
SoftwareX 21 (2023) 101290

D

t
g
t
e
u
c
a
r
t
n

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

P2PFaaS: A framework for FaaS peer-to-peer scheduling and load
balancing in Fog and Edge computing
Gabriele Proietti Mattia ∗, Roberto Beraldi
epartment of Computer, Control and Management Engineering ‘‘Antonio Ruberti’’, Sapienza University of Rome, Via Ariosto 25, 00185, Rome, Italy

a r t i c l e i n f o

Article history:
Received 21 September 2022
Received in revised form 21November 2022
Accepted 5 December 2022

Keywords:
Edge Computing
Fog Computing
FaaS

a b s t r a c t

In Edge and Fog Computing environments, it is usual to design and test distributed algorithms that
implement scheduling and load balancing solutions. The operation paradigm that usually fits the
context requires the users to make calls to the closer node for executing a task, and since the service
must be distributed among a set of nodes, the serverless paradigm with the FaaS (Function-as-a-
Service) is the most promising strategy to use. In light of these preconditions, we designed and
implemented a framework called P2PFaaS. The framework, built upon Docker containers, allows the
implementation of fully decentralised scheduling or load balancing algorithms among a set of nodes.
By relying on three basic services, such as the scheduling service, the discovery service, and the learner
service, the framework allows the implementation of any kind of scheduling solution, even if based on
Reinforcement Learning. Finally, the framework provides a ready-to-go solution that can be installed
and has been tested both on x86 servers and ARM-based edge nodes (like, for example, the Raspberry
Pi).

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1 (scheduler v1.0.0, discovery v1.0.0, learner v1.0.0)
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00297
Code Ocean compute capsule None
Legal Code License GPLv3
Code versioning system used git
Software code languages, tools, anoverd services used Go, Python
Compilation requirements, operating environments & dependencies Go 1.18, Python 3.8
If available Link to developer documentation/manual https://p2p-faas.gitlab.io
Support email for questions proiettimattia@diag.uniroma1.it

1. Motivation and significance

The Edge and the Fog Computing paradigms [1] arise from
he need to distribute the computation among a set of nodes. In
eneral, this necessity is a natural consequence of the applica-
ion’s non-functional requirements, which can regard the latency
xperienced by the users and service availability. The classic
se case often refers to a smart city where computing nodes
an be positioned in precise locations and also attached to 5G
ntennas [2]. In this scenario, we suppose that users are able to
equest services to the nearest node available. An inexorable issue
hat arises in this context is that we can often observe a non-
egligible variation of the traffic to the nodes during the day [3].

∗ Corresponding author.
E-mail address: proiettimattia@diag.uniroma1.it (Gabriele Proietti Mattia).

This leads to some nodes being overwhelmed by a consistent
number of requests per second (req/s that we call λ) thus the
latency seen by the users for executing the service increase, and
the node itself also can start to reject requests. In the meanwhile,
other nodes may receive no traffic and be completely unloaded.
This situation creates the necessity of designing load balancing
algorithms which are able to reach a balanced load configura-
tion by allowing the nodes to forward part of their traffic to
others. In particular, we focus on cooperative strategies which
allow no central entity or orchestrator, but every node, aware
of its neighbours, can make decisions (that can also be based
on Reinforcement Learning) independently from others by asking
them for information that can regard their current load or other
performance parameters. The only assumption that we make is
that the scheduling decision is made per-single function execu-

tion request and therefore in an online manner. Different works

ttps://doi.org/10.1016/j.softx.2022.101290
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.101290
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.101290&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00297
https://p2p-faas.gitlab.io
mailto:proiettimattia@diag.uniroma1.it
mailto:proiettimattia@diag.uniroma1.it
https://doi.org/10.1016/j.softx.2022.101290
http://creativecommons.org/licenses/by/4.0/


Gabriele Proietti Mattia and Roberto Beraldi SoftwareX 21 (2023) 101290

i
b
b
m
b
s
t
u
c
l

w
o
i
t
w
i
e
a
t
D
o
d
d
f

w
r
o
d

i
f
S
S
u
S
f

1

l
m
t
f
i
n
t
l
d
i
a

c
n

n literature [4–6] are focused on the solution to this problem,
ut most of them only consider mathematical models and event-
ased simulations, and in general, real environments present
any details and unexpected conditions that are very difficult to
e grasped in a model of the system. For example, the operating
ystem of the nodes may perform additional work in parallel to
he execution of the service, the particular programming language
sed may add more execution latency due to the fact that it is
ompiled or interpreted and if the QoS requirement is tied to the
atency this aspect can be crucial.

