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Abstract—We consider the case of a set of energy harvesting
edge nodes, equipped with photovoltaic panels that implement
some kind of monitoring service. To ensure that the service
operates in an optimal way, nodes have sometimes offload some
of their data to other nodes. We show that this kind of task
offloading (migration) can improve service performance by avoid-
ing temporary interruptions and prolonging the overall service
lifetime. We present a centralized algorithm based on Linear
Programming optimization problem solution and a distributed
implementation.

Index Terms—Green Edge Computing, Load Balancing, Lifes-
pan, Decentralization

I. INTRODUCTION

Edge computing promises to bring cloud-like services im-
plementation closer to end users, reducing the need to transport
data for processing, [1]. Accelerator-enhanced single-board
computers (SBCs) can nowadays be used as edge devices
running complex computations, e.g. inferencing models [2],
and are progressively augmenting the application spectrum of
this paradigm. In fact, an interesting application domain of
edge computing is in rural areas, e.g. for environment or ani-
mal activity monitoring. For example, [3] used Nvidia Jetson
Nano for early detection of beep’s Varroa destructor mites
within beehives. The mites cause varroosis (Varroosis apium),
the world’s most destructive honey bee disease, which inflicts
substantially greater damage and incurs higher economic costs
than all other known apicultural diseases, [3].

In such monitored sites, grid supply maybe not be easily
accessible, and photovoltaic (PV) solar panels can be used
instead. A vital role to enable the smooth running of edge
computing systems with solar energy supply is to guarantee
as much as possible enough available energies in all sites, [4].
Roughly speaking, if EG is the total energy produced in one
day by the PV panels, and EC the energy consumed by the
edge system during the day if EG ≥ EC then the system
should never be interrupted, while if EG < EC the lifespan
of the system should be as long as possible and with minimum
interruptions.

Intermittent operations can occur when the energy required
now and here at a site is not available, see Figure 1. Short-

This work was partially supported by project no. 202277 WMAE CUP
B53D23012820006, “EdgeVision against Varroa (EV2): Edge computing in
defence of bees” funded by the Italian’s MUR PRIN2022 (ERC PE6) research
program.

PV1 PV2
PVN

d1

d2 dN

S

b1
b2 dN

Fig. 1. PV panels with different orientations (surface normal’s vector di) can
generate different amounts of energy during the same day. In addition, a site
may temporarily lack energy while others do not.

term prediction can help in deciding whenever to postpone
heavy computations (load time shift), however, solar power
generation is heavily reliant on multiple meteorological fac-
tors, e.g. solar irradiance, cloud opacity, and air temperature
and it is not always accurate moreover, postponing processing
changes the characteristic of service. To achieve better service
continuity it is worth viewing the local energy at all sites as
a system-wide resource that is shared, which is achieved by
offloading energy-consuming task processing from one node
with low battery to a richer one [5].

We here focus on a use-case scenario where a set of energy
harvesting edge nodes, with their own camera implementing a
common service of image detection, e.g. beehives monitoring,
cooperate by delegating the inspection of an image acquired
by its own camera, to another node in the set (task offloading)
in case of the lack of enough local energy. The key concept in
our proposal follows from the observation that the amount of
solar radiation converted by two close PV panels into electrical
energy at the same time may differ, e.g. due to their different
orientations, surface sizes, or surface clean conditions but it
is highly correlated. In addition, the power required may also
differ as it depends on the current computation load. Overall,



this may cause one node to temporarily run out of energy while
the others have enough energy to process tasks. Shortly, this
condition can be swapped. By offloading tasks to each other
at proper times, the net result of the cooperation can be that
neither of the two nodes is interrupted nor task computation
postponed.

In this paper, we describe an energy-driven load-balancing
algorithm that exploits the differences in energy accumulated
and available to the nodes that reduce the event of service
interruption at some sites.

The contribution of this paper is (i) a characterisation an
off-grid green edge computing model and (ii) centralized
numerical algorithm that implements energy balancing; (iii) a
distributed algorithm implementation running on a simulator.

