Gabriele Proietti Mattia

Advanced Operating Systems
and Virtualization

NG

Department of Computer,

[1] The X86 Boot Process Control and Management

Engineering “A. Ruberti”,
Sapienza University of Rome

gpm.name - proiettimattia@diag.uniroma1.it AY.2020/2021-v1

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it

Outline

1. BIOS/UEFI

Actual hardware setup

2. Bootloader Stage 1
Executes the stage 2 bootloader (skipped for UEFI)

3. Bootloader Stage 2
Loads and starts the kernel

4. Kernel
Takes control and initializes the machine (machine-dependent operations)

5. Init (or systemd)
First process: basic environment initialization

6. Runlevels/Targets
Initializes the user environment

Outline

[1] The x86 Boot Process

1. Stepa: BIOS/UEFI
1. Pre-Boot and Real Mode

2. BIOS
2. Step 2: Stage 1 Bootloader
1. MBR

2. x86 Protected Mode
3. x86 Memory Addressing
4. x86 Privileges and Protection

5. Paging
3. Step 3: Stage 2 Bootloader
1. GRUB/UEFI

2. Multi-core Support

1. The x86 Boot Process 3

1. Xx86 Boot Process

Step 1: BIOS/UEFI

Advanced Operating Systems and Virtualization ’ IAG

Boot sequence

1. BIOS/UEFI

Actual hardware setup

1. The x86 Boot Process = 1.1 BIOS/UEFI 5

Boot Sequence
CPU Stages & Operations

Time Flow

CPU in Real Mode

|

————————————— —
T o o —————— —

https://manybutfinite.com/post/how-computers-boot-up/

1. The x86 Boot Process = 1.1 BIOS/UEFI 6

https://manybutfinite.com/post/how-computers-boot-up/

1. Xx86 Boot Process
1. Step 1: BIOS/UEFI

Pre-Boot and Real Mode

Advanced Operating Systems and Virtualization ’ IAG

The Pre-Pre-Boot

When the power button is pushed, the CPU does not start directly to run code (BIOS).

There are many operations that must be carried out before doing that:
- the power supply must settle down to its nominal state

- a number of derived voltages must stabilize: 1.5V, 3.3V, 5V and 12V. These
voltages must be supplied in a particular sequence, this is called power
sequencing and it is carried out by a CPLD (Complex Programmable Logic Device)

- platform clocks must be derived and this takes time

1. The x86 Boot Process = 1.1 BIOS/UEFI = 1.1.1 Pre-Boot and Real Mode 8

The Pre-Pre-Boot

Once the tasks have been carried out, the CLPD de-assert the reset line of the CPU.

Reset

Input
Supply (eg 12V)

d

1.05V
15V
33V
5V
12 Volts

Dice, Pete. Quick boot: a guide for embedded firmware developers. Walter de Gruyter GmbH & Co KG, 2017.

1. The x86 Boot Process = 1.1 BIOS/UEFI = 1.1.1 Pre-Boot and Real Mode

x86 Real Mode

At this point the system is in a very basic state:

- caches are disabled

- the MMU (Memory Management Unit) is disabled

- only one CPU core can run the code (the BSP - bootstrap processor)
- the CPU runs in Real Mode, a compatible way with the Intel 8086 (1978, yes 1978)
- nothingisin RAM

Intel 8086

x86 Real Mode is characterized by:
- no memory protection, no privilege levels, no multitasking
- direct access to I/O and peripheral
- memory:
- 20 bit of a segmented memory space for a total of :MB of addressable memory
- 16 bit for instructions

1. The x86 Boot Process = 1.1 BIOS/UEFI = 1.1.1 Pre-Boot and Real Mode 10

Segmented Memory

Starting from the Intel 8086, the addressing of memory is segmented. This means that a
memory location is referenced with two components: the segment id and the offset.
Therefore, the logical address can be expressed as:

<seg:offset>(e.g. <A:0x10>)

There are 4 basic 16-bit segment registers:

- CS: Code Segment
- DS: Data Segment
- S§S: Stack Segment
- ES: Extra Segment (that can be used by the programmer)

Intel 80386 added also other two registers, FS and GS with no predefined usage.

1. The x86 Boot Process = 1.1 BIOS/UEFI = 1.1.1 Pre-Boot and Real Mode

Segmented Memory

Address Resolution

The CPU resolves addresses in the following way

Memory Address Translation

/

Assembly
Instructions

in Program

x86 CPU with segmentation

Logical
Address

~

1. The x86 Boot Process = 1.1 BIOS/UEFI = 1.1.1 Pre-Boot and Real Mode

Northbridge
Chip

RAM
Modules

12

Segmented Memory

Segmentation is still present nowadays and it is always enabled. Each assembly instruction
that uses memory implicitly uses a segment register, for example:

- ajmpusesCS
- apushusesSS

Most of the segment addresses can be loaded with mov instruction but CS only with jmp or
call.

1. The x86 Boot Process = 1.1 BIOS/UEFI = 1.1.1 Pre-Boot and Real Mode 13

x86 Real Mode

Address Resolution

0000 0110 1110 1111 0000 Segment, 16 bits, shifted 4 bits left (or multiplied by 0x10)
+ 0001 0010 0011 0100 Offset, 16 bits

0000 1000 0001 0010 0100 Address, 20 bits

x86 CPU in 16-bit real mode, using cs = 0x1000

logical /

address

https://manybutfinite.com/post/memory-translation-and-segmentation

1. The x86 Boot Process = 1.1 BIOS/UEFI = 1.1.1 Pre-Boot and Real Mode

https://manybutfinite.com/post/memory-translation-and-segmentation

x86 Real Mode

Segmented Memory

Start of Segment 1
Address: Ox0CEF: 0000
Linear Address: OxOCEFO

Segment 1
OxOCEF

0000:0000

Start of Segment 3
Address: 0x28C0:0000 -or- 0x2143:77D0
Linear Address: 0x28C00

Segment 2 Segment 3
0x2143 0x28C0
Start of Segment 2 FFRF+EEEE

Address: 0x2143:0000

Linear Address: 0x21430 wrap-around

1. The x86 Boot Process = 1.1 BIOS/UEFI = 1.1.1 Pre-Boot and Real Mode

15

1. Xx86 Boot Process
1. Step 1: BIOS/UEFI

BIOS

Advanced Operating Systems and Virtualization ’ IAG

The First Fetched Instruction

Once the CLPD de-assert the reset line, newer processors load a microcode update for
example for patching vulnerabilities. This, obviously, must be done before executing any
program. After that the CPU starts executing instructions located at a precise memory
address, called the reset vector. For Intel x86 the reset vector is at:

OXFOOO:FFFO

Only 16 bytes from the top memory boundary. On IBM PCs that specific memory area is
bound to a ROM, the so-called BIOS. The first fetched instruction is