In this paper, we present P2PFaaS, a software framework
hose objective is the practical implementation of cooperative
nline scheduling and load balancing algorithms generally stud-
ed only in mathematical and simulation prospectives. The key
erms of the framework denomination are: peer-to-peer (P2P),
hich refers to the fact that each node can be considered a peer

n the network who can share tasks with others without a central
ntity or orchestrator; and FaaS, which refers to the Function-as-
-Service paradigm that is chosen as the task model. The idea of
he framework, which is built on different modules deployed as
ocker containers, compensates for a lack of flexibility in modern
rchestrators, like Kubernetes, which do not allow a custom
efinition of scheduler algorithm when multiple containers are
eployed in different machines. This is essentially given by the
act that they are built for production and not for research.

The P2PFaaS framework has already been used in different
orks [3,7] in order to perform benchmarks of distributed algo-
ithms in real environments. These tests required the installation
f the framework both in x86 virtual machines and in ARM
evices, in particular the Raspberry Pi.
The rest of the paper is organised as follows. Section 1.1

llustrates the environment that is needed for booting up the
ramework while Section 1.2 presents some related work. Then
ection 2 describes the internal architecture of the framework,
ection 3 presents some work in which the framework has been
sed for benchmarking scheduling and load balancing algorithms,
ection 4 describes the potential impact of P2PFaaS, while the
inal conclusions are drawn in Section 5.

.1. Experimental setting

The framework is written to be fully portable, indeed, it uses
anguages like Go and Python, which are available for all of the
ain architectures. For running the starting up the framework,

he environment only needs to have Docker installed, then the
ramework will be built from the source. Regarding the hardware
nstead, it will suffice to have x86 machines or even ARM-based
odes, while in the former case we leave it to the user to clone
he source and build the framework within every node, in the
atter we instead suggest that the deployment can be efficiently
one by using OpenBalena1 framework. Once the OpenBalena is
nstalled the P2PFaaS can be easily built for ARM and deployed to
ll the nodes in the set.
Once all the services of the framework are running the dis-

overy service must be configured only at the first running of the
odes. This can be done by using the API /configuration at

port 19000. The complete guide for installing the framework, as
well as the documentation can be found on the website of the
framework.2

1 https://www.balena.io/open/
2 https://p2p-faas.gitlab.io

1.2. Related work

The idea of constructing a framework for Fog or Edge com-
puting is quite well addressed in literature. Indeed, similarly to
our work, [8] proposes a platform for performing online machine
learning with IoT data streams by leveraging Kubernetes for man-
aging the containers that compose the framework. However, our
operating model is different since we manage the scheduling of
FaaS execution requests and it is done in an online manner. Then,
OpenFaaS [9] is an open-source software framework which allows
to easily implement FaaS functions but the software does not
allow the customisation of the internal scheduler, which is left
to the underlying Kubernetes framework. From this framework,
we only used the FaaS creation process (see Section 2.1). In [10],
the authors propose an extension of the OpenFaaS framework
addressing the scheduling of the task in nodes that are distributed
geographically, however, the work focuses on the scheduling of
the services and not of the single tasks and the approach is more
oriented to the Cloud computing environment than the Fog or the
Edge one.

Finally, other works instead are still focused on the implemen-
tation of scheduling and load balancing algorithms but differently
from our work, they only simulate the computing nodes, these
simulators are iFogSim [11], FogWorkflowSim [12], YAFS [13],
xFogSim [14] and FogNetSim++ [15]. Simulations can have advan-
tages during the design of the algorithm but do not consider real
environments’ issues and parameters. Indeed, with our frame-
work, researchers can assess the efficacy of the algorithms in real
environments.

2. Software description

The proposed framework consists of independently developed
modules. Each module has associated a code repository and it
is built as a Docker container. This means that an always-alive
process is associated with it. In general, it is a web server which
exposes APIs routes. However, in delay-sensitive operations, web-
socket pools are used. This has been shown to drastically reduce
the time for creating the request since the setting up of the TCP
socket and the handshaking are only done once.

