
Department of Computer, 
Control and Management 
Engineering “A. Ruberti”, 
Sapienza University of Rome

Advanced Operating Systems 
and Virtualization

[0] Introduction

Gabriele Proietti Mattia

gpm.name · proiettimattia@diag.uniroma1.it A.Y. 2020/2021 · v1

Roberto Beraldi

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it


Course Information

1

Advanced Operating Systems and Virtualization

Lecture #0



Teachers
- Prof. Roberto Beraldi

The course holder

Personal website: http://www.dis.uniroma1.it/~beraldi/ 
Contact email: beraldi@diag.uniroma1.it 

- Ing. Gabriele Proietti Mattia
Contact for any information about the topics, the exam and the course in general. 

Personal website: https://gpm.name 
Contact email: proiettimattia@diag.uniroma1.it 

3Course Information

http://www.dis.uniroma1.it/~beraldi/
mailto:beraldi@diag.uniroma1.it
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it


Prerequisites
For correctly understanding the topics of the course, I will take for granted the following 
abilities:

- C (C89/C99) programming
- basic knowledge of the assembly language, in particular the x86 ISA
- basic knowledge of computer internal architecture (e.g. interrupts, I/O)
- basic knowledge of operating systems

Anyway, you are always invited to ask questions if something is not clear

Materials and Exams

For attending the course you need:

- to join the Google Classroom of the course with your student account, using the invite 
code: saeuagm

- to create a GitHub account, if you did not have one already (use/add your Sapienza G 
Suite email). We will use GitHub classroom for the project, more details will be given

- keep always an eye to the course’s website: gpm.name/teaching/2021-aosv

4Course Information

https://classroom.google.com/c/MjYxMDQ0ODY0MjI4?cjc=saeuagm
https://classroom.google.com/c/MjYxMDQ0ODY0MjI4?cjc=saeuagm
https://github.com/settings/emails
https://gpm.name/teaching/2021-aosv/


Lecture Schedule
The course starts today 24th Feb, 2021 and will end on 28th May, 2021. During the week we 
will have two lectures:

- Wednesday 17.00 - 19.00 (2h)
- Friday 08.00 - 11:00 (3h)

The Friday’s lecture lasts 3 hours, therefore in the last hour we will usually see some practical 
examples that you can follow with your PC. I suggest you to prepare a Linux environment (in a 
VM if Linux is your daily driver). I will use Ubuntu as reference.

Lecture will be held both in presence and via Google Meet. The course slides will be available 
on the course website.

Office Hours

Due to the COVID restriction office hours are no more in presence. Please send an email to 
proiettimattia@diag.uniroma1.it we can arrange a Google Meet.

Course Information 5

mailto:proiettimattia@diag.uniroma1.it


Exam
The Exam consists of two parts:

1. Project (⅖ of the final mark)
2. Written Test (⅗ of the final mark)

The final mark will derived from the weighted average of the two parts. Particularly 
outstanding works can also receive 30 cum laude.

Project

The project definition and rules will come later in the course after doing about ½ of the course 
outline. The purpose of the project is to dirty your hands in implementing or modifying 
functionalities of the Linux Kernel. For the project we will use GitHub Classroom.

Written Test

Will consists only of open questions about the course topics, due to the COVID things may 
change until June, therefore we cannot know if it will be in presence, online or mixed.

Course Information 6



Materials
Materials for the course are essentially the slides and the notes that you take at lecture. 

Topics are taken from :

- Love, Robert. Linux kernel development. Pearson Education, 2010.

- Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to 
process management. " O'Reilly Media, Inc.", 2005.

- Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: 
Prentice Hall, 2004.

- … and others that will be referenced in the slides

There is not a single official book. 

Warning: you do not need to buy any book for the course as slides are self-contained 

7Course Information



Acknowledgments
The content of this course and the material is freely inspired and also based on the past 
editions of the course, held by Prof. Alessandro Pellegrini and Prof. Francesco Quaglia. You can 
check their websites for further resources.

8Course Information

http://www.ce.uniroma2.it/~pellegrini/
https://francescoquaglia.github.io/


Course Outline

2

Advanced Operating Systems and Virtualization

Lecture #0



Purpose of the course

Course Information

The purpose of the course is to gain a deep knowledge of the internal components of an 
operating system, which are the main architectural details in order to address the principal 
objectives of an OS (in particular of the kernel), like process and memory management, 
interrupts management, system calls, scheduling and many others. Non disregarding the 
actual code that implements the functionalities. 

