics can be studied in order to reveal the actual
efficiency of the approach, for example, by introducing a
variable communication delay between the nodes, considering
that the nodes maintain a periodically updated value of the
load of the others, or even increasing the complexity of the
state in order to take into account other factors like CPU time

and RAM consumption.

REFERENCES

[1] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren, and
C. Mahmoudi, “Fog computing conceptual model,” NIST, Tech. Rep.,
2018.

[2] F. Hu, Y. Deng, W. Saad, M. Bennis, and A. H. Aghvami, “Cellular-
connected wireless virtual reality: Requirements, challenges, and solu-
tions,” IEEE Communications Magazine, vol. 58, no. 5, pp. 105–111,
2020.

[3] A. W. Richa, M. Mitzenmacher, and R. Sitaraman, “The power of two
random choices: A survey of techniques and results,” Combinatorial
Optimization, vol. 9, pp. 255–304, 2001.

[4] R. Beraldi and G. P. Mattia, “Power of random choices made efficient
for fog computing,” IEEE Transactions on Cloud Computing, 2020.

[5] A. I. Orhean, F. Pop, and I. Raicu, “New scheduling approach using
reinforcement learning for heterogeneous distributed systems,” Journal
of Parallel and Distributed Computing, vol. 117, pp. 292–302, 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0743731517301521

[6] M. E. Aydin and E. Öztemel, “Dynamic job-shop scheduling using
reinforcement learning agents,” Robotics and Autonomous Systems,
vol. 33, no. 2-3, pp. 169–178, 2000.

[7] L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu, and L. Li, “Delay-aware
and energy-efficient computation offloading in mobile edge computing
using deep reinforcement learning,” IEEE Transactions on Cognitive
Communications and Networking, pp. 1–1, 2021.

[8] Q. Yang and P. Li, “Deep reinforcement learning based energy schedul-
ing for edge computing,” in 2020 IEEE International Conference on
Smart Cloud (SmartCloud), 2020, pp. 175–180.

[9] M. K. Pandit, R. N. Mir, and M. A. Chishti, “Adaptive task scheduling
in iot using reinforcement learning,” International Journal of Intelligent
Computing and Cybernetics, 2020.

[10] S. Nath and J. Wu, “Deep reinforcement learning for dynamic compu-
tation offloading and resource allocation in cache-assisted mobile edge
computing systems,” Intelligent and Converged Networks, vol. 1, no. 2,
pp. 181–198, 2020.

[11] L. Mai, N.-N. Dao, and M. Park, “Real-time task assignment approach
leveraging reinforcement learning with evolution strategies for long-
term latency minimization in fog computing,” Sensors, vol. 18, no. 9,
2018. [Online]. Available: https://www.mdpi.com/1424-8220/18/9/2830

[12] S. Bian, X. Huang, Z. Shao, and Y. Yang, “Neural task scheduling
with reinforcement learning for fog computing systems,” in 2019 IEEE
Global Communications Conference (GLOBECOM), 2019, pp. 1–6.

[13] J. Zhang, H. Guo, and J. Liu, “A reinforcement learning based task
offloading scheme for vehicular edge computing network,” in Artificial
Intelligence for Communications and Networks, S. Han, L. Ye, and
W. Meng, Eds. Cham: Springer International Publishing, 2019, pp.
438–449.

[14] H. Li, K. Ota, and M. Dong, “Deep reinforcement scheduling for
mobile crowdsensing in fog computing,” ACM Transactions on Internet
Technology (TOIT), vol. 19, no. 2, pp. 1–18, 2019.

[15] A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, “Intelligent resource
allocation in dynamic fog computing environments,” in 2019 IEEE 8th
International Conference on Cloud Networking (CloudNet), 2019, pp.
1–7.

[16] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic schedul-
ing for stochastic edge-cloud computing environments using a3c learning
and residual recurrent neural networks,” IEEE Transactions on Mobile
Computing, pp. 1–1, 2020.

[17] S. Park and Y. Yoo, “Real-time scheduling using reinforcement learning
technique for the connected vehicles,” in 2018 IEEE 87th Vehicular
Technology Conference (VTC Spring), 2018, pp. 1–5.

[18] T. Sen and H. Shen, “Machine learning based timeliness-guaranteed
and energy-efficient task assignment in edge computing systems,” in
2019 IEEE 3rd International Conference on Fog and Edge Computing
(ICFEC), 2019, pp. 1–10.

[19] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.