1jmp $Oxf000,$0xe05b
This starts the actual BIOS code, the long-jump also sets CS to 0xf0000

1. The x86 Boot Process = 1.1 BIOS/UEFI = 1.1.2 BIOS 17

BIOS Operations

The usual operations carried out by the BIOS are:

looking for video adapters that need to be run specific routines, these ROMs are
mapped from Co00:0000 to C780:0000

POST (Power-on Self-Test) does peripheral check (mouse, keyboard), also checks RAM
consistency, initialize the Video Card

loads the boot order configuration, from the CMOS (64bytes)
copying itself in RAM for a faster access (shadowing)

identifying the Stage 1 Bootloader (512bytes) using the specified boot order and loading
itin RAM at address 0000:7c00

finally the control is given with the instruction 1jmp $0x0000,50x7c00

1. The x86 Boot Process = 1.1 BIOS/UEFI = 1.1.2 BIOS 18

BIOS Operations

RAM after BIOS startup

9x00100000 (1MB) OXFO0O: FFFO = Ox000FFFFO
BIOS ROM (Reset Vector)
Ox000FO000 (960KB)
16-bit devices,
Expansion ROM
0x000CO000 (768KB)
VGA Display
0x000A0000 (640KB) N
Low Memory ~ Available RAM in the early days
Ox00000000

1. The x86 Boot Process = 1.1 BIOS/UEFI = 1.1.2 BIOS 19

1. Xx86 Boot Process

Step 2: Stage 1 Bootloader

Advanced Operating Systems and Virtualization ’ IAG

Boot sequence

2. Bootloader Stage 1
Executes the stage 2 bootloader (skipped for UEFI)

1. The x86 Boot Process = 1.2 Stage 1 Bootloader 21

1. x86 Boot Process
2. Step 2: Stage 1 Bootloader

MBR

Advanced Operating Systems and Virtualization

NG

The Master Boot Record (MBR)

The first sector (512 bytes) of the disk contains the Master Boot Record, which stores

executable code and the partition table of the disk.

Boot Code [Stage 1 Bootloader] Partition Table 55 MBR
(64 bytes) AA

(446 bytes)

M
. . Partition 3 .
E Partition 1 ‘ Partition 2 ‘ (Extended) ‘ disk

| | T Additional Boot Code T T

Extended Partition Table

Partition Table
The partition table contains up to 4 entries but it can be extended to multiple sectors of the

disk in order to address more partitions.

Nowadays, with UEFI, MBR has been replaced with GPT which will we see later.

23

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.1 MBR

The Master Boot Record (MBR)

Anatomy

BOOT
CODE

| 00+ 33 O 8e DO BC 00 7C 8t CO 8t D8 BE 00 7C BF 00
010: 06 B9 00 02 FC F3 A4 50 68 1C 06 CB FB B9 04 00
02 BE 07 80 7€ 00 00 0B OF 85 OE 01 83 C5 10

This is a jump to the /}Bg,

executable code

This area is the BIOS
Parameter Block (BPB) a
data structure that contains

h h . I d t fth d. k OF0: 43 50 41 75 32 81 F9 02 01 72 2C 66 68 07 BB 00
100: 00 66 68 00 02 00 00 66 68 08 00 00 00 66 53 66
t e p ySIca a a o e Is 110: 53 66 55 66 68 00 00 00 00 66 68 00 7C 00 00 66
120: 61 68 00 00 07 cDp 1A S5A 32 F6 EA 00 7C 00 00 cp
130: 18 A0 B7 07 EB 08 A0 B6 07 EB 03 A0 BS 07 32 E4
140: 05 00 07 88 FO AC 3C 00 74 09 BB 07 00 B4 OE CD R
Executable code starts piol - pidoob dad oo g bl Boflis
160: 24 02 C3 49 6E 76 61 6C 69 64 20 70 61 72 74 69
here 170: 74 69 6F 6E 20 74 61 62 6C 65 00 45 72
180: 20 6C 6F 61 64 69 6E 67 20 6F 70 65 72
190: 6€E 67 20 73 79 73 74 65 6D 00 4D 69 73
1A0: 67 20 6F 70 65 72 61 74 69 6E 67 20 73
141 1 H 1B0: 65 6D 00 00 00 63 y 00
Each partition is described nanTmen: 36
. h b fd 100: FF FF 07 FE FF FF 09
TPO: 00 00 00 00 00 00 O 00
Wlt 16 ytes O atal We 1F0: 00 00 00 00 00 00 00 00 00 00 00 00 00

have space for 4 partitions

Moral of the story

FIELDS

jump to boot program
disk parameters

boot program code
disk signature

status

starting head
starting sector
starting cylinder
partition type
ending head
ending sector
ending cylinder
relative start sector
total sectors

status
starting head
starting sector
starting cylinder
partition type
ending head
ending sector
ending cylinder
relative start sector
total sectors

partition type

We have only a 384 bytes program END OF MRR

marker

for starting the OS!

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.1 MBR

24

The Master Boot Record (MBR)

The actual code

.codel6
.text

.globl _start;

_start:
jmp stagel start

OEMLabel: .string "BOOT"
BytesPerSector: .short 512
SectorsPerCluster: .byte 1
ReservedForBoot: .short 1
NumberOfFats: .byte 2
RootDirEntries: .short 224
LogicalSectors: .short 2880
MediumByte: .byte OxOF0O
SectorsPerFat: .short 9
SectorsPerTrack: .short 18
Sides: .short 2

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.1 MBR

HiddenSectors: .int 0
LargeSectors: .int O
DriveNo: .short 0

Signature: .byte 41 #41 = floppy
VolumeID: .int Ox00000000 # any value
VolumeLabel: .string "myOS !
FileSystem: .string "FAT12 "

.stagel start:

cli # Disable interrupts
xorw %ax,%ax # Segment zero
movw %ax,%ds

movw %ax,%es

movw %ax,%ss

25

http://web.archive.org/web/20200607220642/http://polytimenerd.blogspot.com/2012/06/write-your-own-kernel-bootloader-stub.html
http://web.archive.org/web/20200607220642/http://polytimenerd.blogspot.com/2012/06/write-your-own-kernel-bootloader-stub.html

Stage 1 Bootloader
Tasks

The stage 1 bootloader must:

enable the A2o line

- switch to 32-bit protected mode
- setup a stack

- load the kernel, but for doing that we need to navigate the filesystem so this must be
done by the Stage 2 bootloader

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.1 MBR 26

Stage 1 Bootloader
The A2o line

The intel 80286, the successor of the 8086, increased the addressable memory to 16MB, that
means 24 bits for addresses.

