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Abstract—By spreading out computing workloads over mul-
tiple levels, the Edge-to-Cloud continuum paradigm improves
the performance of applications that are sensitive to latency.
However, real-time scheduling is difficult on the Edge computing
layer since it consists of a variety of nodes with varying uptime.
In this paper, we address this issue by proposing an online and
adaptive scheduling algorithm based on a continuous learning
Reinforcement Learning. Our algorithm determines each work
request individually, optimizing scheduling policies to meet real-
time application requirements while taking environmental energy
and battery limits into account. We validate the efficacy of our
approach in dynamically assigning tasks, particularly in scenarios
where Edge nodes exhibit variable speeds and unpredictable
failures, while efficiently managing energy resources and battery
constraints through extensive simulations and comparisons with
static scheduling strategies.

I. INTRODUCTION

In the contemporary digital context, the necessity for real-
time processing extends beyond mere entertainment applica-
tions, such as augmented reality and virtual reality (AR and
VR). Tasks that mandate immediate processing, including but
not limited to industrial automation and healthcare monitoring,
are ill-suited for cloud solutions due to the constraints imposed
by network latency. To bridge this gap, fog computing, also
referred as edge computing, has emerged as a viable solution
by positioning an intermediary layer in closer proximity to
end users, thereby reducing latency [1]. However, challenges
persist, particularly in relation to the diverse nature of edge
nodes.

In the intermediary layer of the Edge-to-Cloud continuum,
nodes exhibit a wide range of hardware and software ca-
pabilities. This diversity complicates the task of job alloca-
tion, a complexity that is further exacerbated by the inher-
ent constraints on resources, particularly in terms of power
consumption and battery management, where resources are
inherently limited [2]. The efficient assignment of jobs in
such an environment necessitates a careful consideration of
these factors, acknowledging the intricate interplay between
hardware capabilities, software configurations, and resource
constraints. This study addresses the complex problem of task
scheduling and battery management within the context of the
Edge-to-Cloud continuum. Our proposed approach incorpo-

rates multi-objective optimization, which encompasses power
management in addition to real-time processing demands, to
ensure both performance and sustainability. Our methodology
takes into account the heterogeneity of nodes and dynamically
organizes jobs to meet user-specified processing requirements.
This is achieved through the utilization of online Reinforce-
ment Learning, a machine learning technique that enables the
system to learn and adapt to the dynamic environment in real-
time.

The computing environment under discussion is shown in
Figure 5, which consists of clusters with different numbers
of worker nodes and scheduler nodes. We take a simple but
suitable situation for our experiment: only one cluster of
nodes with a single scheduler and a set of worker nodes. We
deploy a learning agent tasked with observing the state of
worker nodes and making scheduling decisions in response
to task execution requests from end users. These decisions
may involve executing tasks on specific worker nodes, in the
cloud, or rejecting the request altogether. The learning agent
receives positive rewards contingent upon our prioritization
criteria. Specifically, the reward structure depends on whether
we prioritize extending the lifespan of batteries or meeting
task deadlines. This prioritization is achieved through the
introduction of a parameter, denoted as α, which ranges from 0
to 1. This parameter serves to weight the contribution of each
component of the reward, allowing us to dynamically adjust
the emphasis placed on battery lifespan preservation versus
adherence to task deadlines.

The primary contributions of our work are as follows:

• Development of a reinforcement learning-based online
scheduling algorithm for the computing continuum,
capable of handling node heterogeneity, meeting user-
defined processing frame rate requirements, and optimiz-
ing battery lifespan while maintaining balanced battery
loading.

• Presentation of simulation results showcasing the per-
formance of our proposed algorithm in various settings,
including a case where we have only workers and a case
where we have also cloud. Our simulator replicates fine-
grained delays encountered during job execution paths.



The structure of the remainder of this paper is outlined as
follows: Section II provides an overview of related works,
in Section III, we elaborate on the proposed reinforcement
learning approach. Following this, Section V offers insights
into the simulation results of the proposed protocol, and finally,
in Section VI, we draw the final conclusions.

