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Abstract. DNNs, commonly employed for complex tasks such as image
and language processing, are increasingly sought for deployment on In-
ternet of Things (IoT) devices. These devices operate with constrained
resources, including limited computational power, memory, slower pro-
cessors, and restricted energy requirements. Consequently, optimizing
DNN models becomes crucial to minimize memory usage and computa-
tional time. However, traditional optimization methods require skilled
professionals to manually fine-tune hyperparameters, striking a balance
between efficiency and accuracy. This paper introduces an innovative
solution for identifying optimal hyperparameters, focusing on the appli-
cation of pruning, clusterization, and quantization.
Initial empirical analyses were conducted to understand the relationships
between model size, accuracy, pruning rate, and the number of clusters.
Building upon these findings, we developed a framework that proposes
two algorithms: one for discovering optimal pruning and the second for
determining the optimal number of clusters. Through the adoption of
efficient algorithms and the best quantization configuration, our tool in-
tegrates an optimization procedure that successfully reduces model size
and inference time. The optimized models generated exhibit results com-
parable to, and in some cases surpass, those of more complex state-of-
the-art approaches.
The framework successfully optimized ResNet50, reducing the model size
by 6.35x with a speedup of 2.91x, while only sacrificing 0.87% of the
original accuracy.

Keywords: Deep Neural Networks; DNN Acceleration; DNN Compression; Edge
Computing

1 Introduction

Deep Neural Networks (DNNs) have garnered increasing popularity over the past
decade due to their adeptness in addressing intricate problems such as image
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recognition, language processing, signal processing, and more. Simultaneously,
the rapid proliferation of the Internet of Things (IoT) has led to an increasing
demand for deploying DNN models on IoT devices.

However, while these devices offer the advantage of easy installation in nu-
merous contexts where traditional servers may be impractical, this convenience
comes at a price. IoT devices typically feature constrained computational power,
limited memory capacity, and comparatively slower processors in comparison to
conventional desktops and laptops. Furthermore, a substantial number of these
devices operate on battery power, introducing additional constraints related to
energy consumption. Usually, DNNs require a powerful GPU to run effectively,
a component that is generally not available in most IoT devices, and therefore,
here emerges the need to optimize neural network models to reduce memory
usage and the computational time required for the inference operation.

Nowadays, the most common approaches for neural network optimization
require heuristic hand-tuning of some fundamental hyper-parameters by an ex-
pert in the field, whose goal is to find the optimal balance point between model
optimization and model accuracy degradation. In this paper, we present a tool
that is able to automatically find these hyper-parameters and use them to apply
the optimizations, which are pruning, weight clustering and quantization.

The rest of the paper is organized as follows. In Section 2 we give some
background to the reader about the techniques that are used for compressing
DNN models, in Section 3 we present different related work to our proposed
solution, in Section 4 we describe the algorithms used in the tool and, finally, in
Section 6 we draw the conclusions.

2 DNN compression techniques

2.1 Network pruning

DNNs exhibit notable redundancy in their parameterization, containing portions
that are not truly essential [1]. Recognizing this phenomenon, we can eliminate
some of these redundant parts to create smaller and simpler models. However,
when removing a portion of the DNN, the accuracy typically decreases. The key
challenge lies in identifying the most suitable parts of the network to be pruned
while minimizing the decrease in accuracy.

Network pruning can be categorized into three main types: Channel pruning,
Filter pruning, and Connection pruning.

Channel pruning The idea behind channel pruning is to decrease the number
of input and/or output channels in convolutional layers without compromising
performance. In this context, the authors of [2] achieved a 5x speedup on VGG-
16 [3]. However, on modern networks such as ResNet [4] and Xception [3], the
acceleration is only 1.4%.
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Filter pruning The Convolutional Neural Network (CNN) employs a substan-
tial number of filters to enhance precision. However, each filter adds the overall
number of floating-point operations, thereby increasing the latency of the net-
work. The goal of filter pruning is to eliminate less crucial filters. In [5], the
authors achieved a reduction in floating-point operations by approximately 3.2
and 1.58 times for VGG-16 and ResNet-50, respectively, while maintaining nearly
the same level of accuracy.

Connection pruning The size of a DNN is dictated by the number of con-
nections between its layers. A larger number of parameters result in a bigger
model, requiring more operations. The concept behind this pruning technique is
to eliminate unimportant connections.

A straightforward yet effective approach is Global Magnitude Pruning (MP)
[6], where all weights with absolute values below a predefined threshold are
removed.