For maintaining the compatibility with the programs written for the 8086 the 21th bit is forced
to zero, in this way, the memory “wrap-around” when exceeds the 1MB limit. For example:

OxF800:8000 — Ox00100000
— 0x0000 0000 0001 O0OOO OOCO OEEO 0000 0000

By forcing the 21th to o (line A20) the address starts from the beginning of the memory
— Ox0000 0000 0000 OO OO 0000 OO OO

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.1 MBR 27

Stage 1 Bootloader
The A2o line

For forcing the A20 to zero the IBM decided to make a modification on the motherboard, in
particular by using a a spare pin of the 8042 keyboard controller. The pin has been routed to
the A2o line, so called Gate A2o.

The A20 is disabled by default when the CPU starts and it must be enabled before entering in
protected mode.

call wait_for_8042 wailt_for_8042:

movb $0xd1, %al #command write inb %al, $0x64

outb %al, $Ox64 testb $2,%al # Bit2 set=busy
call wait_for_8042 jnz wait_for_8042

movb $Oxdf, %al # Enable A20 ret

outb %al, $0x60
call wait_for_8042

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.1 MBR 28

1. x86 Boot Process
2. Step 2: Stage 1 Bootloader

x86 Protected Mode

Advanced Operating Systems and Virtualization ’ IAG

x86 Protected Mode

The x86 protected mode was introduced with the 80286 (1982) and it was
extended with memory paging in the 80386 (1985). Still today, modern PCs
starts in Real Mode for backward compatibility, therefore the Protected From left, Intel 80286 and 80386
Mode must be enabled during the startup.

(ZMMO [YMMO Dmvvo | [[ZMML [YMM1 D ||| [ST(0)[MMO]| ST(1) IMM1]| [T mEAXRAX|| R8 [ueo|[R12[mwmun] | CRO | CR4
(ZMM2 [YMM2 vz |[[ZMM3 [YMM3 Do]| [ST(2) [MM2] | ST(3)MM3]| [eBxRBX | R9 [=ureo] [R13[wiausn] | CR1 | CR5
[ZMM4 [YMM4 Duma]|[ZMMS [YMMS s || | ST)[MMA4]] ST(5) MM5 || [oleck RCX [R10[mirwo][R14 [~ wwiro] | CR2 | CR6
[ZMM6 [YMM6 [xuwe | |[ZMM7 [YMM7 [xuw7 || | ST(6)[MM6]| ST(7) MM7]| [50exRDX |R11[wiruof[R15[wimso] | CR3 | CR7
(ZMM8 [YMM8 [xvvs || ZMM9 [YMM9 X || [(ep e8> RBP| | [rorent |RDI [sese| RIP | | CR3 | CR8
|ZMM10 [YMM10 oo [ZMM11 [YMM11 || | CW | FPIP | pop | FP_cs| [[CsiEstRSI | [[[spiEsP|RSP ‘MSW | CR9
‘ZMMlZ YMM12 [xvm12 ‘ZMMB YMM13 Dxmmi3 || ‘SW CR10
‘ZMM14 YMM1a Do ‘ZMM].S YMMI5 Lxmis] | ‘TW Il 256—bit Reg?ster [| 80—bit.Regis.ter [| 64—bit Register B 16-bit Register CR11
B 512-bit Register [l 128-bit Register [l 32-bit Register e
ZMM16 ZMM17| ZMM18] ZMM19]zr\mvlzo zmm21|zmm22 | zMM23] [FP_DS CR12
ZMM24 | zMM25| 2M26 [ZMM27 [ZMM28 | ZMM29 | ZMM30] ZMM31 | |FP_oPC| FP_DP||FP_IP | CS| SS| DS||GDTR| IDTR | DRO | DR6| CR13
ES | Fs | Gs|| TR | LDTR||[DR1| DR7]| [CR14
[RFLAGS g | DR2 | DR8 | |CR15 MXCSR|
DR3 | DR9
DR4 |DR10| DR12| DR14
x86 Registers DR5 |DR11| DR13 DR15

https://upload.wikimedia.org/wikipedia/commons/4/41/Table of x86 Registers.png

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.2 x86 Protected Mode 30

https://upload.wikimedia.org/wikipedia/commons/4/41/Table_of_x86_Registers.png

x86 Protected Mode

CRO Register

The CRO register is 32 bits long on the 386 and higher processors. On x64 processors in long
mode, it (and the other control registers) is 64 bits long. CRo has various control flags that
modify the basic operation of the processor.

Bit Name Full Name Description

— |0 |PE Protected Mode Enable | If 1, system is in protected mode, else system is in real mode

1 MP Monitor co-processor Controls interaction of WAIT/FWAIT instructions with TS flag in CRO

2 |EM . Emulation . If set, no x87 floating-point unit present, if clear, x87 FPU present
3 | TS | Task switched . Allows saving x87 task context upon a task switch only after x87 instruction used
V 4 | ElD | Extension type [On the 386, it allowed to specify whether the external math coprocessor was an 80287 or 80387

5 |NE Numeric error Enable internal x87 floating point error reporting when set, else enables PC style x87 error detection
— 16 (WP Write protect When set, the CPU can't write to read-only pages when privilege level is 0

18 | AM | Alignment mask | Alignment check enabled if AM set, AC flag (in EFLAGS register) set, and privilege level is 3

29 | NW | Not-write through | Globally enables/disable write-through caching
—— 30 |[CD Cache disable Globally enables/disable the memory cache
— |31 . PG ‘ Paging . If 1, enable paging and use the § CR3 register, else disable paging.

https://en.wikipedia.org/wiki/Control register

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.2 x86 Protected Mode 31

https://en.wikipedia.org/wiki/Control_register

x86 Protected Mode

Entering Basic Protected Mode

The first action to do for entering protected mode is to set the bit o (PE) of CRo to 1, but this is
not enough for enabling all of the facilities. We need to set the CS and the only way to do this
is to use a far jump (1jmp), then the code will execute in 32/64 bit mode.

1jmp 0x0000, PE_mode
.code32

PE_mode:

Set up the protected-mode data segment registers
movw $PROT_MODE_DSEG, %ax

movw %ax, %ds

movw %ax, %es

movw %ax, %fs

movw %ax, %gs

movw %ax, %SS

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.2 x86 Protected Mode 32

1.2.3

1. x86 Boot Process
2. Step 2: Stage 1 Bootloader

x86 Memory Addressing

Advanced Operating Systems and Virtualization ’ IAG

Memory Addresses

The 8086 defined three kinds of memory addresses:

- a logical address that is used in the ASM code is always composed by two parts: a
segment (selector) and an offset within the segment (e.q. OxFFFF : FFFF)

- alinear address that in a 32bit architecture is a 32bit unsigned integer and can be used
to address up to 4GB (e.g. 0x00000000 - OXFFFFFFFF)

- a physical address that is used to address memory cells in memory chips, they
correspond to the electrical signal sent along the address pins of the cpu to the memory
bus.

Address are translated by the MMU (Memory Management Unit) set of circuits.