The building of the framework can be done in any machine
that supports Docker and even in ARM architectures for which
Dockerfile.aarch64 are given.

2.1. Software architecture

The overall architecture of the framework is shown in Fig. 1
which depicts the main modules.

• The scheduler service listens at port 18080 and represents the
entrypoint of the framework where the clients can request
the execution of a function via REST API.
• The learner service listens at port 19020 and implements the

training and the inference of Reinforcement Learning mod-
els used by the scheduler service for making the scheduling
decision.
• The discovery service listens at port 19000 and implements

the nodes discovery.

These three services compose the core of the framework, then
the user must install one or more FaaS that implement the ser-
vices offered by the node. In this first version of the framework,
for avoiding a significant effort on writing code which manages
the service displacement (since the purpose of the framework
is to focus on schedulers logic and performances), we assume,

without loss of generality or validity of the results, that every

2

https://www.balena.io/open/
https://p2p-faas.gitlab.io


Gabriele Proietti Mattia and Roberto Beraldi SoftwareX 21 (2023) 101290

n
w
f
u
u
o
a
w
F
i
H
t
i

F
a
f
u
m
e
i

t
i
n
c

Fig. 1. The P2PFaaS high-level software architecture.

ode implements the same set of functions. Therefore the frame-
ork does not provide a way for the parallel deployment of the

unctions; indeed, this operation must be done manually or by
sing OpenBalena (see Section 1.1). The functions that can be
sed with the framework can be borrowed from the OpenFaaS3
pen source project. It will suffice to choose a function available
nd packaged with the of-watchdog.4 daemon and then build it
ith the tool faas-cli However, the only requirement for the
aaS is that it must be deployed as a Docker container which
mplements a web server that executes the function when an
TTP call is issued at port 8080 and at the root ‘/’ route. In [3,7]
he function that is used is the pigo-openfaas5 function which
mplements a simple face recognition service.

low of operation. The Fig. 2 show the flow of the operations that
re carried out when the client (1) requests the execution of a
unction (called <fn> in the Figure). Once the framework is set
p in a set of nodes, the flow of usage starts from a client which
akes a request to a node, in particular to the scheduler service
xposes at port 18080. The URL which must be called by the client
s the following:

http://ip:18080/function/<fn>

The placeholder <fn> must be replaced with the name of
he function and it is mapped to the container name which
mplements the function. After making the request, the list of
eighbours nodes is retrieved from the discovery service and
ached. Then, a scheduling action is taken (2) and if a scheduler

3 https://openfaas.com
4 https://github.com/openfaas/of-watchdog
5 https://github.com/esimov/pigo-openfaas

based on RL is configured, the current state is passed to the
learner service which replies with the action to be taken. Once
the action is known it is immediately executed (3) and this can
require forwarding the request to another node. The request
forwarding is implemented with an HTTP call to the URL:

http://remote-node-ip:18080/peer/function/<fn>

This HTTP will trigger the scheduler of the remote node and
the task will be executed remotely or it can also be rejected.
Otherwise, if the request has been marked as to be executed
locally, the node will enqueue it and finally, it will be executed
(4). The actual function execution is mapped to an HTTP call to
the function’s container. After the execution of the function, the
output payload is finally forwarded to the client which will see
its HTTP request to be concluded (5). At this point, there is an
optional step that is executed only if the scheduler is RL based,
that is the training of the model (6). Indeed, after the execution
of the request, which is finished with the return of the output
payload, we can derive the reward and forward it to the learner
service which will update the weights of the model accordingly.

This concludes the operations that are needed for completing
a FaaS execution request, we will now see in detail the core
mechanisms of the three modules that we will call services in
order to differentiate them from the sub-modules that compose
them.

2.1.1. Scheduler service
The scheduler module is written in Go. The language has been

chosen because it is particularly tailored for the development of
web servers. Fig. 3 illustrates the architecture of the scheduler
service with all the submodules that compose it.
3

https://openfaas.com
https://github.com/openfaas/of-watchdog
https://github.com/esimov/pigo-openfaas


Gabriele Proietti Mattia and Roberto Beraldi SoftwareX 21 (2023) 101290

t
f
A
A
e
a

Fig. 2. The flow of the operations that takes place after a function execution request is issued from the client to the Scheduler Service.