The paper is organized as follows: Section II reports the
related works, Section III system model and problem for-
mulation, Section IV the cenrtalized algorithm, Section V
distributed implementation. Conclusions are given in Section
VI.

II. RELATED WORK

Several papers address the problem of energy efficiency in
Edge and Fog Computing, via load balancing or proper re-
source allocation. [6] proposes an energy-aware load balancing
and scheduling (ELBS) method based on fog computing. The
work reports an energy consumption model of the workload on
the fog node. [7] designs a novel Energy-aware Data Offload-
ing (EaDO) technique to minimize the energy consumption
and latency in the industrial environment. [8] studied a sustain-
able infrastructure in Fog-Cloud environment for processing
delay-intensive and resource-intensive applications with an op-
timal task offloading strategy. The proposed offloading strategy
optimizes two Quality-of-Service (QoS) parameters such as
energy consumption and computational time. The model in
these papers includes a cloud layer where the computation
is eventually performed. [9] presents an energy-efficient Fog
architecture considering the integration of renewable energy.
Three resource allocation algorithms and three consolidation
policies were studied. [10] instead proposes a Pareto-efficient
algorithm that aims to simultaneously optimize both latency
and energy efficiency in data stream processing for edge
computing. Then, Lyu et al. in [11] propose an architecture
that integrates the Cloud, the MEC (Mobile Edge Computing)
layer and the IoT for implementing a selective offloading
algorithm that is designed to minimize the energy consumption
of devices. However, the approach does not consider the
energy contribution that is harvested from solar panels. In [12]
instead, the authors focus on the Internet-of-Vehicles (IoV) and
propose an efficient scheduling framework to minimize the
energy consumption of Green Roadside Units (RSUs) under
latency constraints. Differently from our work, we hypothe-
size that each computing node has attached an accumulator,
moreover, the approach that we follow is even decentralized.
Wu et al. in [13] propose an algorithm called “GLOBE”
which performs a joint geographical load balancing in MEC
environments where energy-harvesting nodes are considered.

The authors show, relying on Lyapunov optimization, that the
approach achieves a close-to-optimal result compared to an
offline algorithm that knows the full information about the
system. A similar approach is studied in [14] which proposes
a hierarchical task offloading that optimizes latency, energy
consumption, and cloud fees. However, in these works, the
decentralized approach is not considered. Similar approaches
are then used in [15].

Other approaches focused on energy-aware task scheduling
can be seen in [16], [17] and [18].

Symbol Meaning

Model

V Set of n nodes
Xn×n Flow migration matrix where each xij describes the rate

of tasks migrated from node i to j
ewi Energy required by node i to process an image
esi Energy required by node i to send an image
eri Energy required by node i to receive an image
pi(X) Power required by node i given the migration matrix X
pmi Power required by node i to serve the whole local traffic λi

pmini Minimum power required by node i
pmaxi Maximum power required by node i
ri Power required by node i to receive and serve remote traffic
si Power saved by node i when sending local traffic
bi Battery charge available at node i
b Battery vector (b1, b2, . . . bn)
lsi(bi,X) Lifespan of node i, given matrix X and battery bi
lsT (b,X) Lifespan of the system given battery vector b and matrix X

Adaptive Heuristic

τ Round period
ϵ Tolerance threshold for balancing condition
α Step-size for increments and decrements of migration ratios

TABLE I
LIST OF MAIN SYMBOLS USED

III. SYSTEM MODEL

We consider a set V of N nodes. Each node i receives
a stream of tasks (images) at rate λi frames per second
(fps) directly from a camera connected to the device (called
hereafter local traffic or user traffic) and offload (delegates
without processing) a flow of 0 ≤ xij ≤ λi, xii = 0 images
to node i, which is the entry i, j of the migration matrix X.
By definition xii = 0