Logical address ‘ AL MS n |TTATION ‘Linear address ‘ Pﬁﬂ#G |Physical address

MMU

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.3 x86 Memory Addressing 34

Segmentation

Segments Descriptors

In protected mode a segment in no longer a raw
number but it contains an index to a table of

segment descriptors. The table

is an array

containing 8-byte records of this kind:

There are three type of segments: code, data and
system. The main sections are:

Base, a 32-bit linear address that pointing to
the beginning of the segment

Limit, the size of the segment

G, the granularity (if 0 size is bytes otherwise
it is @ multiple of 4096)

DPL, the descriptor privilege a number from
o to 3 to control the access to the segment

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.3 x86 Memory Addressing

System flag set = non-system

Data Segment Descriptor J
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Al LmiT D S
BASE(24-31) G|BIO|V]| (16199 |1| P |=| TYPE BASE (16-23)
L L 11
BASE(0-15) LIMIT (0-15)

313029 28 27 26 2524 23 222120191817 16 151413121110 9 8 7 6 5 4 3 2 10

Code Segment Descriptor

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

A
BASE(24-31) ‘G ‘ D ‘ 0 ‘ v ‘ (1“5M1|;)
L

—

D[S
P [=| TYPE BASE (16-23)

I 11

BASE(0-15) LIMIT (0-15)

313029 28 27 26 2524 23 222120191817 16 1514 13121110 9 8 7 6 5 4 3 2 10

System Segment Descriptor

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

D[S
BHSE2431) M M \ggw;) \ P H T
| 10

—

BASE (16-23)

BASE(0-15) LIMIT (0-15)

313029 28 27 26 2524 23 22212019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 10

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

Privileges

Privileges

Ring 3 has restricted access to memory
management, instructions execution and
I/O ports

Protection Rings

Operating

System

Kernel

Operating System
Services (Device “

Drivers, Etc.)

Applications

Highest Lowest
0 1 2 3

Privilege Levels

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.3 x86 Memory Addressing

Figure 6-4. Protection Rings

Figures with blue caption are from the latest version of the Intel Manual

36

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

Segmentation
Segments Descriptors Tables and Selectors

The Segment Descriptors are stored either in:

- the Global Descriptor Table (GDT) that is system wide and pointed by the register GDTR
(with the size)

- the Local Descriptor Table (LDT) that was specific for one process and it was pointed by
the register LDTR (with the size), today is not used anymore

Segment Selectors

Each segment register (CS, DS, SS, FS, GS), contains a Segment Selector (16bit). Beside of the
index to the GDT also contains Tl (the table indicator o/2 = GDT/LDT) and the RPL that we will
see later. Remember that a logical address is a segment selector + offset.

15 3210
Ti|rpL | TI="Table Indicator
RPL = Requestor Privilege Level

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

Segment Selector index

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.3 x86 Memory Addressing 37

Segmentation

In the Linux Kernel

In the Linux kernel segmentation is redundant and used in very limited way, since paging is
favoured. All Linux Processes running is User Mode use the user code segment (__USER_CS)
and the user data segment (__USER_DS), the ones that runs in Kernel Mode uses the kernel
code segment (__KERNEL_CS) and the kernel data segment (__KERNEL_DS). All of these
segments have base o and max limit, therefore all processes may use the same logical
addresses and coincide with the linear addresses.

Segment Base G Limit S Type DPL D/B P
user code 0x00000000 1 oxfffff 1 10 3 1 1
user data 0x00000000 1 Oxfffff 1 2 3 1 1
kernel code 0x00000000 1 oxfffff 1 10 0 1 1
kernel data 0x00000000 1 Oxfffff 1 2 0 1 1

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.3 x86 Memory Addressing

Segmentation

Logical to Linear Resolution

GDT
Global Descriptor Table

Segment Descriptor
»| Segment Descriptor

R Segmentation cannot
: be disabled (Intel “flat
model”)
~ Base
Address:
(%]

[|‘ Index: 14 [e@[cPL: 3|J

cs register: ©Ox73

ASM Code

Linear Address
0x08048393

Base address + offset

https://manybutfinite.com/post/memory-translation-and-segmentation/

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.3 x86 Memory Addressing

https://manybutfinite.com/post/memory-translation-and-segmentation/

Segmentation
Caching

Accessing the GDT every time an address has to be translated is not performance-wise. For
this reason the 8086 provides an additional non-programmable register (for every segment
register) which contains the last resolved 8byte Segment Descriptor.

Descriptor Table Segment

Segment

Descriptor

Segmentation Register Nonprogrammable Register

| Segment Selector ' | Segment Descriptor ') ------ J

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.3 x86 Memory Addressing 40

1.2.4

1. x86 Boot Process
2. Step 2: Stage 1 Bootloader

x86 Privileges and Protection

Advanced Operating Systems and Virtualization ’ IAG

Privileges and Protection

We have seen that each S. Descriptor has a DPL (Descriptor Privilege Level), each S. Selector
has an RPL (Requestor Privilege Level). We also need a current execution privilege level (CPL),
that describes the current privileges that the CPU has.

Now, how the memory protection is enforced by using these metadata? And how we can
change our current privilege level?

— Decreasing the ring level
should be denied or
controlled

——» Increasing the ring level
should be allowed

Device drivers

Applications

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.4 x86 Privileges and Protection 42

Privileges Levels

More in detail, the privilege fields are three:

1. RPL is the Requestor Privilege Level and it is present only in data segment selectors (e.qg.
SS, DS registers)

2. CPL is the Current Privilege Level and it is present only in code segment selectors (i.e. CS
register that can be loaded only with |jmp/call); the CPL it's always equals to the current
CPU privilege level

3. DPL s the Descriptor Privilege Level and it is present in segment descriptors of the GDT

When enforcing memory protection? In two cases:

- when memory is accessed through a linear address Ui segniow écloctn
. 16 bits Index (3-15)
- when a data segment is loaded from a selector

RPL

- -

15 2 2]

Code segment selector

-

16 bits Index (3-15) CPL

15 2 2]

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.4 x86 Privileges and Protection 43

Protection upon segment load

Current code
segment register

L

Data segment selector
being loaded

Selects

Segment descriptor

R

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.4 x86 Privileges and Protection 4Lt

https://manybutfinite.com/post/cpu-rings-privilege-and-protection/

Gates

Accessing a segment with a higher privilege (lower ring)
with no control might allow malicious code to subvert

Task Gate Descriptor
the kernel_To transfer Controll Code mUst pass through a 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Controlled gate RESERVED B ? 0{0|1(0(1 RESERVED
. TSS SEGMENT SELECTOR RESERVED
Gates are represented again by descriptors, in particular R B BT EEAD AN BB R RE WG AN 5§65 4T T

by system descriptors (S = 0). There are different kinds nemptcaesescitor
Ofgates descriptors- 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

OFFSET (16-31) P ? 0(1]1]1]0 0‘0 0| RESERVED
- interrupt-gate deSCI’iptOI’S SEGMENT SELECTOR OFFSET (0-15)
- trap-gate descriptors BN SRR SO CARNCS U L T 051 S0 5 B
- task-gate descriptors T e o o et e
- (caII-gate deSCI’iptOI’S) OFFSET (16-31) P‘ ? ‘0’1‘1‘1‘1‘0‘0‘0‘ RESERVED
These descriptors are referenced by the Interrupt i bl

3130292827 26252423222120191817161514 13121110 9 8 7 6 543 210

Descriptor Table (IDT), pointed by the IDTR register.