Fig. 3. The architecture of the scheduler service.

As anticipated, the scheduler service can be seen as the en-
rypoint of the framework. This is because the client makes the
unction execution request directly to it. The handling of the
PIs, declared in the root Go file of the service, is done by the
PI module that handles both the preparation of the function
xecution request that is then forwarded to the actual scheduler
nd the preparation of the payload for the configuration update.

Upon the booting of the container two threads are started,
one is the web server thread which manages the HTTP API calls,
the other is the worker thread which manages the internal task
queue.

Scheduler. The scheduler module has been designed in order to
allow the interchangeability of the scheduling algorithms. For
this reason, a schedule interface is declared (Listing ). In this
4



Gabriele Proietti Mattia and Roberto Beraldi SoftwareX 21 (2023) 101290

w
c

t

e

Fig. 4. The architecture of the learner service.

ay, every scheduler algorithm can be easily instantiated and
onfigured.

ype scheduler interface {
GetFullName() string
GetScheduler() *types.SchedulerDescriptor
Schedule(req *types.ServiceRequest) (*JobResult, error)

}

Listing 1: The scheduler interface declares the Schedule()
function which implements the scheduling algorithm.

The Schedule() function implements the effective schedul-
ing of the function execution request and three possible actions
can be taken: the request is rejected, the request is executed
in the current node or otherwise it can be forwarded to other
nodes. When the request is rejected, the client HTTP request
is immediately closed by returning the HTTP error code 500,
otherwise, in other cases, the request is enqueued locally or re-
motely. The forwarding of the request, which is done by using the
‘‘API/Peer’’ (Fig. 3) module, again uses the function Schedule()
for scheduling the request, but this time the same request will be
marked as ‘‘External’’.

Queue. The internal queue of the scheduler has been conceived
with the idea of limiting the number of parallel running functions.
The parameter that is often referred to as the number of parallel
tasks that can be executed in a node is called K . When, for
xample, K = 4 we are assuming that the maximum number of

parallel running FaaS functions is 4. The queue is managed by a
thread which implements the producer–consumer scheme, in this
way a new function request is executed only when at least one
running slot is available. The queue can be also limited in size,
and in this case, when it is full, the requests are automatically
rejected. The queue that is implemented in the described way
limits the parallelism and specifically targets Edge devices which
do not have a relevant computational power and at the same time
it matches with models which are based M/M/1/K and M/M/K/K
queues.

Faas manager. The FaaS Manager module is in charge of for-
warding the function execution request to the correct FaaS func-
tion container. The module is conceived for allowing a further

level of decoupling in order to allow different FaaS container
technologies. The name resolution that translates the name of
the container to the IP address of the FaaS container is done
automatically by Docker.

Other modules. The remaining modules are the ‘‘Configurator’’
module which manages both a boot-time configuration (called
‘‘static’’) and a runtime configuration (called ‘‘dynamic’’), and the
‘‘Log’’ module which is in charge to manage the logging, indeed
extensive logging may slow down the service and increase the
latency of the tasks, then we have the ‘‘Scheduler Service’’ and the
‘‘Learner Service’’ modules which both are in charge of allowing
the interoperability between the Scheduler Service and the other
services.

2.1.2. Learner service
The learner module is written in Python. The language has

been chosen because it is widely used for machine learning. The
role of the module is of implementing Reinforcement Learning
models which are used for making scheduling decisions. Fig. 4
illustrates the overall structure of the service.

The learning process. Reinforcement learning models need three
fundamental entities for operating: the state, the actions and the
reward. The state is encoded as a string and in general, it contains
the current load of the node, the action is mapped to a scheduling
action and can be to execute the task locally, reject it or forward it
to another node. Finally, the reward drives the learning process
and it can also depend on the total task duration. For example,
we may assign a positive reward if a task is completed within
a certain deadline. For implementing this paradigm, we need to
make the clients able to train the model, because the final delay is
only known when the output payload of the function reaches the
client. For this reason, the ‘‘API’’ module implements the /train
and /train_batch routes, the first for the training of a single
entity and the second for multiple entities at a time.