Energy requirements: We assume that the time required to
process a task is τwi

, while the time for sending and receiving
a task τsi = τri < τwi

. A node absorbs pIi watts when it
is idle and at most pMi watts when working. When CPU
is fully utilized it absorbs an additional power pw and when
sending/receiving a power ps < pw. Hence:

ewi
= pwτwi

esi = psiτs



where clearly ewi
> {esi , eri}. The rate of task execution

of a node i is:

λ′
i = λi −

∑
j

xij +
∑
j

xji

Clearly, as
∑

i λ
′
i =

∑
i λi all local tasks are eventually

processed by some node. The overall power requirement of
node i is:

pi(X) = pIi + ewi
λ′
i + er

∑
j

xji + es
∑
j

xij

which for convenience is written as

pi(X) = pmi
+ ri

∑
j

xij + si
∑
j

xji

where

pmi = pIi + λiewi ri = ewi + eri si = −ewi + esi

The term ri > 0 takes into account the additional energy
needed to receive and process remote tasks, while si < 0 is
the energy saved because tasks are sent to other nodes rather
than being processed locally.

Assume now that the battery charge of node i is bi joules,
the lifespan of a node is defined as:

lsi(bi,X) =
bi

pi(X)
(1)

The lifespan has the property that if the battery is increased
by a factor α then the lifespan increases by the same factor.
In addition, the admissible lifespan interval of node i is the
interval

Ii = [tm, tM ] (2)

where tM = bi
pmini

, is the longest lifespan of the node
assuming the node is used only for offloadingand tm = bi

pmaxi
,

is shortest duration computed assuming the maximum power
absorbed, see Figure 2.

The ’battery-is-empty’ event frequency is:

fi(b,X) = ls−1
i (bi,X) = p′mi

+ r′i
∑
j

xji + s′i
∑
j

xij

where the normalized coefficients are:

p′mi
=

pmi

bi
r′i =

ri
bi

s′i =
si
bi

In general, the set of edge nodes is not homogeneous in terms
power requirements.

Definition III.1 (Power compatibility). A set V of nodes is
power compatible if maxi∈V {pmini} < mini∈V {pmaxi}.
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Fig. 2. An example of lifespan intervals for three nodes, given their initial
battery and maximum and minimum power absorbed (details of node 1 are
given). Any value in the interval I can be matched by a proper migration
matrix X.

A. Problem formulation

To shape the approach that will allow us to find an optimal
migration matrix X∗, we first need to define some term and
then tie the notion of optimality to the final performance
goal. A matrix X is compatible with the user traffic vector
(λ1, λ2, . . . , λN ) if

∑
j xij = λi, xij ≥ 0. Two matrices X

and X’ are traffic-equivalent if any node processes the same
traffic, i.e. xii = x′

ii.
Intuitively, a matrix X is more efficient than another matrix

X’, if they are traffic-equivalent and if the total amount of
transmissions using X is lower than the number of trans-
missions of X’. For this reason we use the notation |X| to
mean the sum of all the not diagonal elements of the matrix
|X| =

∑
i ̸=j xij . We denote with S the set of migration

matrices.
As the service deteriorates even when one single node goes

down, the lifespan of the system associated with a matrix X
is defined as:

lsT (X) = min{lsi(X)}

The sustainable rates, xij are defined as those that do not
make any node in the system to require more than pMi

watts.
In fact, any violation of the requirement will move a node to
a congested state, e.g. the node enqueues and eventually drops
tasks. We denote with SA ⊆ S the set of matrices that do not
violate this requirement.

Definition III.2 (Optimal Solution). Given a set V of N nodes,
a flow migration matrix X∗ is optimal if lsT (X∗) ≥ lsT (X)
for all X ∈ SA

Our problem is to find an optimal assignment of all flow
variables which minimizes the maximum lifespan of the sys-
tem. To make the problem solution simple we use the property
that under no power limitations, the function lsT is maximum
when all nodes have the same lifespan.