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from /O ports to process
management. " O'Reilly Media, Inc.", 2005.

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.4 x86 Privileges and Protection 45

IDT and GDT

System IDT

(\ Interrupt

Handler |

l T
§
offset . 256
selector entries

(TR f——]

System GDT
)

segment

descriptor
N A

(@)

Kernel Text
Segment

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.4 x86 Privileges and Protection 46

The GDT in Linux (2.6)

There is one GDT in the picture per CPU core.

Linux’s GDT Segment Selectors Linux’s GDT Segment Selectors
null 0x0 1SS 0x80 different for each processor
reserved LDT 0x88
reserved PNPBIOS 32-bit code 0x90
reserved PNPBIOS 16-bit code 0x98
not used PNPBIOS 16-bit data 0xa0
not used PNPBIOS 16-bit data 0xa8
TLS #1 0x33 PNPBIOS 16-bit data 0xbo
TLS #2 0x3b APMBIOS 32-bit code 0xb8
TLS #3 0x43 APMBIOS 16-bit code 0xco
reserved APMBIOS data 0xc8
reserved not used
reserved not used
kernel code 0x60 (__KERNEL_CS) not used
kernel data 0x68 (__KERNEL_DS) not used
user code 0x73 (__USER_CS) not used
user data 0x7b (__USER_DS) double fault TSS oxf8

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.4 x86 Privileges and Protection 47

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

LIMIT D]S
BASE(24-31) G| |o (16:19) P |=| TYPE BASE (16-23)

The TSS (Task State Segment) = 7=

3130292827 26252423222120191817 1615141312111 9 8 7 6 543 2 10

The Base field of the TSS entry in the GDT (the TSSD) for the n-th CPU stored a pointer to the
n-th entry of the init_tss array (Kernel 2.6 - L1 L2).

#ifdef CONFIG_X86_32
/* This is the TSS defined by the hardware. */
struct x86_hw_tss {

According to the Intel Manual, the role of the structure is to contain g ey i
. . . unsigned short ss@, __ssoh;
all the necessary information about the current “task” (i.d. unsigned Long i
/* ss1 caches MSR_IA32_SYSENTER_CS: */
process/thread). It stores: snsad oy e
unsigned short ss2, __ss2h;
- processor registers (as in the figure) instoned 1on W
. . unsigned lon flags;
- 1/O ports permissions anss g g 5
. uns?gned long cX;
- Inner-level stack pointers e i
- alink to the previous TSS (after a context switch) e g vo;
unsigned long si;
Linux does not use hardware context switches but it is obliged to unstned Skt g
. unsigned short cs, __csh
maintain a TSS for each CPU. A TSS is maintained by the Linux e s, _seh
kernel only for active processes. unetoned S =, =,
unsigned short 1dt, __ldth;
The TR register of each CPU contains the TSSD of the corresponding Sl e . .
TSS (Base and Limit are cached and non programmable)) _atertbute_((packed);

#alco

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.4 x86 Privileges and Protection 48

https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/include/asm/processor.h#L269
https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/include/asm/processor.h#L192

The TSS (Task State Segment)

The x86 Boot Process = 1.2 Stage 1 Bootloader =

-
cPy INTELRESERVED TYPE | DESCRIPTION
g
TA:
5K REGISTER PlopL{o| TvpE BASEz5.16 1 AN AVAILABLE TASK STATE
A ! L1l SEGMENT MAY BE USED AS
— = — - —> DESCRIPTOR THE DESTINATION OF A TASK
L | BASE 5.0 1 SWITCH OPERATION.
————————— A I 1
PROGRAM INVISIBLE | | A BUSY TASK STATE SEGMENT
I LMIT 5.0 | CANNOT BE USED AS THE
| 1 DESTINATION OF A TASK
T L ' | SWITCH.
“<t-————— === -
BASE
! J
1 T 3
________ A BYTE
15 of oFFseT -
TASK LDT SELECTOR 2 —
DS SELECTOR 40 » | DESCRIPTION
1 BASE AND LIMIT FIELDS ARE VALID
S SELECTOR 8
o Siﬁ'éi'féig‘é” PRESENT IN
A AND LIMIT ARE
CS SELECTOR 36 NOT oLhiD
ES SELECTOR a4
ol 22
si 30
B8P 28 | CURRENT
TASK (2)
sp 26 | STATE
BX 24
TASK oX 22
e STATE
SEGMENT cx 20
AX 18
FLAG WORD 16
1P (ENTRY POINT) 14
S5 FOR CPL 2 12
SP FOR CPL 2 10
SSFORCRLT Bl heks (1) NEVER ALTERED (STATIC) AFTER INITIALIZATION BY O.S.
'SP FOR CPL 1 6 [ForceLo.1.2 THE VALLIFS AS INITIALIZED FOR THIS TASK ARE ALWAYS
S5 FOR CPL O 4 VALID SS:SP VALUES TO USE UPON ENTRY TO THAT
PR,) PRIVILEGE LEVEL (0, 1, OR 2) FROM A LEVEL OF

BACK LINK SELECTOR TO TSS

4 x86 Privileges and Protectio

LESSER PRIVILEGE.
(2) CHANGED DURING TASK SWITCH

ference Manual

49

TheTSS on x86_64 (amd64)

On x86_64 hardware context switch is no more
supported, indeed as we can see the registers are
disappeared from the TSS.

From the Intel Manual:
Although hardware task-switching is not supported in 64-bit mode, a
64-bit task state segment (TSS) must exist. Figure 7-11 shows the
format of a 64-bit TSS. The TSS holds information important to 64-bit
mode and that is not directly related to the task-switch mechanism.
This information includes:
- RSPn —The full 64-bit canonical forms of the stack pointers (RSP)
for privilege levels o-2.
- ISTn —The full 64-bit canonical forms of the interrupt stack table
(IST) pointers.
- I/O map base address —The 16-bit offset to the I/O permission bit
map from the 64-bit TSS base.
The operating system must create at least one 64-bit TSS after
activating IA-32e mode. It must execute the LTR instruction (in 64-bit
mode) to load the TR register with a pointer to the 64-bit TSS
responsible for both 64-bit mode programs and compatibility-mode
programs.