II. RELATED WORK

Unlike episodic methods, we use a Reinforcement Learning
(RL) algorithm designed for continuous learning in our work.
In particular, our approach incorporates Differential Semi-
Gradient Sarsa (DSG Sarsa), as described in [3], which we
used in this previous work [4] that was exclusively concerned
with optimizing frame rates. While DSG Sarsa tackles frame
rate issues, our new algorithm goes beyond its limitations to
include multi-objective RL factors, with a focus on battery
balancing. This update is in line with the increasingly complex
edge and fog computing environments, which need for careful
consideration of all factors when allocating resources in order
to maximize efficiency. [5] propose a rl algorithm that improve
batteries management, respect to our work focus only on one
energy aspect. Because Deep Q Learning (DQL) is good at
handling high-dimensional state spaces, it has been widely
used in the literature to tackle similar job scheduling problems
in edge or fog computing scenarios. As an illustration, in [6],
DQ is utilized for resource allocation in Mobile Edge Com-
puting (MEC) systems, deviating from our focus on battery
balance and giving priority to execution time minimization
through time slice-based allocation. In a similar vein, [7] looks
into base station selection in ultra high-density networks and
emphasizes the improvements in performance that come from
using their suggested DQL-based approach. In contrast to our
online scheduling method, [8] focuses on task scheduling in
edge computing and uses DQL for task execution ordering
and machine assignment, but in an offline environment. [9]
offers an RL-based caching solution for edge environments,
further examining RL applications. It optimizes stochastic
allocation policies using simulation-based evaluations. As for
mobile device management in cellular networks, [10] explores
this area by using RL in conjunction with stochastic gradient
descent for real-time system improvement, tackling issues like
power distribution and uplink transmission. While there are
no hard job deadlines, the work closely complies with [11],
emphasizing online scheduling with time differential learning
techniques. Furthermore, [12] highlights the complexities of
resource allocation in dynamic computing settings by provid-
ing a thorough analysis of task placement throughout the edge-
to-cloud continuum.

III. SYSTEM MODEL AND PROBLEM DEFINITION

This study approaches the online scheduling problem by for-
malizing it as a Markov Decision Process (MDP) and employ-
ing Reinforcement Learning (RL) for its solution. Adopting a
model-free approach eliminates any prior assumptions regard-
ing the underlying mathematical model. The learning agent
observes the current environment state and takes actions based

on its accumulated knowledge (exploitation) or through ran-
dom exploration. These actions represent scheduling decisions,
dictating where tasks should be executed. Subsequently, upon
task completion, a reward signal is received, crucial for driving
the learning process. The entire framework is implemented
within a delay-focused discrete events simulator, leveraging
the Simpy library in Python [13]. The solution framework
remains adaptable for real-world applications that conform to
the presented task model. This section proceeds to delineate
the entities integral to the problem domain: the environment,
task and delay models, state representation, and reward system.
Additionally, we introduce the energy balancing aspect, a vital
consideration for sustainable computing systems.

A. Environment

A conceptual framework of a computing continuum envi-
ronment, with the learner agent positioned at the edge layer,
is shown in figure 5. To be more precise, our configuration
consists of a single cluster that houses one scheduler node,
called h, and a predetermined number of worker nodes, called
W = {w1, w2, ... }. The scheduler node’s responsibility is
to handle requests for task execution coming from the clients
(end users). It chooses whether to reject a task or where it will
be executed: locally in the cluster (by identifying the particular
worker node) or remotely in the cloud. Every second, the
scheduler node receives λi requests, each of which triggers
a scheduling decision based on reinforcement learning (RL)
algorithms. The worker nodes, on the other hand, have a fixed-
size queue, K, and can only process one task at a time. A task
is denied if it is assigned to a node and the queue’s current
capacity is K or greater. These worker nodes are noteworthy
for their heterogeneity; each is correlated with an execution
speed Si, which denotes a time extension factor for tasks
carried out on that specific node. A task with a notional time
of 15 ms, for example, would take 25 ms to execute on worker
node 3 if S3 = 0.6. The idea of execution speed is modeled
after the actual situation in which a worker node’s available
CPU time is allotted to task execution, which may vary over
time. However, we assume the execution speed as constant for
the purposes of this study. Every worker node has a battery
as well. We also take into consideration the power used for
transmission power, CPU utilization for job execution, and
power consumption during idle times, all expressed in watt-
hours (WH). As a result, if a worker node’s battery runs out
from excessive use or inadequate charging, the node will not
function.