The learning entities. The training of the model is carried out by
passing to the learner thread learning data wrapped in structures
called ‘‘learning entities’’. A learning entity contains a progressive
number (called ‘‘EID’’), the state (as a string), the action (as a float)
and the reward (as a float).
5



Gabriele Proietti Mattia and Roberto Beraldi SoftwareX 21 (2023) 101290

T
l
f
p
a
n
g
u
t
t
f
t
i
l
c

T
m
p
Q
w
(
t
m
n
l

q

a
u

∆

he learning thread. The learning process is carried out by the
earner thread which is in charge to defer the training upon the
act that all the needed entities are present. Indeed, the training
rocess must follow the specific order according to which tasks
re generated by the client but it may happen that tasks did
ot complete in the same order as the one in which they are
enerated. For this reason, to each arriving task to the Sched-
ler Service, a progressive number is attached, and then, after
he action is taken, that number (EID), the state and the ac-
ion are transferred (through HTTP headers) to the client which
inally triggers the training. The learning thread for deferring
he learning implements a producer–consumer scheme has been
mplemented in such a way the training only starts when a W
earning entries with consecutive EIDs are in the queue which is
ontinuously sorted.

he learning model. The weights associated with the learning
odel are updated by the ‘‘Value Function’’ module which im-
lements the approximation of the Q (s, a) [16] function. Both the
-Table and the Tiling methods are implemented but the frame-
ork can easily be extended even with Deep Neural Networks
DNNs). The Value Function model updates the weights according
o the error that is computed by the ‘‘Bellman TD Form’’. This
odule, given the current state, the action, the next state, the
ext action and the reward, returns the δ. For example, the Sarsa
earning strategy for the average reward is [16] shown in Eq. (1).

∗(s, a) =
∑
r,s′

p(s′, r|s, a)
[
r −max

π
r(π )+max

a′
q∗(s′, a′)

]
(1)

The time differential form allows knowing the error to be
pplied. Eq. (2) shows the time differential form of Eq. (1) when
sing the Q-Table for approximating the Q (s, a) function.

t = [Rt+1 − R̄t+1 + Q (St+1, At+1)− Q (St , At )] (2)

The ∆t is returned by the ‘‘Bellman TD Forms’’ module and
finally applied by the ‘‘Value Function’’ module by using the
Q-Table as in Eq. (3).

Q (St , At )← Q (S, a)+ α∆t (3)

2.1.3. Discovery service
The discovery module is written in Go, and its purpose is to

allow the nodes to know which are their neighbours. The service
is based on a gossip algorithm and must be configured at boot
with the IP of another node (called ‘‘init server’’); then, when
another node, suppose B, requests to it, node A, the list of all the
nodes that it knows, the IP of B will be added list nodes known
by A. For now, only fully connected topologies are supported by
the framework and therefore, if every node is initialised with the
same init server, then every node will eventually be aware of each
other.

3. Illustrative examples

Examples of the running framework have been illustrated
in [7] and in [3]. In particular, [7] shows an early version of
the framework running a benchmark on a power-of-n choices-
based algorithm for distributed load balancing that follows a
randomised approach. Instead, in [3] the framework has been
used to show in practice how a Reinforcement Learning based
approach for making the scheduling decision can be used on
real devices. Indeed, after testing the solution in a simulated
environment, the framework has been installed on 12 Raspberry
Pi 4 and a Sarsa-based RL strategy has been used.

All the scripts used for running the benchmarks have been
published as open source. They are available in the repository
called experiments.6

4. Impact

The P2PFaaS framework presented in this work is probably
the first framework available as open source which allows the
implementation of distributed scheduling and load balancing al-
gorithms between nodes by following a fully decentralised (peer-
to-peer) scheme. Indeed, its flexibility is the maximum possible
achievable since the development of the framework started from
the constraints imposed by well-known production frameworks.
P2PFaaS does not have the same level of maturity as them but
for researchers in the field, it can allow testing if the designed al-
gorithms can have a possible implementation in real devices and
under which conditions they can work. Moreover, after defining
the FaaS function, the scheduler can be easily written within the
core of the scheduler service and changed.