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.4 x86 Privileges and Protection

31

15

/0 Map Base Address 1 Reserved

Reserved

Reserved

IST7 (upper 32 bits)

IST7 (lower 32 bits)

IST6 (upper 32 bits)

IST6 (lower 32 bits)

ISTS (upper 32 bits)

IST5 (lower 32 bits)

IST4 (upper 32 bits)

IST4 (lower 32 bits)

IST3 (upper 32 bits)

IST3 (lower 32 bits)

IST2 (upper 32 bits)

IST2 (lower 32 bits)

IST1 (upper 32 bits)

IST1 (lower 32 bits)

Reserved

Reserved

RSP2 (upper 32 bits)

RSP2 (lower 32 bits)

RSP1 (upper 32 bits)

RSP1 (lower 32 bits)
RSPO (upper 32 bits)

RSPO (lower 32 bits)

Reserved

I:l Reserved bits. Set to 0.

100
9%
92
88
84
80
76
72
68
64
60
56
52
48
44
40
36
32
28
24
20
16
12

Figure 7-11. 64-Bit TSS Format

From Ringoto 3

Current code segment register
(__USER_CS or _ KERNEL_CS in Linux)
A

CPL: 3

1

Destination Code Segment
(__KERNEL_CS in Linux)

— DPL: © |—>

Selects

47 32
1| DPL —@PL is 3 or @

Offset (15-0)
15]

Interrupt-gate/trap-gate descriptor

https://manybutfinite.com/post/cpu-rings-privilege-and-protection/

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.4 x86 Privileges and Protection

https://manybutfinite.com/post/cpu-rings-privilege-and-protection/

1. Xx86 Boot Process
1. Step 1: BIOS/UEFI

Paging

Advanced Operating Systems and Virtualization ’ IAG

Paging

The last step for the x86 Protected Mode, is to enable memory paging. This is not done
automatically when enabling x86 protected mode.

Logical address ‘ A MS “ |TTAT|0N ‘ Linear address ‘ Pﬁﬂ#G ‘ Physical address

The Paging unit translates linear addresses to physical ones, the advantages wrt the
segmentation (that we remind is not used by the kernel) is that it offers a smaller granularity
memory protection. The paging unit also checks the request type again the access rights of
the linear address, and if access is not granted it generates a Page Fault exception.

To enable paging we need to set up some data structures before. As the term itself, when the
paging is enabled, the memory is represented as a set of pages of fixed size (4Kb). A page is a
set of contiguous linear addresses. With paging, RAM is thinked as partitioned into
fixed-length page frames, each page frame can contain a page, they have the same size.

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Paging 53

Paging
In the x86 architecture

The data structures that maps linear addresses to physical addresses are called page tables.
The linear address, in the x86 architecture is divided as in the following figure (2 levels of

indirection):
Linear Address
31 22 21 12 11 0
Directory Table Offset

12 4-KByte Page

10 10 Page Table Physical Address

Page Directory

Y

PTE

20

Y

PDE with PS=0

i| CR3 |

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

20

Yy

Different for
every process

A

54

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Paging

Paging

Every active process must have a Page Directory, but there’s no need to allocate all the Page
Tables. In the x86 paging mechanism:

- each block (PDE and PTE) is an array of 4-bytes
- we can map 1K x 1K pages
- every page is 4KB so we can address a total of 4GB

Page-Directory Entry (4-KByte Page Table) Page-Table Entry (4-KByte Page)
31 1211 9876543210 31 1211 9876543210
P|P|U|R P P|P|U|R
Page-Table Base Address Avail [c|P|o[A|c|w|/|/|P Page Base Address Avail [G|A[D|A[C|W|/|/|P
Available for system programmer’s use —l | Available for system programmer’s use 4, |
Global page (Ignored) Global Page (TI_.B caching policy)
Page size (0 indicates 4 KBytes) Pz_age Table Attribute Index
Reserved (set to 0) Dirty
Accessed Accessed (Sticky bit)
Cache disabled Cache Disabled
Write-through Write-Through
User/Supervisor User/Supervisor
Read/Write Read/Write (Used for COW)
Present Present

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Paging 55

u
P a g I n g Logical address SEGMS“ITATION Linear address : Pﬁﬂ#G Physical i

Complete path

Logical Address
(or Far Pointer)

Segment l

Selector Offset Linear Address
I | | | Space
" Linear Address
Global Descriptor - .
Table (GDT) Dir [Table | Offset | iz;éfg::; p <
Space
Segment
gegmetm Page Table Page h
escripor(—y (| | (| 01 |1 -"""77 _ H
> || [T 71 Page Directory Phy. Addr. Nort brldge
~|—> Lin. Addr. Entry 1
A Entry >

g \ J
SegmentJ

Base Address

|~— Page

}7 Segmentation I Paging I RAM

Figure 3-1. Segmentation and Paging

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Paging 56

TLB

Translation Lookaside Buffer

Virtual Address
Page # Offset

Virtual Page Number
(the page number

described in the logical \ _—
address) —fvpN] PPN Page Table
2
| o e TLB miss: use this
Fi Ty
Physical Page Bl
Number (the page
frame numberin Tl s
R AM) Physical Address
Physical Page # Offset
I
Physical Memory 3
0 L 2 3 4 5 [

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Paging 57

Paging
Operations

The Paging circuitry performs the following operations:

1. Upon aTLB miss the firmware access the page table
2. It checks the bit P (present) of the table:

a. Ifitis @ we have a page fault and a trap is risen
i. CPU registers (incl. EIP and CS) are saved on the system stack and they will be

restored returning from the trap
ii. Thetrapinstruction is re-executed
iii. The re-execution can give rise to another trap and so on
b. Ifitis1the pageisloaded

As for example, writing to a read-only page will give rise to a trap, which is handled by the
Segmentation Fault Handler.

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Paging 58

Process Address Space
In Linux i386 (32bit)

OXFFFFFFFF
Kernel Space
1GB
OxCOOOO000
OXBFFFFFFF
User Space
3GB

0x00000000

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Paging

59

Physical Address Extension (PAE)

The Physical Address Extension (PAE) has been introduced by Intel, starting with the Pentium
Pro (1995) for increasing the RAM size support over 4GB. In practice, the address pins where
increased to 36bit (max 64GB) but this required a new page indirection scheme that was
increased to 3 levels. Linear addresses obviously remained of 32bit!

The support to PAE is enabled by setting the Aﬁbi;s vmua(ljaddress PR
PAE bit (5th bit) in the CR4 register. BRRE
[g Pysical address (PA)
Page table D
TE -
Page dlrectoryr
Page directory Cc
pointer table
PDE

IB
PDPTE »

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Paging 60

Long Mode in x86_64 (amd64)

Increasing the memory pins to 64bit, again required to extend the page indirection scheme.
The PAE scheme is further extended with the long mode addressing.