B. The Agent

The agent’s primary objective is to learn an effective
scheduling policy, denoted as π, which is a function of the
current state:

π : S → A (1)

In this context, the policy π maps a given state s ∈ S to
an action a ∈ A, where A represents the set of all possible
actions. Initially, in our experimentation phase, actions involve



either task rejection or assignment exclusively to worker
nodes. Thus, the action set for node i is described as:

A = {reject} ∪ Wi (2)

In a subsequent phase (Section V-D), we introduce the option
of forwarding tasks to the cloud, expanding the set of available
actions to:

A = {reject, cloud} ∪ Wi (3)

It’s important to note that only the scheduler node is re-
sponsible for receiving task requests and making scheduling
decisions. Furthermore, in our multi-objective reinforcement
learning framework, we incorporate a parameter α ∈ [0, 1].
This parameter allows for the adjustment of reward criteria,
providing flexibility in optimizing various objectives simulta-
neously.

C. State representation

The possible states of the environment are all included in
the set S. In order for the agent to decide what to do, it
must have access to an environment representation with all the
information it needs. Here, the only data that is available is the
quantity and kind of jobs that are currently scheduled on each
worker node, together with the normalized battery lifespans
of each one. This limitation results from the requirement that
every task go to the scheduler. The matching task-type counter
for worker j is increased upon arrival by a task of type i given
to worker j, and it is decreased upon completion. As said in the
introduction, we still cannot determine the node speeds even
though we know the task type when we arrive. A scheduler
node with three worker nodes and two job kinds is shown in
Figure 1 as an example of the state representation. An integer
(corresponding to number 1) designates each job type, and is
followed by tuples that indicate how many of each type of
task are in the queue for each worker node. Furthermore, it
comprises the normalized battery lifespans for every worker
node, with the highest lifespan equal to 1 and the minimum
lifespan to 0, and intermediate values for the other worker.
However, the raw state representation is not directly utilized in

Fig. 1: State representation of the scheduler node at time t

the learning process. Instead, we employ the tiling technique
[14] to map the vector into a 24-dimensional vector space.
Furthermore, the task type, defined by the user, encapsulates
all task characteristics and traffic flow attributes, including
arrival and desired execution rates. While the lifespan value

encapsulates all energy characteristics, including battery ca-
pacity and battery consumption.

D. Reward
The determination of the reward is pivotal in achieving

the desired outcomes of meeting user Quality of Service
(QoS) constraints while optimizing the utilization of avail-
able resources. In our investigation, we direct our attention
towards specific applications wherein frames are generated
by devices and sequentially processed by a back-end server.
The outcome of this processing is then displayed to the user
on a screen, assuming synchronization between the screen
refresh rate and frame generation. Notably, the back-end server
operates under an energy constraint due to limited battery
capacity, thus necessitating a balanced consideration between
frame per second (fps) and battery lifespan. Our primary
objective is to ensure minimal lag at the client’s end while
accommodating a minimum acceptable response frame rate
from the server. Additionally, we seek to optimize battery
lifespan, maintaining equilibrium across all batteries during
simulation. To establish an optimal reward framework, we
draw upon methodologies employed in our prior research [4]
concerning FPS performance. To maximizing service time, our
focus lies on prolonging the lifespan of each worker node.
This entails calculating the lifespan of each worker based
on battery capacity and current power consumption. In our
proposed reward formulation, we take into account both the
frames per second (FPS) performance and the battery lifespan
of the devices. The reward is defined as follows:

reward = reward fps × α+ (1− α)× reward batteries (4)

The parameter α plays a crucial role in this formulation
as it enables the prioritization between the two performance
measures. By selecting an appropriate value for α, we can
optimize the results and achieve the best tradeoff between FPS
performance and battery lifespan.In the subsequent sections,
we will demonstrate how the selection of α can significantly
impact the results. We will also identify the optimal value of
α that yields the best tradeoff between the two performance
measures. Finally The reward fps is defined as follow:

Rfps(s, a) =


2 if dt ≤ 1

ωn

1 if 1
ωn

< dt ≤ 1
ωm

−1 if dt >
1

ωm

−4 if action = REJECT

(5)

Where ωn and ωm are particular to the given traffic flow, and
s is the status as observed by the scheduler upon arrival of
the frame and a is the chosen scheduling action. While the
reward batteries is defined as follow:

RB(s, a) =


2 · Γ[action] where β ∈ Γ, β ∈ [0, 1]

1 if action = CLOUD

−4 if action = REJECT

(6)

Where Γ is the list of normalized values of lifespans of each
worker, where each element corresponds to a worker, indexed
sequentially.