2.2 Weight sharing

In weight sharing, also called weight clustering [7], only a small subset of values
are used to represent all the weights of the model.

For the creation of the clusters different algorithms can be used, in [8] the
weights distribution is based on a low-cost hash function, in which all connections
with the same hash share a single parameter value.

Another approach is the one proposed by Han et el. [9], where k-means algo-
rithm is used for the clusterization, in each iteration it assigns the values of the
weights to the clusters with the nearest centroid, it converges when no addition
assignments are needed. The time required for the convergence depends by the
initial value of the centroids, the most used method is using the k-means++
algorithm [10].

2.3 Quantization

Quantization [11] reduces the bit width of weights and activation functions,
typically from 32 bits (FP32) to 8 bits (INT8/UINT8). This compression yields
advantages such as a 4x reduction in memory overhead and a quadratic decrease
in computational cost for matrix multiplication by a factor of 16.

Quantization can be applied to weights only or both activation functions and
weights. While NNs are generally robust to quantization, when a low bit-width
quantization (< 8 bits) is employed, noise is introduced, potentially decreasing
accuracy. Robustness varies across networks, necessitating additional efforts to
leverage quantization benefits.

The two methods for quantizing neural networks are Post Training Quanti-
zation (PTQ) and Quantization Aware Training (QAT).
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Post Training Quantization (PTQ) In PTQ a pre-trained FP32 neural net-
work is converted directly to an integer model without additional tuning. If
some sample data are provided, they may help the calibration of the param-
eters. PTQ can be applied on both weights and activation functions using 8
bits integers. It can be applied only weights keeping the original floating-point
activation functions. Otherwise a combination such as int8 weights and int16
activation functions. Alternatively, the entire model can be quantized to 16-bit
floating point. Our experiments (Table 1) demonstrate the impact of various
quantization approaches on model size and inference time.

Quantized elements Accuracy Model size
(MB)

Inference time
(ms)

Weights fp32 (Original)
Activation functions fp32 0.832 12.28 9.240

Weights int8
Activation functions int8 0.821 3.18 4.055

Weights int8
Activation functions fp32 0.820 3.18 4.200

Weights int8
Activation functions int16 0.820 3.32 277.52

Weights fp16
Activation functions fp16 0.832 6.26 9.240

Table 1: MobileNet V2 quantized with different configurations

Using int8 for weights and int16 for activation functions (4th row in Tab. 1)
results in slower inference due to incomplete support by the kernel, as noted in
TensorFlow documentation. The FP16 model maintains the original inference
time while reducing the model size by half.

Quantization Aware Training (QAT) PTQ is fast to implement, it does
not require labeled data, and in most of the cases the quantized model has an
accuracy close to the original model, however, when the bit width is very low,
like 4 bits, the PTQ introduces too many errors.

In QAT some nodes are added to the network in order to simulate the error
introduced by the quantization, and then the model is trained with the pres-
ence of the added nodes improving the robustness to the quantization noise. In
general, QAT provides better performance but requires a labeled dataset and
fine-tuning which takes computational time.

Figure 1 illustrates the weight distribution of the mentioned optimization
approaches.
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Fig. 1: Weight distribution in the different steps of the described optimization
methods

3 Related work

In the literature, a lot of works use the illustrated techniques for model com-
pression, but only a few proposals find automatically the hyper-parameters nec-
essary to apply them. Regarding the pruning, the necessary hyper-parameter
is the pruning rate, for the clustering is the number of clusters, while for the
quantization the searching space is about the optimal configuration between the
ones presented in Table 1.

3.1 Pruning rate search

In [12] the authors claim that if the absolute values of the weights of each layer
are placed in order, they are very similar to each other, approximating a function
in which in the first part the values of the weights increase linearly, while in the
second part, the values increase exponentially, these two parts are divided by a
point called "demarcation point". They find a correlation between the threshold
used for Global Magnitude Pruning manually chosen in [9] and the demarcation
point, claiming that usually the optimal threshold is near this point. However
they have reported this correlation only for Lenet-5 [13], AlexNet [14], VGG [15],
additional tests are necessary to check if the correlation is always present.

In Optimal Brain Surgeon (OBS) [16], a method determines which weights to
remove based on their impact on loss function L. This often involves inverting the
Hessian matrix H = ∂2L/∂2W , a very hard task with modern neural networks
that have millions of parameters W .