Canonical Addresses

With 64bits of logical memory we have 2% possible addresses, but bits 49-64 are short
circuited. This allows up to 24® canonical form addresses, for a total of 256 TB of addressable

RAM. 64bit

FFFFFFFF FFFFFFFF

Higher half

00000000 00000000

48bit
FFFFFFFF FFFFFFFF

Canonical "higher half"

FFFF8000 00000000

Noncanonical
addresses

00007FFF FFFFFFFF
Canonical "low
00000000 00000000

https://en.wikipedia.org/wiki/X86-64

Linux currently allows for 128TB of logical addressing and 64TB for physical addressing.

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Paging

https://en.wikipedia.org/wiki/X86-64

Linux Memory Layout on x64

OXFFFF FFFF FFFF FFFF
TEXT

DATA

OxFFFF 8000 0000 0000 _
Non-canonical
e 0x0000 7FFF FFFF FFFF addresses
Heap
Shared Objects Kernel

0x0000 0000 0000 0000

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Paging 62

Long Mode in x86_64 (amd64)

The long mode adds another level of indirection, for a total of 4.

Linear Address
47 39 38 30 29 2120 12 11 0
This is also called the [PML4 [Directory Ptr | Directory | Table | Offset
GDT = General E— | 9 5
. 9 12 4-KByte Page
Directory Table ———
PTE >
Page-Directory- PDE with PS=0 > 40
Pointer Table 40 Page Table
Page-Directory
L»'PDPTE 4l
9
40
> PML4E
40
CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using 4-Level Paging

63

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Paging

Long Mode in x86_64 (amd64)

CR3 and Page Structure Entries

5[5[5]5[5]5[5[5[5 M (M1 3[22[2|2[2]2]2[2[2[2| T[T [T[T[T[T]T[T[T[T
3(2|1/0[9|8|7/6|5[4/3]2[1 210987|6|5|4|3|2|1|0|9876543210987654321 0
. P[P
2 Address of PML4 table (4-level paging)
Reseqved or PML5 table (5-level paging) lnoed |Chf lan. | CR3
é Ignored Rsvd Address of PML4 table ion. Ralalctul Y1) Prse:
3 9 : an- dg D|T/Siw|~| Present
PML5E:
Ignored 0 not
present
X I |PIP|IR
. = R U PMU4E:
Ig Ignored Rsvd. Address of page-directory-pointer table Ign. d g A [C) W 5 \{\l 1] present
PML4E:
Ignored 0 not
present
X P PIP| IR PDPTE:
Prot. Address of U
Ig Key" Ignored Rsvd. 1GB page frame| Reserved # Ign. |G|1|DJ|A [C) W S\{\l 1 |)1aGgBe
X I |PIP U R PDPTE:
D Ignored Rsvd. Address of page directory Ign. |0|g|A|C SI 1| page
3 n| |D|T[|w| | directory
PDTPE:
Ignored 0 not
present
X P PIP| IR PDE:
D Prot4. Ignored Rsvd. Address of Reserved Al Ign. |G[1|D[A|C U /|1 2MB
3| Key 2MB page frame T oIt Sw page
X I |PIP U R| PDE:
D Ignored Rsvd. Address of page table Ign. |0|g|A|C S/ 1| page
3 n| |D[T[7wl table
PDE:
Ignored 0 not
present
X prot P { PPI,IR PTE:
D K 4 Ignored Rsvd. Address of 4KB page frame Ign. [G|A[D]A|C S/ 1| 4KB
3| Key T D(T[| page
PTE:
Ignored 0 not
present

Figure 4-11. Formats of CR3 and Paging-Structure Entries with 4-Level Paging and 5-Level Paging

The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Pagi 64

Huge Pages

The Linux kernel allows the usage of certain pages with bigger size than 4KB, up to 1GB (e.qg.
useful for DBMS).

They are listed in /proc/meminfo and /proc/sys/vm/nr_hugepages. Once enabled, huge
pages can be mapped with mmap by using the flag MAP_HUGETLB or they can be directly
requested with the instruction, by using (with MADV_HUGEPAGE flag):

int madvise(void *addr, size t length, int advice);

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Paging 65

Long Mode in x86_64 (amd64)

How can be enabled?

Once we set up the proper data structures, we tell the CPU to enable the Long Mode in the
following way.

264 pushl $__KERNEL_CS

265 pushl %eax

266

267 /* Enter paged protected Mode, activating Long Mode */
268 movl $(X86_CRO_PG || X86_CRO_PE), %eax /* Enable Paging and Protected mode */
269 movl %eax, %cro

270

271 /* Jump from 32bit compatibility mode into 64bit mode. */
272 lret

273 SYM_FUNC_END(startup_32)

274

https://elixir.bootlin.com/linux/latest/source/arch/x86/boot/compressed/head 64.S#L268

1. The x86 Boot Process = 1.2 Stage 1 Bootloader = 1.2.5 Paging 66

https://elixir.bootlin.com/linux/latest/source/arch/x86/boot/compressed/head_64.S#L268

1. Xx86 Boot Process

Step 3: Stage 2 Bootloader

Advanced Operating Systems and Virtualization ’ IAG

Outline

1. BIOS/UEFI

Actual hardware setup

2. Bootloader Stage 1
Executes the stage 2 bootloader (skipped for UEFI)

3. Bootloader Stage 2
Loads and starts the kernel

4. Kernel
Takes control and initializes the machine (machine-dependent operations)

5. Init (or systemd)
First process: basic environment initialization

6. Runlevels/Targets
Initializes the user environment

1. The x86 Boot Process = 1.3 Stage 2 Bootloader 68

1.3.1

1. x86 Boot Process
3. Step 3: Stage 2 Bootloader

GRUB & UEFI

Advanced Operating Systems and Virtualization ’ IAG

Stage 2 Bootloader

The stage 1 bootloader (MBR) leaves the control to stage 2 bootloader which has the role of
starting the kernel.
- In Linux Distributions we wusually have GRUB (formerly LILO), it uses

/boot/grub/grub.conf forloading the startup entries
- InWindows NT is ntldr which uses boot.ini as configuration file

The kernel image is loaded in RAM by using BIOS I/O services

- In Linux Distributions the kernel is located in /boot/vmlinuz-<version>
- InWindows NT the kernel is located at C: \Windows\System32\ntoskrnl.exe

1. The x86 Boot Process = 1.3 Stage 2 Bootloader = 1.3.1 GRUB/UEFI 70

Historical Linux Boot Code

The initial versions of the Linux kernel did not use any Stage 2 Bootloader (GRUB). The file
arch/1386/bootsect.S contains the historical boot sector that left the control to
arch/1386/bootsetup.S code which loaded the kernel image in memory. Today these files
are no more used.

The code in arch/1386/bootsetup.S initialized the architecture (e.g. CPU state for the kernel
boot) and in the end gave control to the initial kernel image.