E. Performance Parameters

In order to evaluate the performance of our reinforcement
learning-based scheduling algorithm, we present the following
performance metrics to provide a comprehensive evaluation of
our algorithm:

• The variance of the remaining watt-hours (Wh) of each
battery is a performance metric that we aim to minimize
in order to achieve balanced utilization of the batteries.
The optimal value for this metric is zero.

• Another important performance metric is the maximum-
minimum difference of the remaining watt-hours (Wh)
of the batteries when the first worker dies. This metric
provides an indication of the fairness of the algorithm
in terms of device utilization. The optimal value for
this metric is zero, indicating that all batteries are being
utilized evenly.

• The minimum and maximum lifespan of the devices
is an important performance metric that provides an
indication of the overall device utilization. The minimum
lifespan refers to the shortest amount of time that a device
is able to operate before its battery is depleted, while
the maximum lifespan refers to the longest amount. A
large difference between the minimum and maximum
lifespan indicates that some devices are being utilized
more heavily than others, which can lead to an imbalance
in the overall system.

• The ratio of the number of tasks that meet their deadline
to the total number of tasks, which provides an indication
of the algorithm’s ability to meet the QoS requirements.
This metric is further broken down into three categories
based on the job type (0, 1, and 2). We aim to obtain

• Also important is the total service time, that represent
the sum of all service time of all workers. The algorithm
aim to reach the greatest value possible. We can use as
baseline the maximul lifespan algoithm.

IV. ONLINE SCHEDULING DECISIONS WITH RL

The objective of the reinforcement learning agent in this
paper is to learn a scheduling policy, denoted as π, that
maximizes the long-term reward in an online task scheduling
environment. Since the decisions are made in a continuous
and ongoing manner, the problem is treated as a continuing
learning task. In such a task, it is more effective to consider the
current average reward, rather than discounting future rewards,
in order to make the right decision. Given a state s ∈ S defined
in Figure 1, the agent performs an action a ∈ A, and obtains
an immediate reward r, with the next state being s′ ∈ S.
The optimal policy, which maximizes the long-term reward,
is defined by the optimal q∗ function, as shown below:

q∗(s, a) =
∑

r,s′ p(s
′, r|s, a) ·

[
r +maxπ r(π) + maxa′ q∗(s

′
, a

′
)
]

(7)
The Sarsa algorithm is used to learn the policy, and at a certain
time t, the differential form of the error, δt, is expressed as
shown in Equation 8. This form can be applied to any function

approximation algorithm for estimating the q∗, and in this
paper, the tiling technique is used.

δt = Rt+1 −Rt+1 + q̂(St+1, At+1, w⃗t)− q̂(St, At, w⃗t) (8)

It is important to note that in the setup of this work, the
reward fps is never immediate, as it is only known after a
task has been executed or rejected and returned to the client.
Therefore, a window size of Z tasks is set, and the weights
are updated for all the tasks in the window, only if the window
is reached and all the tasks in the window have been executed
or rejected. We can obtain the reward batteries immediatly
after the scheduler choose an action, but for compute the total
amount need both part of reward 4. Algorithm 1 of [4] is
executed by the scheduler, whenever a new task to be executed
arrives. The task is appended to the array of pending tasks,
and the state is computed, as described in Section III. The
best action to perform, given the current q(s, a, w⃗), is then
retrieved. If the action is 0, the task is rejected, if it is 1,
the task is forwarded to the cloud (only in the case where
we have also the cloud), and otherwise, the action number
is used to derive the index of the worker of the cluster to
which the task is forwarded. In the case where the task is
scheduled to be executed in a worker node, the current queue
length is checked, and the task is rejected if it is equal to or
exceeds the limit K. Algorithm 2 of [4] is executed every time
a task completes its execution. The task reward is recorded,
and the array of pending tasks is iterated over to check if
the first ζ tasks of the array are finished. If this is not the
case, the function returns, and otherwise, the information about
the first ζ tasks is retrieved by popping them from the array.
This information is used to train the weights vector w⃗ using
the semi-gradient differential Sarsa algorithm. The significant
modification we have made in comparison to previous work
is the development of a multi-objective algorithm. This allows
us to adjust the desired outcome by varying the value of the
parameter α, enabling us to focus on the specific objective of
interest.