1) Constrains: We now formulate the constraint in matrix
form.
Power absorption: A node cannot absorb more than a maxi-
mum nominal value, pMi

∀i ∈ V pmi
+ ri

∑
j

xji + si
∑
j

xij ≤ pMi

In matrix notation this constrain can be expressed:

Cx ≤ pw

where is the cost offloading matrix:

[C]ij =


si, if j/N = i ∧ j/N ̸= j mod N

ri, if j mod N = i, j/N ∧ j mod N

0 otherwise

x is a column vector xT = (x11, x12, . . . , x1N , x21 . . . xNN ),
C is a N×N2 and pw = pM −pm, i.e. the difference among
the maximum and minimum power vectors:

Uniformity. Nodes must have the same frequency:

i ∈ V p′mi
+ r′i

∑
j

xji + s′i
∑
j

xij =

p′mi+1
+ r′i+1

∑
j

xji+1 + s′i+1

∑
j

xi+1j (3)

which can be expressed as:

D(p′
m + C ′x) = 0 (4)

where D is a N ×N difference matrix:

[D]ij =


1, if i = j

−1, if j = (i+ 1) mod N

0 otherwise
(5)

and C ′ is the N ×N2 normalized cost matrix:

[C ′]ij =


s′i, if j/N = i ∧ j/N ̸= j mod N

r′i, if j mod N = i ∧ j/N ̸= j mod N

0 otherwise
(6)

Single Hop Forwarding: a node can only offload a fraction
of its local traffic λi to other nodes, i.e. nodes cannot act as in-
termediaries. This constraint is introduced for the performance
reason of reducing transmission delay.

∀i ∈ V
∑
j

xij ≤ λi xii = 0 xij ≥ 0 (7)

By defining the N ×N2 forwarding matrix as

[F ]ij =


1, j/N = i, i ≤ N ∨ i = N + 1

j/N = (j mod N)

0 otherwise
(8)

the forward constrain becomes:

Fx ≤ Λ, x ≥ 0, xii = 0 (9)

where

Λ =


λ1

λ2

...
λN

 (10)

Topology: In addition to single hop forwarding, task of-
floading may occur only if there is a communication link
between two nodes. Let E be the set of communication
network channels. Then xij ≥ 0 only if (i, j) ∈ E otherwise
it must be zero.

B. Problem formulation

We now can formulate the following Migration Problem
(MP),

min
x

1Tx

subject to: Cx ≤ pw

Fx ≤ Λ

D(C ′x+ p′
m) = 0

x ≥ 0

xij = 0∀(i, j) /∈ E

For example, for N = 3 the main matrixes have the
following elements:

C =

 0 s1 s1 r1 0 0 r1 0 0
0 r2 0 s2 0 s2 0 r2 0
0 0 r3 0 0 r3 s3 s3 0



F =


1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 0 1 0 0 0 1


D =

 1 −1 0
0 1 −1
−1 0 1


The problem is feasible if the solution set is not empty, i.e.

there is a matrix that satisfies all the constrains.

Theorem III.1. Let b = (b1, b2, . . . bN ) be a battery vector
and I = I1 ∩ I2 . . .∩ IN the intersection of all the admissible
associated lifespan intervals defined by Equation 2. If I ̸= ∅
then the problem MP is feasible.

Proof. Let t∗ ∈ I . The coefficients of the migration matrix
are constrained only by 2N equations, N due to the power
that has to be absorbed where the i-th equation is:

bi/t
∗ = pmi + ri

∑
j

xij + si
∑
j

xji

and N due to the loads:
N∑
j=1

xij = λi

which is an underdetermined linear system of 2N equations
and N2 unknowns.



Corollary III.1. If a system is power compatible then MP is
feasible for any constant battery vector, bi = K.

Proof. The interval I is not empty.

IV. A CENTRALIZED CONTROL ALGORITHM FOR CHARGE
EQUALIZATION.

Our first implementation relies on a centralized algorithm
based on the numerical solution of the MP problem, called
centralized planner algorithm, which is carried out using the
numerical solver HiGHS of the scipy Python extension. The
following pseudo-code formalizes the idea. It is assumed that
the planner is aware of the state of the system of edge nodes,
e.g. battery charge and incoming traffic. The planner computes
a new migration matrix based on a currently available battery
vector b provided that it is higher than a threshold activation
value, and applies the matrix for a period of time τ called a
migration round. If batteries are not recharged, then at the end
of the round b = 0. If batteries are recharged, a new matrix is
computed and a new round starts. Rounds may have different
lengths. To solve the MP problem the current battery vector b
is first used; if the problem is unfeasible the migration matrix
related to a constant battery vector is computed and applied
(which is always feasible).