1. The x86 Boot Process = 1.3 Stage 2 Bootloader = 1.3.1 GRUB/UEFI 71

UEFI

[u:1faz/

The Unified Extensible Firmware Interface is a set of specifications of software interfaces
between an operating system and the platform firmware. Initially developed by Intel (as EFI),
today UEFI is the actual replacement of the BIOS. The standard development is today lead by
the Unified EFI Forum, a non-profit alliance between major companies like AMD, Intel and
others.

Features

Ability to use large disks partitions (over 2 TB) with a GUID Partition Table (GPT)

Flexible pre-OS environment, including network capability, GUI, multi language

32-bit (for example 1A-32, ARM32) or 64-bit (for example x64, AArch64) pre-OS environment
C language programming

Modular design

Backward and forward compatibility

1. The x86 Boot Process = 1.3 Stage 2 Bootloader = 1.3.1 GRUB/UEFI 72

UEFI

Features

The UEFI boot manager takes control right after powering on the machine. It looks at the boot
configuration, loads the firmware settings from the nvRAM and then uses startup files located
in a specific FAT32 partition that must be created ad hoc (ESP - EFI System Partition). The
partition has a folder for every boot entry (OS) and a .efi files that follows a standard path
name:

- [efi/boot/boot x64.efi

- [efi/boot/bootaab4d.efi #include <efi.h>
#include <efilib.h>

EFI_STATUS
EFI Program Example EFIAPI

efi _main (EFI_HANDLE ImageHandle, EFI_SYSTEM TABLE *SystemTable)

{
InitializelLib(ImageHandle, SystemTable);

Print(L"Hello, world!\n");

return EFI_SUCCESS;
}

1. The x86 Boot Process = 1.3 Stage 2 Bootloader = 1.3.1 GRUB/UEFI 73

UEFI

GUID Partition Table (GPT)

The GUID Partition Table is a partition table standard defined within UEFI. GPT makes use of
GUIDs (Globally Unique Identifiers) for identifying partitions.

First useable block Start partition
End partition
LBAO LBA1 LBAN
v
n_zl - 0|1 |~|n ;
288 oF
&l a2 Partition 1 E:
©||x5 L3
AlO5 O
A o] 1 Py
o n
T
Vi
Start partition End partition l
ast useable block
\ J \ J
g R
Primary Partition Backup Partition
Table Table

1. The x86 Boot Process = 1.3 Stage 2 Bootloader = 1.3.1 GRUB/UEFI 74

UEFI

Secure Boot

A certain kind of malware can take control of the system before the OS starts (e.g. MBR
Rootkits).

These Rootkits can hijack the IDT for /O operations in order to execute their own wrapper.
Once the kernel is loaded, the rootkit notices that and patches the binary code while loading it

into RAM.

UEFI overcomes this issue by allowing only signed executables by using 3 kinds of keys:

- Platform Keys (PK): tell who owns and controls the hardware platform
- Key-Exchange Keys (KEK): shows who is allowed to update the hardware platform
- Signature Database Keys (DB): show who is allowed to boot the platform in secure mode

1. The x86 Boot Process = 1.3 Stage 2 Bootloader = 1.3.1 GRUB/UEFI 75

1.3.2

1. x86 Boot Process
3. Step 3: Stage 2 Bootloader

Multi-core support

Advanced Operating Systems and Virtualization ’ IAG

Multi-core support

Who shall execute the startup code? For legacy reasons, startup code is always sequential and
it is executed by a single core (the master). For this reason, upon startup only one core is
active and the others are in idle state. We need a way to “wake” all of the other cores.

Interrupts on multicore architectures

The Advanced Programmable Interrupt Controller (APIC) is an interrupt controller. Every
processor has a Local-APIC which is used for sending inter-processor interrupts requests (IPIs).

LAPICs are connected through a logical bus called APIC Bus and interrupts are of two types:

- LINT o: normal interrupts
- LINT 2: non-maskable interrupts

The 1/O APIC contains a redirection table which is used to route the interrupts it receives from
peripheral buses to one or moder LAPICs.

1. The x86 Boot Process = 1.3 Stage 2 Bootloader = 1.3.2 Multi-core Support

77

LAPICs and APIC Bus

Local
Interrupts

LINT, —>
LINT, —>

1. The x86 Boot Process = 1.3 Stage 2 Bootloader = 1.3.2 Multi-core Support

Core

Core Local
Interrupts
Local LINTg =——=|Local
APIC LINT; —>|APIC
* APIC Bus *
System 1/O

_, Interrupts
3

7

16

I/O APIC

Interrupt Command Register

The ICR register is used for initiating an IPI. In that register is specified the kind of the interrupt
and the target core.

ICR Upper Part ICR Lower Part
31 24 0 31 1918 15 12 10 8 7 0
Destination Vector
field fesahicd field
The Destination Field (8-bits) can be used to specify which Destination Shorthand Delivery Mode
processor (or group of processors) will receive the message 00 = no shorthand 000 = Fixed
01 = only to self 001 = Lowest Priority
10 = all including self 010 = SMmi
11 = all excluding self ?(1)2) = (l:l(la\llslerved)
Memory-Mapped Register-Address: 0xFEE00310 Trigger Mode 101 = INIT
0=Edge | ovel 110 = Start Up
1= Level 0 = De-assert 111 = (reserved)
st Destination Mode
Delivery Status 0 = Physical
0 =Idle 1 = Logical
1 = Pending

Memory-Mapped Register-Address: 0XxFEE00300

1. The x86 Boot Process = 1.3 Stage 2 Bootloader = 1.3.2 Multi-core Support

INIT-SIPI-SIPI Sequence

address Local-APIC via register FS
mov $sel fs, %ax
mov %ax, %fs

broadcast 'INIT' IPI to 'all-except-self'

mov $0x000C4500, %eax ; 11 00 0 1 0 0 0 101 OEEEEEOEO
mov %eax, %fs:(OxFEE00300)

wait until command is received

.BO: btl $12, %fs:(O0xXxFEE0O300)

jc .BO

broadcast 'Startup' IPI to 'all-except-self'

using vector 0x11 to specify entry-point

at real memory-address 0x00011000

mov $0x000C4611, %eax ; 11 00 0 0 1 0 0 0 110 00010001
mov %eax, %fs:(OxFEE00300)

.B1: btl $12, %fs:(OxFEEOO300)

jc .B1

1. The x86 Boot Process = 1.3 Stage 2 Bootloader = 1.3.2 Multi-core Support 8o

Advanced Operating Systems and

Virtualization
[1] The x86 Boot Process

LECTURER
Gabriele Proietti Mattia

BASED ON WORK BY

http://www.ce.uniroma?2.it/~pellegrini/

gpm.name - proiettimattia@diag.uniromaz.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