Due to the portability of the code, P2PFaaS is also easy to be
deployed in multiple SoC computers (like Raspberry Pis) by lever-
aging OpenBalena and therefore avoid using virtual machines in
order to test the algorithms on real computer devices which can
be bought in bulk due to their affordable cost. Testing this kind
of algorithm in real devices has a clear impact on the research
and, in particular, on the algorithm design. A series of conditions
and peculiar characteristics of real environments cannot be easily
grasped by simulations and mathematical models. For example, in
the original design of the Learner Service, the Scheduler Service
had to ask for the action of the Learner by using HTTP calls. How-
ever, these HTTP calls added a fixed delay of about 10 ms to each
request. When testing a deadline-based scheduling algorithm this
is revealed to be a critical issue, indeed, the RL-based approach
was not able to outperform even a simple randomised approach.
This led to the replacement of the HTTP calls with a pool of 20
web sockets which are now used in parallel only for requesting
the action to the Learner Service. Therefore, mathematical models
and simulations can give a direction about the performance of the
algorithms in a world that is simplified, but they are fundamental
to study the algorithms.

5. Conclusions

In this paper, we presented the P2PFaaS framework, a software
suite which enables the testing and benchmarking of scheduling
and load balancing algorithms among sets of real nodes. We
showed the essential characteristics of the framework which are
modularity, portability and the possibility of easily changing the
core scheduler algorithm by using the designed interface. We
also presented in detail the three services which compose the
framework that are: the Scheduler, the Learner and the Discovery
service. Further improvements of the framework are oriented to
two essential directions. The first regards improving the manage-
ment of service displacement by supporting dynamic functions
allocations and availability. Then, the second direction regards
green edge computing, indeed further modules will be added and
they are currently in development to allow the benchmark of
scheduling and load balancing algorithms that can make decisions
considering the energy aspect of the nodes.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing in-
terests: Gabriele Proietti Mattia reports article publishing charges
and equipment, drugs, or supplies were provided by Sapienza
University of Rome.

6 https://gitlab.com/p2p-faas/experiments
6

https://gitlab.com/p2p-faas/experiments


Gabriele Proietti Mattia and Roberto Beraldi SoftwareX 21 (2023) 101290

D

F

u

R

ata availability

Code and data are all available as open source

unding

This work has been supported by Sapienza University of Rome
nder the project ‘‘FogAware’’ (Grant ID: PH120172B230B4D7).

eferences

[1] Iorga M, Feldman L, Barton R, Martin MJ, Goren NS, Mahmoudi C. Fog
computing conceptual model. Tech. rep., NIST; 2018.

[2] Pliatsios D, Sarigiannidis P, Goudos S, Karagiannidis GK. Realizing 5G
vision through cloud RAN: technologies, challenges, and trends. EURASIP
J Wireless Commun Networking 2018;2018(1):136. http://dx.doi.org/10.
1186/s13638-018-1142-1.

[3] Proietti Mattia G, Beraldi R. On real-time scheduling in fog computing: A
reinforcement learning algorithm with application to smart cities. In: 2022
IEEE International conference on pervasive computing and communications
workshops and other affiliated events (PerCom Workshops). 2022, p.
187–93. http://dx.doi.org/10.1109/PerComWorkshops53856.2022.9767498.

[4] Kaur M, Aron R. A systematic study of load balancing approaches in
the fog computing environment. J Supercomput 2021;77(8):9202–47. http:
//dx.doi.org/10.1007/s11227-020-03600-8.

[5] Alqahtani F, Amoon M, Nasr AA. Reliable scheduling and load bal-
ancing for requests in cloud-fog computing. Peer-To-Peer Netw Appl
2021;14(4):1905–16. http://dx.doi.org/10.1007/s12083-021-01125-2.

[6] Talaat FM, Saraya MS, Saleh AI, Ali HA, Ali SH. A load balancing and op-
timization strategy (LBOS) using reinforcement learning in fog computing
environment. J Ambient Intell Humaniz Comput 2020;1–16.

[7] Beraldi R, Proietti Mattia G. Power of random choices made efficient for
fog computing. IEEE Trans Cloud Comput 2020;1. http://dx.doi.org/10.1109/
TCC.2020.2968443.