L-OBS [17] addresses this by applying OBS to individual layers and propos-
ing an algorithm to reduce the Hessian matrix for feasible inversion. NAP [18]
uses an efficient approximation of the Hessian, utilizing a Kronecker-factored
Approximate Curvature method. However, these methods provide a lower com-
pression rate than methods based on weights magnitude pruning.

The authors of [19] propose a reinforcement learning approach, in which the
agent receives layer characteristics and returns the pruning rates for each layer,
which will be used to prune the model. Results are similar or better to manual
methods on VGG-16[15] and ResNet 50 [4].
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Runtime Neural Pruning [20] (RL based approach), dynamically optimizes
models during run-time adjusting the balance point based on input data, the
original model is always preserved for restoration.

The solutions in which the hyper-parameter search is solved as optimization
problem [21,22] provide a higher precision, but this kind of method has large
computational costs slowing the convergence time.

3.2 Number of clusters search

In [23] LetNet-5 [13] is clustered using K-Means with a greedy algorithm for clus-
ter number selection, However, this approach is slow for larger models. Instead,
in [24] authors solve the problem as a minimization task, but the computational
cost tends to be high despite optimal solutions.

To the best of our knowledge, the only relevant work in which all the previous
optimizations are used together is the one by Song Han et al. [9], but there is
not evidence of methods to automatically assign the hyperparameters.

4 Proposed method

The proposed framework receives a trained deep neural network model, a dataset,
and additional parameters as input. It then autonomously identifies the optimal
pruning rate, followed by determining the optimal number of clusters, and ulti-
mately, finding the best configuration for quantization.

4.1 Weight pruning

Our idea uses Global Magnitude Pruning (MP), despite the simplicity of this
method, it is possible to get results comparable to the state-of-the-art [25,26],
with respect also to complicated pruning algorithms present in the literature.

Global Magnitude Pruning (MP) is a method where weights with an absolute
magnitude value below a specified threshold are eliminated. The threshold is set
to achieve a predetermined sparsity rate after the pruning process. Through
experiments, an inversely proportional relationship between the pruning rate
and accuracy was observed, as depicted in Figure 2. This finding enables the use
of binary search to determine the pruning rate that yields the desired accuracy.

In the searching algorithm, it is allowed an error of ϵ between the desired
accuracy and the reached accuracy. In our case, the desired accuracy is slightly
less than the one initially measured on the original model. Looking for a smaller
accuracy guarantees that the returned value is the one before the quick accuracy
decreases.

Binary search converges since both the pruning rate and the measured accu-
racy are linear, this implies that changing the pruning rate is always possible to
reach the desired accuracy.
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Fig. 2: Accuracy variation with different pruning rates for ResNet50 and Mo-
bileNet V2

4.2 Number of clusters

In order to minimize the model size, we have to minimize the number of clusters,
however a small number of clusters cannot be sufficient to reach the original
model accuracy.

In our experiments, MobileNetV2 was clustered with different numbers of
clusters. The results are visible in figure 3 in which there is an evident a direct
correlation between the model size and the number of clusters, while there isn’t
any evident relation between the number of clusters and the inference time.
Therefore the optimal amount of clusters is the smaller one in which is possible
to reach the desired accuracy, in other words, given an original model Moriginal,
the pruned model Mpr, a function CL(M,ncl) which clusters a model M with ncl

clusters and a ϵ defined as the maximum allowed difference between the original
model accuracy and the clusterized model accuracy. The optimal number of
clusters clopt are:

clopt = argmin
cl

|Acc(Moriginal)−Acc(CL(Mpr, cl)| < ϵ (1)

Then giving the function f defined as:

f(x) =

{
1, if |Acc(Moriginal)−Acc(CL(Mpr, cl)| < ϵ

0, otherwise
(2)

Which returns 1 if the given number of clusters x returns a model that
matches the required accuracy constraints, 0 otherwise, from the analysis we
know that f(x) ≤ f(x+1), then to find the optimal number of clusters we have
to find a x such that f(x) < f(x+1). The problem of finding the optimal value
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of x can be solved using an algorithm based on ternary search, so given a range
of clusters we have to find the step (the transaction between 0 and 1). Then
for each iteration the range is split in 3 intervals by two points, and computing
the values of these points is possible to determine in which segment the step
belongs, then the algorithm is applied again in the new segment, it ends when
the difference between the two points is 1.
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Fig. 3: Metrics affected with different number of clusters on MobileNet V2

4.3 Quantization

The used technique for quantization is the PTQ, because, differently from QAT,
it does not require fine-tuning and the accuracy loss is negligible until we don’t
go below 8 bits. Quantization affects models differently; what works for one may
not for another.