Algorithm 1 Centralized Planner Algorithm
while b > bT do

if MP (b) is feasible then
(X, τ)← Solve MP (b)

else
∆b(t)← min{b(t)}1
(X, τ)← Solve MP (∆b)

end if
migrate using X for time interval τ

end while

A. Solar power production data set

The data used in our experiments were collected using a
plant of 20 solar panels at the latitude of 41°.7’, with an
elevation of 45° degrees and orientation of North-West 330°;
each panel is 2 × 1 m, and a declared efficiency of 20.38%
in Standard Test Condition. Data were sampled every 5 min.
In the experiments, at sec, granularity data is obtained by
linear interpolation among two adjacent sample points, and the
power is scaled to simulate a panel with a smaller surface. We
selected some representative behaviors labeled as day-1,day-2,
and day-3. The shape is scaled of 0.33%, e.g. the 6kW peak
production is mapped to 20W, e.g. produced by a 45× 35 cm
panel.

The following table summarizes the parameters used in our
experiments.

We now report some result considering three representative
days.

B. Day 1: Partially cloudy day winter time

In the first case, we consider the profile reported in Figure
3. The power was produced on March 19, 2023, and shows
a characteristic pattern where the power falls suddenly due

Parameter Sym. Value

Idle Power PI 2 W
Maximum Power PM 5 W
CPU power consumption pw 2.7 W
RTX power consumption ps 0.3 W
Image processing time τw 8.3 ms
Receiving time τr 10 ms
Sending time τs 10 ms

TABLE II
PROFILE OF EDGE NODES
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Fig. 3. The daily power production on March 19, 2023 (day-1).

to the presence of clouds in the sky. This scenario shows
how cooperation can avoid interrupting the service. Two nodes
receive traffic at rates λ1 = 7 and λ2 = 8 and we assume
that due to different solar panel orientations and the panel’s
surface condition, the efficiency of the panels is ξ1 = 0.95
and ξ1 = 0.75. Figure 4 shows the available energy in the
accumulators when nodes do not cooperate. Node 2 has a
service interruption after a couple of hours, and stops working
before the other.

Figure 5 shows the accumulator profile when migration is
used. A migration run starts when the energy accumulated in
both batteries is at least 3000 Joules (called the cooperation
activation threshold) and ends after the system lifespan is com-
puted solving the LP problem with the current battery profile.
Let t be the time when this event occurs. The LP problem is
instantiated with the battery vector and the migration matrix X
is applied until t+ ls. At this time, both accumulators should
be empty, but since they are recharged this is no true. Figure
5 shows 8 migration rounds.

C. Day 2: Partially cloudy day spring time

The second trace we considered is reported in Figure 6,
which also refers to a partially cloudy day, but in June. The
daylight is longer and the power is higher. We study now N=2
nodes and the consequence of accumulators having a finite
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Fig. 4. Battery energy profile without cooperation.
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Fig. 5. Battery energy profile with cooperation. Vertical lines indicate the
boundary of a new migration round, activation threshold is 3000 Joules.

capacity of 120kJ by simulating two consecutive days with
the same profile. Figure 7 shows the battery charge without
migration. Since the energy produced is higher, no service
interruption is registered. Also, nodes have a longer lifespan.
However, the first node stops at 4 am on the second day, almost
three hours before the first one. It is worth noting that the node
2 accumulator is fully charged so that the energy produced
is lost. We call this event green energy loss. In this specific
case, energy loss amount to 7045 Joules, which is a source of
inefficiency.