[8] Wan Z, Zhang Z, Yin R, Yu G. KFIML: Kubernetes-based fog computing
IoT platform for online machine learning. IEEE Internet Things J 2022;1.
http://dx.doi.org/10.1109/JIOT.2022.3168085.

[9] Le D-N, Pal S, Pattnaik PK. OpenFaaS. Cloud Comput Solut Archit Data
Storage Implem Secur 2022;287–303.

[10] Rossi F, Falvo S, Cardellini V. GOFS: Geo-distributed scheduling in Open-
FaaS. In: 2021 IEEE Symposium on computers and communications. ISCC,
IEEE; 2021, p. 1–6.

[11] Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R. IFogSim: A toolkit for
modeling and simulation of resource management techniques in the
internet of things, edge and fog computing environments. Softw - Pract
Exp 2017;47(9):1275–96.

[12] Liu X, Fan L, Xu J, Li X, Gong L, Grundy J, Yang Y. FogWorkflowSim: An
automated simulation toolkit for workflow performance evaluation in fog
computing. In: 2019 34th IEEE/ACM International conference on automated
software engineering. ASE, IEEE; 2019, p. 1114–7.

[13] Lera I, Guerrero C, Juiz C. YAFS: A simulator for IoT scenarios in fog com-
puting. IEEE Access 2019;7:91745–58. http://dx.doi.org/10.1109/ACCESS.
2019.2927895.

[14] Malik AW, Qayyum T, Rahman AU, Khan MA, Khalid O, Khan SU. XFogSim:
A distributed fog resource management framework for sustainable IoT
services. IEEE Trans Sustain Comput 2021;6(4):691–702. http://dx.doi.org/
10.1109/TSUSC.2020.3025021.

[15] Qayyum T, Malik AW, Khan Khattak MA, Khalid O, Khan SU. FogNetSim++:
A toolkit for modeling and simulation of distributed fog environment. IEEE
Access 2018;6:63570–83. http://dx.doi.org/10.1109/ACCESS.2018.2877696.

[16] Sutton RS, Barto AG. Reinforcement learning: an introduction. MIT Press;
2018.
7

http://refhub.elsevier.com/S2352-7110(22)00208-4/sb1
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb1
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb1
http://dx.doi.org/10.1186/s13638-018-1142-1
http://dx.doi.org/10.1186/s13638-018-1142-1
http://dx.doi.org/10.1186/s13638-018-1142-1
http://dx.doi.org/10.1109/PerComWorkshops53856.2022.9767498
http://dx.doi.org/10.1007/s11227-020-03600-8
http://dx.doi.org/10.1007/s11227-020-03600-8
http://dx.doi.org/10.1007/s11227-020-03600-8
http://dx.doi.org/10.1007/s12083-021-01125-2
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb6
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb6
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb6
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb6
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb6
http://dx.doi.org/10.1109/TCC.2020.2968443
http://dx.doi.org/10.1109/TCC.2020.2968443
http://dx.doi.org/10.1109/TCC.2020.2968443
http://dx.doi.org/10.1109/JIOT.2022.3168085
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb9
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb9
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb9
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb10
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb10
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb10
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb10
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb10
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb11
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb11
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb11
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb11
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb11
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb11
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb11
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb12
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb12
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb12
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb12
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb12
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb12
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb12
http://dx.doi.org/10.1109/ACCESS.2019.2927895
http://dx.doi.org/10.1109/ACCESS.2019.2927895
http://dx.doi.org/10.1109/ACCESS.2019.2927895
http://dx.doi.org/10.1109/TSUSC.2020.3025021
http://dx.doi.org/10.1109/TSUSC.2020.3025021
http://dx.doi.org/10.1109/TSUSC.2020.3025021
http://dx.doi.org/10.1109/ACCESS.2018.2877696
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb16
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb16
http://refhub.elsevier.com/S2352-7110(22)00208-4/sb16

	P2PFaaS: A framework for FaaS peer-to-peer scheduling and load balancing in Fog and Edge computing
	Motivation and significance
	Experimental Setting
	Related Work

	Software description
	Software Architecture
	Scheduler Service
	Learner Service
	Discovery Service


	Illustrative Examples
	Impact
	Conclusions
	Declaration of Competing Interest
	Data availability
	
	References