One of the most used kernel is fortunately open source, for this reason our main study 
objective will be the Linux Kernel, in particular in its x86 (i386) and x86_64 (amd64) 
declinations. But there also will be some hints to other kernels.

At the end of the course you will obviously not become kernel masters, not only because the 
kernel is gigantic program but also because it changes every day. Instead, you will gain a deep 
knowledge of the kernel internal architecture, thanks to the theory that we will do at the 
lectures and also of programming within the context of a specific kernel subsystem, thanks to 
the project.

10



Course Outline
Theory (Tentative)

- x86 Boot Process
- Memory Management
- System Calls
- Interrupts Management
- Concurrency and Synchronization
- Virtual Filesystem
- Process Scheduling
- Time Management
- Virtualization
- Security
- Hot Patching

11Course Outline



Course Outline
Lab/Hands-on (Tentative)

- A glance on Git
- Building the kernel
- Debugging the kernel
- Linux Kernel Modules (LKMs)
- Using inline ASM
- Kernel Data Structures
- … more to come

12Course Outline



A first glance on the boot 
process

3

Advanced Operating Systems and Virtualization

Lecture #0



Boot sequence

A first glance on the boot process 14

1. BIOS/UEFI
Actual hardware setup

2. Bootloader Stage 1
Executes the stage 2 bootloader (skipped for UEFI)

3. Bootloader Stage 2
Loads and starts the kernel

4. Kernel
Takes control and initializes the machine (machine-dependent operations)

5. Init (or systemd)
First process: basic environment initialization

6. Runlevels/Targets
Initializes the user environment



Boot Sequence

15A first glance on the boot process

1. BIOS/UEFI

Traditionally the BIOS (Basic Input/Output System) is the 
first program (actually a firmware) that is executed after 
booting the PC. It usually resides in a chip that can be 
soldered or removable. The role of the BIOS is to perform 
hardware check and initialization for starting the operating 
system.

Nowadays, motherboards are no more shipped with BIOS 
but with UEFI (Unified Extensible Firmware Interface) 
that basically performs the same operations but in a more 
modular, extendible and efficient way. Most UEFI 
firmwares also have a legacy support to BIOS services.

AMIBIOS chip on a motherboard

Configuration panel in a modern UEFI motherboard



Boot Sequence

16A first glance on the boot process

2. Bootloader Stage 1

The Stage 1 bootloader is present only for BIOS and it is stored in the Master Boot Record 
(MBR) a very small portion of the disk (512 bytes). The role of this bootloader is only to run the 
Stage 2 Bootloader because it has not enough space for directly launching the kernel. A UEFI 
system directly launches the kernel.

The MBR is roughly divided in the following way

Boot Code
(446 bytes)

Partition Table
(64 bytes)

55
AA



Boot Sequence

17A first glance on the boot process

3. Bootloader Stage 2

This bootloader is concretized 
with GRUB (previously called 
LILO) and its role is the one of 
launching the kernel. Moreover it 
usually allows the selection of 
kernel image to be run.



Boot Sequence

18A first glance on the boot process

4. Kernel

Once the kernel is launched, there are many operations to perform before passing the control 
to the end user. The kernel indeed:

- Configures the underlying hardware environment
- Mounts the root filesystem
- Configures the internal data structures
- Spawns the first process, called init

The first lines of dmesg log when the kernel starts



Boot Sequence

19A first glance on the boot process

5. Init/systemd

The init process (today mostly replaced with systemd in many distributions) is the first 
process started. It starts as a daemon and it configures the software environment, loads the 
default runlevel (systemd) and spawns all the other processes. In Linux indeed, the only way 
for creating and starting a process is using the fork function, therefore every process is a fork 
of init.



Boot Sequence

20A first glance on the boot process

6. Targets/Runlevels

The targets represents the state of the the machine within the context of systemd. Before the 
introduction of systemd (with System V) they were also called runlevels and they were 
identified by numbers. They are the following:

- Run level 0 is matched by poweroff.target
- Run level 1 is matched by rescue.target 
- Run level 3 is emulated by multi-user.target 
- Run level 5 is emulated by graphical.target 
- Run level 6 is emulated by reboot.target 
- Emergency is matched by emergency.target

Every target has associated a set of programs or services that needs to be launched.



Advanced Operating Systems and 
Virtualization

L E C T U R E R S

Gabriele Proietti Mattia
Roberto Beraldi

21

[0] Introduction

gpm.name · proiettimattia@diag.uniroma1.it 

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