Figure 7 shows the profiles when the two nodes cooperate.
In this case, the lifespan of node 1 is prolonged by approx
one hour and a half at the expense of node 2. Both nodes stop
working at the same time.
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Fig. 6. The daily power production on June 13 2023, (day-2)
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Fig. 7. Accumulated charge for day-2 profile, no cooperation.

D. Day 3: Sunny day spring time

We now consider the profile of Figure 9, related to a
sunny day, N=4 nodes with accumulator capacity of 160kJ
(≈ 44.5Wh). The panel efficiency was set to efficiency
factor ξ = 0.93, 0.87, 0.85, and ξ = 0.8 and the load to
λ1 = 7, λ2 = 8, λ3 = 9, λ4 = 10.

Figure 10 shows the available energy in the accumulators
over two days whitout cooperation. Even if the total amount
of energy produced in a day is enough to supply the nodes,
it is not stored and consumed in an optimal way, making the
service running on node 3 and node 4 stop.

Figure 11 shows the same profile when nodes cooperate, i.e.
node node migrates towards the other. The are two cooperation
rounds. The first round (≈ 11:00 am - 1 pm) makes the battery
become full rougly at the same time (at 1 pm). The second
one starts after midnight and ends in the morning. Thanks to
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Fig. 8. Accumulated charge for two days using day-2 profile, with coopera-
tion.
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Fig. 9. The daily power production on June 16, 2023 (day-3)

cooperation now no nodes stop working.

V. ADAPTIVE HEURISTIC

The main limitation of the optimization method, even if
applied continuously as described in Algorithm 1, is that it
requires the real-time parameters of each node involved in
the system. In a hypothetical real implementation, these nodes
must have a reference entity, which can be another node or
even the cloud, which gathers all the data from the nodes, runs
the algorithm, it finds the solution X, and then it returns the
new migration ratios configuration to the nodes. This approach
does not scale with the number of nodes, which in Edge
environments can also be significant. To solve this problem,
we propose, in this Section, a fully decentralized heuristic
that enables each node to find a solution to the problem
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Fig. 10. Accumulated energy by 4 nearby nodes with different power
produced and required, no cooperation.
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Fig. 11. Accumulated energy by 4 nearby nodes with different power
produced and required, with cooperation.

only knowing the real-time parameters of its neighbors. The
idea behind the algorithm is to make each node progressively
update its migration ratios toward the neighbors by following
a round pattern of period τ . The update is done by a small step
size α. In this way, the solution is continuously adapted and
can even react to unpredictable changes in system parameters
(i.e. a node can go down or saturate). We now need to define
the rule for which a migration ratio has to be increased or
decreased of the step size α. The key idea is that if we have a
set of nodes with different lifespans, to maximize the lifespan
of the system, which is the objective of the optimization
problem (Definition III.2), the nodes which have a low lifespan
have to migrate part of their tasks to the nodes which have
a higher lifespan. Intuitively, this will make the nodes with



a lower lifespan increase it, while the others will decrease
it until they match. More precisely, given a round r, for any
given node i if we compute the average lifespan among a node
and its neighbors, called lr,ai , and lifespans of all nodes are all
different, we necessarily have some node neighbor node j ∈ V
for which its lifespan at round r is lri > lr,ai and some node
k ̸= j for which its lifespan is lri < lr,ai . Since our algorithm
has to be resilient to variation in traffic, we impose a tolerance
zone, and we give the following

Definition V.1 (Lifespan-Balancing). Given a node i ∈ V , the
average lifespan among it and its neighbors as lr,ai and ϵ the
tolerance coefficient, we define is as lifespan-balanced if

lr,ai · (1− ϵ) ≤ lri ≤ lr,ai · (1 + ϵ) (11)

The purpose of the algorithm is to balance the lifespan
of the nodes by progressively increasing or decreasing the
migration ratios, keeping in mind that nodes that are below
the average lifespan always need to migrate tasks only and
only to nodes that are above the average lifespan. Indeed,
it is not reasonable to forward traffic to nodes below the
average lifespan since this would progressively make low-
lifespan nodes not increase their lifespan, thus not approaching
the solution to the problem.