The efficiency of PTQ allows testing various methods outlined in Table 1
without significant time overhead, methods are tested from the more aggressive
quantization for faster but less accurate models to softer quantization for slower
but more accurate models, using this rank, the first method that matches the
original desired accuracy is selected.

From the proposed methods (ones used in Tab. 1) the one that uses int8 for
weights and int16 for activation functions is excluded, since as reported in the
documentation of TensorFlow Lite (the DNN framework used for our tests) the
lack of implementation brings slow inference time.

4.4 Overall procedure

This section describes the full procedure, including all of the previous techniques.
Figure 4 illustrates a flowchart depiction. Initially, the program examines the in-
put model and establishes an accuracy baseline for the next operation. Then it
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Fig. 4: Flowchart representing the overall optimization procedure

starts to prune the network with its methods. After experimenting with several
hyper-parameters, it returns the best pruning configuration. Next, the pruned
model is evaluated to establish a new baseline, thus weight clustering is used,
and the program runs the algorithm designed specifically to calculate the ideal
number of clusters of the pruned model, returning the optimal one. Finally, after
establishing a new baseline from the clustered model, it tries multiple quanti-
zation algorithms, ranking them from more aggressive to kinder, and returns
the first that meets the required target accuracy. At this stage, the software
builds the optimized model based on all of the previously determined optimal
parameters.

5 Results

Making a comparison with the literature is not easy, since the proposed software
can optimize different models used to solve different problems. Furthermore,
the literature employs diverse metrics: some use inference times for speedup
calculation, and others focus on FLOPs or MAC operations reduction. Regarding
model compression, metrics range from parameter count reduction to actual
model size reduction.

Our evaluation metrics are the speedup factor, calculated as the ratio of the
inference times between original and optimized models, and the compression
rate, calculated as the ratio of the original model’s size to the optimized one.

We remark by adjusting ϵ values in pruning and clustering algorithms, models
with varying accuracies can be achieved.
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Model Compression rate Speed up ∆ Top1
Our 12.95x 4.77x 0.9%

Our (lower ϵ) 12.19x 3.40x 0.26%
Play and Prune [21] 13.0x - 0.3%

Table 2: VGG16 on CIFAR10 comparison, the model is optimized with our tool
also with different ϵ values for the pruning and clusterization algorithms.

Method Speedup Compression rate ∆ Top1
Our 2.91x 6.35x 0.87%

NAP[18] 2.3x - 2%
Thinet [5] 2.3x - 4.3%
CPI [2] 2x - 3.3%

AMC [19] - 5x 0.02%
LWC [6] - 2.7x 0.01%

Table 3: ResNet50 model optimization comparison.

The listed results are executed on different hardware and as reported in other
works, the speedup changes with different hardware, it decreases when the device
parallelism is higher. Since most of the competitor projects have the source code
not available, we are not able to run the proposed frameworks in order to run
the optimized models on the same hardware, so the data reported is the one
written in the related articles.

Regarding the compression rate, we remark that it does not depend on the
hardware and it can be comparable with the ones reported by the authors in
their papers. The convergence times of the optimized models on an nVidia GTX
1080 are 125 minutes for ResNet50 and 40 minutes for VGG16-CIFAR10.

6 Conclusion

We propose a framework to optimize NNs efficiently, it does not require a deep
knowledge by the user in the optimization procedures. The framework simply
takes as input a model, a dataset, and some information like batch size and
the data format expected by the networks, then it returns an optimized model
ready to be deployed on an edge device. The proposed framework relies on simple
algorithms to solve intricate problems. The design of the framework allows future
integration of new pruning and clustering algorithms keeping the original search
algorithms, in the way the speedup and the compression rate can be improved.
The experiments show results comparable to the state of the art on ResNet and
VGG architecture.

However, the suggested solution’s simplicity allows for future improvement,
indeed, by using the same search algorithms, we can employ superior pruning
strategies, such as filter pruning, to significantly boost inference time. The cur-
rent version of the framework can handle only models for classification tasks,
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thus our next goal is to implement the frequently employed object detection and
classification tasks. Actually, because a large number of fine-tuning phases are
required, the optimizer can take time to converge, particularly on large mod-
els; therefore, it would be desirable to improve the used algorithms with more
targeted solutions to reduce converge times.
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