V. RESULTS

In this section, we present the results of our proposed
reinforcement learning (RL)-based scheduling algorithm in
both edge-only and edge-to-cloud continuum environments.
All experiments can be reproduced using the public repository
available on CodeOcean 1. In all experiments, we consider the
battery awareness of the devices and incorporate it into the
RL algorithm to ensure that the devices are not over-utilized
and their battery life is maximized. We derive the execution
speeds of the workers in the Edge node and the maximum
queue length from the technical parameters of real devices.
The service rate is normalized with respect to the highest clock
speed in the group. For example, the service rate of the Asus
Tinker (1.8 GHz) is 0.9. The cloud, on the other hand, always
runs at a speed equal to 1.0.

1The code is temporarily available on the https://github.com/Pancio-code/
Simulator while awaiting publishing from the CodeOcean capsule.



A. Complexity Analysis

In our work, we have chosen to use the Differential Semi-
Gradient (DSG) Sarsa [3] algorithm. This choice was mo-
tivated by the need for a reinforcement learning algorithm
that has a low computational overhead and is capable of fast
convergence. The use of tiling and hash table in the imple-
mentation of the DSG Sarsa algorithm allows for a constant
time complexity, O(1), for both the training and execution of
the algorithm. This is a significant advantage in the context of
edge nodes, where the availability of computational resources
is often limited, and the need for fast and efficient task
scheduling is crucial. In conclusion, the use of the DSG Sarsa
algorithm, implemented using tiling and hash table, in our
online task scheduling algorithm is motivated by the need for
a fast and efficient reinforcement learning algorithm that is
capable of handling the complex and dynamic nature of the
edge nodes, while also being mindful of the limited resources
available.

B. Adaptability to change

In order to demonstrate the adaptability of our proposed RL-
based scheduling algorithm to changes in the environment, we
conduct a series of experiments. Specifically, we use the same
setting as in the case of V-D, where the cloud is available.
In these experiments, we simulate a crash failure of the most
powerful worker node (w1) at timestamp 4000 (s). The node
remains in a failed state until timestamp 8000 (s), after which
it returns to normal operation. It is important to note that
during the failed state, the node is still consuming power,
albeit in an idle state. This is an important consideration
for the management of the batteries in the edge nodes. We
have selected a timestamp of 4000, as the algorithm has
already converged to the desired results by this point in
the simulation (We can see it from the reward graph 2).
Furthermore, we explore the performance of our algorithm in
two different scenarios. In the first scenario, we set the value
of the parameter α to 0, with the goal of maximizing the
lifespan of the service while maintaining a balanced balance
of the batteries in the edge nodes. In the second scenario, we
set the value of α to 1, with the goal of satisfying the frames
per second (FPS) requirements of the clients. We present the
results of the first scenario in Fig. 2, where the value of α is
set to 0. The results (Fig. 2) show that the algorithm quickly
reacts to the failure of the worker node by offloading the jobs
to the cloud in order to maintain a balanced balance of the
batteries in the edge nodes. This is an important consideration
for the management of the batteries in the edge nodes. It is
worth noting that, during the failed state of the worker node,
the jobs are still able to meet the frames per second (FPS)
requirements of the clients. However, this is not the primary
focus of the algorithm in this scenario. The results also show
that the variance in the balance of the batteries in the edge
nodes grows only slightly during the failed state of the worker
node. At timestamp 8000, the worker node returns to normal
operation and the algorithm immediately shifts the load back
to the worker nodes. The results show that the variance of
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Fig. 2: Results of the simulation of a single cluster and three
worker nodes with cloud, regarding, from top to bottom, the
reward, the effective frame rate ωe, the batteries remaining wh
and the variance of batteries. We assume that node #1 fails at
time 4000. α = 0.0

the batteries in the edge nodes quickly approaches zero and,
at the end of the simulations, the batteries in the edge nodes
are all balanced and the lifespan of the service is very good.
We now present the second part, where the value of α is
set to 1: The results of the second scenario (Fig. 3), where
the value of the parameter α is set to 1, demonstrate the
ability of the proposed scheduling algorithm to quickly adapt
to changes in the environment and maintain the desired frames
per second (FPS) requirements of the clients. In particular,
the results show that, for a brief period after the simulated
crash failure of worker 1, the algorithm is unable to meet
the FPS requirements of the clients. However, the algorithm
quickly adapts by offloading the load to the other two worker
nodes and the cloud. This allows the algorithm to return to
the previous level of performance until timestamp 8000, at
which point worker 1 returns to normal operation. However,
the increased load on the other two worker nodes causes
them to run out of power, resulting in another anomaly in the
system. Once again, the algorithm quickly adapts by splitting
the tasks between worker 1 and the cloud, allowing it to
meet the FPS requirements of the clients. In conclusion, the
proposed scheduling algorithm quickly adapts to changes in
the environment and maintains the desired FPS requirements
of the clients, even in the presence of multiple anomalies.