Algorithm 2 shows our proposed method. We suppose that
every τ seconds, each node in the system calls the function
UPDATERATIOSROUND, which updates the migration ratios
of the node. Migration ratios are always used for forwarding
decisions since they can be interpreted as migration probabil-
ities. Suppose that node i reaches the round period. Migration
ratios are updated by following these steps:

1) first of all, we compute the average lifespan between the
current node i and its neighbors. In real environments,
the node i asks the neighbors for their lifespan. The
lifespan estimation is computed using Equation 1 with
the battery residual energy value at the beginning of the
last round and the average energy consumption of the
node during the last round. We also compute the bounds
of the tolerance zone.

2) the algorithm then checks if the migration ratios must
be decreased because the node i could be migrating too
much traffic, and it is now out of balance since its lifespan
fell above the higher bound of the tolerance zone. To
return in balance, the node must decrease its lifespan,
and this can be node by decreasing by a step size a the
positive migration ratios toward its neighbors;

3) at this point, we check if the current node’s lifespan is
above the tolerance zone’s lower bound. If this is true,
then we consider the node as lifespan-balanced, and no
further action is taken;

4) if the current node’s lifespan is instead below the toler-
ance zone’s lower bound, then it means then decrease the
migration ratios towards the nodes whose lifespan fell as
well below the tolerance zone’s lower bound if the current
node i is migrating tasks to them. This is because, as

already described, we need to avoid forwarding tasks to
nodes that are in the same condition;

5) now we can proceed to increase the lifespan of α towards
the neighbors whose lifespan is above the tolerance zone’s
higher bound only if that neighbor is rejecting fewer tasks
than the current node i or if, even better, it is not rejecting
tasks. We include this condition to avoid the trivial
behavior of forwarding tasks only to decrease the lifespan
without concerns about whether they are executed. When
increasing migration ratios, we also check if their sum is
not exceeding one.

The algorithm returns the updated migration ratios which
are then set and used during the next round.

Algorithm 2 Lifespan-levelling Decentralized Adaptive
Heuristic
Ensure:

neighbors ← list of current node’s neighbours
ratios ← array of migration ratios one for each neighbor
τ ← round period

Require:
self ← the current node which is running the algorithm
lifespans ← array of neighbors’ lifespans
ϵ ← the tolerance coefficient
α← the step size

function UPDATERATIOSROUND(ratios, neighsIPs, states, ε, α)
[1. Compute the average lifespan value and the tolerance zone limits]
selfLifespan ← GetLifespanLastRound(self)
avgLifespan ← (sum(lifespans) + selfLifespan) / (len(lifespans) +1)
avgHigh ← avgLifespan · (1 + ε)
avgLow ← avgLifespan · (1− ε)

[2. Check if the current lifespan is above the average and ratios must
be reduced]

if selfLifespan > avgHigh then
for n ∈ neighbors do

[2a. Reduce of step α every positive ratio]
if ratio[n] > 0 and ratios[n] - α ≥ 0 then

ratios[n] ← ratios[n] - α
end if

end for
end if
[3. Check current state is above or equal to the low limit of the tolerance

zone, in that case, the node is balanced]
if selfLifespan ≥ avgLow then

return ratios
else

for n ∈ neighbors do
[4. Reduce the ratio to nodes that are below the tolerance zone]
if lifespan[n] ≤ avgLow and ratios[n] - α ≥ 0 then

ratios[n] ← ratios[n] - α
end if
[5. Increase the ratio to nodes that are above the tolerance zone

only if the lifespan is above the tolerance zone and the drop rate is less
than the current]

selfDropRate ← GetDropRateLastRound(self)
nDropRate ← GetDropRateLastRound(n)
if states[n] > avgHigh and sum(ratios + α)≤ 1 and (nDropRate

= 0 or nDropRate < selfDropRate) then
ratios[n] ← ratios[n] + α

end if
end for

end if
return ratios

end function



A. Simulations
The performances of Algorithm 2 have been measured in

simulation. In particular, we set up a Python discrete-event
simulator by using the Simpy1 library. The simulator has been
published as open source2.