C. Only Workers

In this setting, we consider an edge node with three workers
and a single scheduler. The task can either be executed by
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Fig. 3: Results of the simulation of a single cluster and three
worker nodes with cloud, regarding, from top to bottom, the
reward, the effective frame rate ωe, the batteries remaining wh
and the variance of batteries. We assume that node #1 fails at
time 4000. α = 1.0

the workers or rejected. We present this simpler case to
compare our algorithm with several baselines. Specifically,
we compare our algorithm with the least-loaded algorithm,
which is the best-known algorithm for meeting deadline re-
quirements. Additionally, to establish a baseline for lifespan,
we use the longest lifespan algorithm, which assigns tasks
to the worker with the longest expected lifespan. Without
cloud involvement, this setting provides a fair comparison. We
simulate our algorithm for all values of α between 0 and 1,
with a step size of 0.1. Our goal is to demonstrate the efficacy
of our algorithm and identify the α that achieves the best trade-
off. As another baseline, we also use a random algorithm that
selects a worker for each task at random. The performance
metrics are illustrated in III-E. Additionally, the values used
for this experiment are B1 = 9 Wh, B2 = 8 Wh, and B3 = 7
Wh. The machine speeds are different from those used in 5;
specifically, S1 = 1.8, S2 = 1.7, and S3 = 1.4, as without cloud
support, it would be impossible to meet FPS requirements with
the settings used. In the table, we use the following notations:

• α: Alpha value.
• σ: Variance of battery Wh difference.
• δ: Max Wh - Min Wh when the first node discharges.
• M : Maximum lifespan, m: Minimum lifespan.
• γ : Percentage of jobs meeting requirements.
• γi : Percentage of jobs meeting requirements of typei.
• ts: Total service time of all workers.
• LL: Least Loaded algorithm.
• MLIF: Maximum Lifespan algorithm.

• RAND: Random algorithm.

α σ ↓ δ ↓ m ↑ M ↑ γ ↑ γ0 ↑ γ1 ↑ γ2 ↑ ts ↑

0.00 0.08 0.00 8055 8056 70.9 18.5 94.2 99.9 24166
0.20 0.08 0.10 7870 7957 82.2 49.3 98.5 99.9 23784
0.30 0.10 0.24 7711 7912 91.3 74.5 99.4 99.9 23533
0.40 0.14 0.49 7541 7941 91.8 76.7 98.8 99.9 23415
0.50 0.14 0.48 7548 7942 94.5 84.9 98.7 99.9 23385
0.60 0.14 0.47 7534 7926 95.6 88.7 98.4 99.9 23325
0.70 0.22 0.88 7348 8077 92.7 84.8 94.2 99.2 23224
0.80 0.31 1.22 7175 8202 90.1 80.4 90.6 99.2 23120
0.90 0.33 1.25 7197 8259 89.0 78.3 89.2 99.5 23097
1.00 0.37 1.38 7110 8306 88.5 78.3 88.3 98.9 23054

LL 0.41 1.48 7167 8384 84.67 64.8 89.2 99.9 23347
MLIF 0.12 0.00 9452 9452 41.1 0.3 25.0 98.1 28356
RAND 1.130 2.62 7155 8804 39.39 0.00 34.92 83.25 15959

TABLE I: Results of the experiment in the case of only
workers with batteries values B1 = 9 Wh, B2 = 8 Wh, and
B3 = 7 Wh.

The results of our experiments are quite intriguing and
provide valuable insights into the performance of our proposed
scheduling algorithm. In particular, we can observe the signif-
icant impact of the parameter α on the results. Our algorithm
outperforms the least loaded algorithm for values of α greater
than 0.3. This can be attributed to the fact that the least loaded
algorithm is not energy-aware and tends to quickly drain the
batteries of the worker nodes with more resources. In this
case, the value of α equal to 0.3 is the most suitable choice,
as it allows for a good balance of the batteries in the edge
nodes throughout the simulation, as well as a good lifespan
of the service. Additionally, the algorithm is able to maintain
the frames per second (FPS) requirements of the clients. It
is worth noting that the worker nodes, in this case, die at
approximately the same time. While our algorithm does not
match the performance of the maximum lifespan algorithm,
it offers better balancing with respect to maximizing lifespan.
The second case, as shown in II, is even more interesting. In
this case, the worker node with the smallest battery is assigned
to the most powerful worker: In this case, our algorithm