In the simulator, we attached a service (Qs) and a transmis-
sion queue (Qt) to each node. Tasks arrivals are distributed
according to a Poissonian distribution with average λi. This
means that the inter-arrival times are drawn from an expo-
nential distribution with average 1

λi
. Service times instead

are drawn from a Gaussian distribution with average 1
µi

with
σ = 1.3× 10−3.

Figure 12 show the result of an experiment with four nodes
and the same parameters of the optimization algorithm with re-
sults presented in Figure 10 without the cooperation. The chart
is used as a baseline, and we can observe how the residual
battery is misaligned as well as the power consumption of the
nodes, which is responsible for the different discharge slopes
in the battery percentage chart. Moreover, the non-cooperation
experiment also shows how nodes have different drop rates
over time, and this depends on the different arrival rates. In
particular, Node 3, the node with the highest load λ, reaches
the 5% of dropped jobs when nodes are all up and running3.
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Fig. 12. Traces of the residual battery capacity, the instant power consump-
tion, and the drop rate of the experiment with 4 nodes with λ = 7, 8, 9, 10,
using the day-2 solar trace (Figure 6) with efficiencies ξ = .93, .87, .85, .80
respectively and no cooperation. Task arrivals follow a Poisson distribution.

Within the same context, we used Algorithm 1 and Fig-
ure 13 shows the result of the experiment. What we can

1https://pypi.org/project/simpy/
2https://gitlab.com/gabrielepmattia/simulator-2023-cloudcom
3When nodes go down instead, the tasks are marked as rejected, for this

reason, the drop rate goes to 100%.

observe is that the battery traces and the power consumption
are aligned, and this is achieved thanks to the design of the
dynamic of the migration ratios. As a side effect, this also
increases the minimum lifespan of the node, which is equal
to the maximum since they are aligned. We can notice how
Node 3, in both the two cycles of the solar traces, goes down
to the lack of energy later with respect to the case in which
cooperation is not employed. Moreover, at the same time,
even the drop rate is leveled and reduced by the algorithm. In
particular, it reaches the 1% for all the nodes in the system.
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Fig. 13. Traces of the residual battery capacity, migration ratios, the instant
power consumption, and the drop rate of the experiment with 4 nodes with
λ = 7, 8, 9, 10, using the day-2 solar trace (Figure 6) with efficiencies ξ =
.93, .87, .85, .80 respectively and updating the migration ratios by using the
proposed Algorithm 2. Task arrivals follow a Poisson distribution.

VI. CONCLUSIONS AND FUTURE WORK

We have studied the case of a set of energy harvesting
edge nodes, equipped with photovoltaic panels that implement
some kind of monitoring service. To ensure that the service
operates in the optimal way, nodes offload their data to
other energy richear nodes. We show that this kind of task
offloading (migration) can improve service performance by
avoiding temporary interruption and prolonging the overall
service lifetime. We presented a centralized algorithm based
on Linear Programminng optimization problem solution and a
distributed implementation.

VII. APPENDIX

We provide here a simple quantification of the impact of
orientation on the amount of energy generated by a panel.
We consider two panels with the same azimuth angle π and



different elevation α. Let S(t) be the position of the sun in
the sky at time t, and Pi the direction of a tilted surface
representing solar panel i. The total power generated by
the surface has several components, among which the direct
irradiance (W/m2) ird(t) - usually the most significant one,
is considered here:

ird(t) = S(t) ·P

We calculated the total energy due to this component nu-
merically, using the pvlib library, which provides the altitude,
azimuth coordinates of the sun given the latitude and longitude
of a point in the Earth:

e =

∫ ts

tr

ird(t)dt

where ts and ts are the sunrise and sunset times. For example,
by changing the elevation from α = π/6 to α = π/7,
considering the path of the sun at latitude 42 degrees July
27, e changes from ≈ 5821J/m2 to ≈ 5053J/m2.
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