α σ ↓ δ ↓ m ↑ M ↑ γ ↑ γ0 ↑ γ1 ↑ γ2 ↑ ts ↑

0.00 0.08 0.00 8070 8070 63.4 4.3 86.1 99.9 24210
0.10 0.08 0.00 8049 8050 63.3 3.7 86.1 99.9 24149
0.20 0.08 0.00 8019 8020 63.2 3.2 86.6 99.9 24058
0.30 0.08 0.00 7996 7996 64.5 4.0 89.4 99.9 23988
0.40 0.08 0.00 7950 7951 71.1 17.4 95.8 100 23851
0.50 0.08 0.06 7812 7862 89.9 70.3 99.4 99.9 23534
0.60 0.24 1.08 7177 8036 92.0 78.6 97.4 99.9 23124
0.70 0.23 1.05 7208 8046 92.4 80.1 97.2 99.9 23155
0.80 0.39 1.52 6935 8149 90.5 74.7 96.9 99.9 23068
0.90 0.39 1.55 7029 8238 87.7 73.3 90.3 99.3 23066
1.00 0.51 1.75 6968 8363 86.9 72.7 89.5 98.6 23060

LL 0.86 2.47 6669 8574 77.9 53.6 81.5 98.7 22872
MLIF 0.12 0.00 9433 9434 37.7 0.3 16.3 96.4 28300
RAND 0.42 1.31 7863 9197 46.5 0.0 46.7 92.9 25864

TABLE II: Results of the experiment in the case of only
workers with batteries values B1 = 7 Wh, B2 = 8 Wh, and
B3 = 9 Wh.

performs exceptionally well, significantly outperforming LL
algorithm. This improvement is particularly notable because
worker 1 depletes its battery at 6669, failing to meet the



frame per second (fps) requirements from that point onward
due to the lack of battery consideration. The results for
lower values of alpha are not as favorable as before because
the task allocation to slower workers is aimed at balancing
battery usage. However, for alpha values greater than 0.5,
the performance in terms of fps is excellent, and the battery
usage is well balanced. The figure 4 clearly demonstrates that
the fps requirements are met as long as the workers remain
operational, providing a good service time. Additionally, the
workload is almost perfectly balanced among the workers.
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Fig. 4: Results of the simulation of a single cluster and three
worker nodes, regarding, from top to bottom, the reward, the
effective frame rate ωe, the batteries remaining wh and the
variance of batteries. We assume that α = 0.5

D. Edge-to-Cloud continuum

Now, we present the results in the target environment where
tasks can be sent to the cloud in addition to being assigned to
workers. The task flow and worker specifications are illustrated
in Figure 5. In the first setting the batteries are the same of
first expirement of before, now the LL algorithm chage to
LLAC (Least loaded aware cloud), because is aware of cloud
and send longest task to it. We can see the result in table III
In this scenario, the results of our algorithm are remarkable.
It surpasses both baselines—Least Loaded for FPS and Max-
imum Lifespan. Notably, the best performance is achieved at
α = 0.3, where the service time is maximized due to extensive
use of the cloud while still meeting FPS requirements. For a
detailed visualization, refer to Figure 6. We can appreciate
the variance curve and the battery load at the bottom of the
plot. Additionally, it is evident how the algorithm remains very
stable after reaching convergence. As observed previously, it
is quite intriguing how switching the batteries between the
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Fig. 5: The setting of the of the experiments on a single cluster
with three workers nodes, cloud, and four traffic flows V-D.

α σ ↓ δ ↓ m ↑ M ↑ γ ↑ γ0 ↑ γ1 ↑ γ2 ↑ ts ↑

0.00 0.13 0.00 8545 8546 65.2 25.2 81.9 90.6 25636
0.10 0.14 0.00 8877 8877 72.6 45.3 83.0 89.4 26631
0.20 0.16 0.00 9200 9201 83.7 62.1 91.4 97.2 27602
0.30 0.17 0.01 9462 9471 92.8 80.4 97.8 99.9 28403
0.40 0.17 0.00 9380 9385 93.2 81.9 97.8 100 28149
0.50 0.17 0.00 9076 9077 92.3 79.4 97.6 100 27230
0.60 0.15 0.00 8715 8717 90.9 75.6 97.3 99.9 26147
0.70 0.15 0.20 8261 8436 88.9 71.2 95.6 100 25069
0.80 0.21 0.57 8064 8577 89.5 72.4 96.3 99.8 24961
0.90 0.29 1.08 7590 8652 92.0 79.1 97.1 99.9 24727
1.00 0.32 1.19 7517 8671 90.6 75.1 96.8 99.8 24389

LLAC 0.20 1.1 6272 7081 88.3 70.9 93.9 99.9 20221
MLIF 0.11 0.0 9218 9219 16.0 0.0 0.1 48.0 27656

RAMD 1.10 3.1 5635 8669 29.9 0.0 15.1 74.6 21672

TABLE III: Results of the experiment in the case of three
workers with batteries values B1 = 9 Wh, B2 = 8 Wh, and
B3 = 7 Wh, and cloud avaible.

quickest and slowest workers yields significant changes. In the
latest experiment (refer to Table IV), we observe results similar
to previous ones but significantly improved, thanks once again
to the integration of cloud computing. It becomes evident
that assigning smaller batteries to the quickest workers yields
better results for values greater than 0.5. Conversely, in the
switched case, we notice good results even for smaller values,
especially when aiming for a tradeoff. The selection of alpha
is closely tied to the specific environment under consideration;
hence, determining an optimal value beforehand is not feasible.
Instead, it must be dynamically adapted in real-time based on
the prevailing conditions.

VI. CONCLUSIONS

In this paper, we continued a previous work [4] by incor-
porating energy constraints and aiming to maximize battery
management and frames per second (FPS) management in
the edge or Fog-to-Cloud Computing Continuum model. Our
approach utilizes Reinforcement Learning to solve the online
task scheduling problem in this dynamic context, which is
well-suited for addressing challenges such as heterogeneity
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Fig. 6: Results of the simulation of a single cluster, three
worker nodes and cloud, regarding, from top to bottom, the
reward, the effective frame rate ωe, the batteries remaining wh
and the variance of batteries. We assume that α = 0.3

α σ ↓ δ ↓ m ↑ M ↑ γ ↑ γ0 ↑ γ1 ↑ γ2 ↑ ts ↑

0.00 0.07 0.00 8009 8009 55.5 7.2 76.5 86.2 24027
0.10 0.06 0.00 7935 7936 52.9 5.6 71.7 83.6 23807
0.20 0.07 0.00 7980 7981 61.4 11.3 79.6 91.2 23941
0.30 0.06 0.00 7903 7904 73.5 27.3 92.0 99.6 23711
0.40 0.06 0.00 7713 7714 78.0 42.0 92.0 99.8 23140
0.50 0.15 0.42 8318 8631 88.0 66.5 97.4 100 25579
0.60 0.38 1.23 7639 8753 90.7 74.6 97.6 100 25109
0.70 0.85 2.49 7017 8955 88.9 71.3 95.4 100 23925
0.80 1.28 2.99 6977 9416 89.0 70.9 96.2 99.9 24057
0.90 1.34 3.13 6847 9321 89.1 71.8 95.6 100 23740
1.00 1.46 3.19 6824 9536 89.4 72.5 95.7 100 23916

LLAC 0.77 2.79 5570 7576 66.0 46.5 64.2 87.4 19887
MLIF 0.11 0.00 9183 9184 11.3 0.0 0.1 33.8 27551
RAND 0.14 0.72 6699 7363 27.0 0.0 20.7 60.3 21299

TABLE IV: Results of the experiment in the case of three
workers with batteries values B1 = 7 Wh, B2 = 8 Wh, and
B3 = 9 Wh, and cloud avaible.

of nodes, difficulties in estimating the real execution speed
of nodes, possible node failures, cooperation strategies, and
different QoS requirements (e.g. minimum frame rate, service
time). We presented the results of our approach in both
only workers and cloud environment, demonstrating that in
either case, the agent placed in the scheduler can derive the
best scheduling policy without any prior knowledge of the
characteristics of the worker nodes or neighboring clusters.
It needs only to load and battery information. Future work
includes implementing and testing our solution on a real
system rather than a simulation environment and exploring
the use of more advanced reinforcement learning techniques,
such as deep neural networks and policy gradient methods. It is

also important to consider whether a more complex algorithm
would lead to better performance or if the added complexity
would not be suitable for a real-time scheduling system.
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