
Department of Computer,
Control and Management
Engineering “A. Ruberti”,
Sapienza University of Rome

Advanced Operating Systems
and Virtualization

[1] The x86 Boot Process

Gabriele Proietti Mattia

gpm.name · proiettimattia@diag.uniroma1.it A.Y. 2020/2021 · v1

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it

Outline

2

1. BIOS/UEFI
Actual hardware setup

2. Bootloader Stage 1
Executes the stage 2 bootloader (skipped for UEFI)

3. Bootloader Stage 2
Loads and starts the kernel

4. Kernel
Takes control and initializes the machine (machine-dependent operations)

5. Init (or systemd)
First process: basic environment initialization

6. Runlevels/Targets
Initializes the user environment

Outline

1. The x86 Boot Process 3

[1] The x86 Boot Process

1. Step1: BIOS/UEFI
1. Pre-Boot and Real Mode
2. BIOS

2. Step 2: Stage 1 Bootloader
1. MBR
2. x86 Protected Mode
3. x86 Memory Addressing
4. x86 Privileges and Protection
5. Paging

3. Step 3: Stage 2 Bootloader
1. GRUB/UEFI
2. Multi-core Support

Step 1: BIOS/UEFI

1.1

Advanced Operating Systems and Virtualization

1. x86 Boot Process

Boot sequence

1. The x86 Boot Process ⇒ 1.1 BIOS/UEFI 5

1. BIOS/UEFI
Actual hardware setup

2. Bootloader Stage 1
Executes the stage 2 bootloader (skipped for UEFI)

3. Bootloader Stage 2
Loads and starts the kernel

4. Kernel
Takes control and initializes the machine (machine-dependent operations)

5. Init (or systemd)
First process: basic environment initialization

6. Runlevels/Targets
Initializes the user environment

Boot Sequence

61. The x86 Boot Process ⇒ 1.1 BIOS/UEFI

https://manybutfinite.com/post/how-computers-boot-up/

CPU Stages & Operations

https://manybutfinite.com/post/how-computers-boot-up/

Pre-Boot and Real Mode

1.1.1

Advanced Operating Systems and Virtualization

1. x86 Boot Process
1. Step 1: BIOS/UEFI

The Pre-Pre-Boot

81. The x86 Boot Process ⇒ 1.1 BIOS/UEFI ⇒ 1.1.1 Pre-Boot and Real Mode

When the power button is pushed, the CPU does not start directly to run code (BIOS).

There are many operations that must be carried out before doing that:

- the power supply must settle down to its nominal state

- a number of derived voltages must stabilize: 1.5V, 3.3V, 5V and 12V. These
voltages must be supplied in a particular sequence, this is called power
sequencing and it is carried out by a CPLD (Complex Programmable Logic Device)

- platform clocks must be derived and this takes time

Once the tasks have been carried out, the CLPD de-assert the reset line of the CPU.

The Pre-Pre-Boot

91. The x86 Boot Process ⇒ 1.1 BIOS/UEFI ⇒ 1.1.1 Pre-Boot and Real Mode

Dice, Pete. Quick boot: a guide for embedded firmware developers. Walter de Gruyter GmbH & Co KG, 2017.

x86 Real Mode

10

At this point the system is in a very basic state:

- caches are disabled
- the MMU (Memory Management Unit) is disabled
- only one CPU core can run the code (the BSP - bootstrap processor)
- the CPU runs in Real Mode, a compatible way with the Intel 8086 (1978, yes 1978)
- nothing is in RAM

x86 Real Mode is characterized by:
- no memory protection, no privilege levels, no multitasking
- direct access to I/O and peripheral
- memory:

- 20 bit of a segmented memory space for a total of 1MB of addressable memory
- 16 bit for instructions

1. The x86 Boot Process ⇒ 1.1 BIOS/UEFI ⇒ 1.1.1 Pre-Boot and Real Mode

Intel 8086

Segmented Memory
Starting from the Intel 8086, the addressing of memory is segmented. This means that a
memory location is referenced with two components: the segment id and the offset.
Therefore, the logical address can be expressed as:

<seg:offset> (e.g. <A:0x10>)

There are 4 basic 16-bit segment registers:

- CS: Code Segment
- DS: Data Segment
- SS: Stack Segment
- ES: Extra Segment (that can be used by the programmer)

Intel 80386 added also other two registers, FS and GS with no predefined usage.

111. The x86 Boot Process ⇒ 1.1 BIOS/UEFI ⇒ 1.1.1 Pre-Boot and Real Mode

Segmented Memory

121. The x86 Boot Process ⇒ 1.1 BIOS/UEFI ⇒ 1.1.1 Pre-Boot and Real Mode

Address Resolution
The CPU resolves addresses in the following way

Segmented Memory

131. The x86 Boot Process ⇒ 1.1 BIOS/UEFI ⇒ 1.1.1 Pre-Boot and Real Mode

Segmentation is still present nowadays and it is always enabled. Each assembly instruction
that uses memory implicitly uses a segment register, for example:

- a jmp uses CS
- a push uses SS

Most of the segment addresses can be loaded with mov instruction but CS only with jmp or
call.

x86 Real Mode

141. The x86 Boot Process ⇒ 1.1 BIOS/UEFI ⇒ 1.1.1 Pre-Boot and Real Mode

Address Resolution

https://manybutfinite.com/post/memory-translation-and-segmentation

logical
address

https://manybutfinite.com/post/memory-translation-and-segmentation

x86 Real Mode

151. The x86 Boot Process ⇒ 1.1 BIOS/UEFI ⇒ 1.1.1 Pre-Boot and Real Mode

Segmented Memory

Segment 1
0x0CEF

0000:0000

Segment 2
0x2143

Segment 3
0x28C0

FFFF:FFFF

Start of Segment 1
Address: 0x0CEF:0000
Linear Address: 0x0CEF0

Start of Segment 2
Address: 0x2143:0000
Linear Address: 0x21430

Start of Segment 3
Address: 0x28C0:0000 -or- 0x2143:77D0
Linear Address: 0x28C00

wrap-around

BIOS

1.1.2

Advanced Operating Systems and Virtualization

1. x86 Boot Process
1. Step 1: BIOS/UEFI

The First Fetched Instruction

171. The x86 Boot Process ⇒ 1.1 BIOS/UEFI ⇒ 1.1.2 BIOS

Once the CLPD de-assert the reset line, newer processors load a microcode update for
example for patching vulnerabilities. This, obviously, must be done before executing any
program. After that the CPU starts executing instructions located at a precise memory
address, called the reset vector. For Intel x86 the reset vector is at:

0xF000:FFF0

Only 16 bytes from the top memory boundary. On IBM PCs that specific memory area is
bound to a ROM, the so-called BIOS. The first fetched instruction is

ljmp $0xf000,$0xe05b

This starts the actual BIOS code, the long-jump also sets CS to 0xf0000

BIOS Operations
The usual operations carried out by the BIOS are:

- looking for video adapters that need to be run specific routines, these ROMs are
mapped from C000:0000 to C780:0000

- POST (Power-on Self-Test) does peripheral check (mouse, keyboard), also checks RAM
consistency, initialize the Video Card

- loads the boot order configuration, from the CMOS (64bytes)

- copying itself in RAM for a faster access (shadowing)

- identifying the Stage 1 Bootloader (512bytes) using the specified boot order and loading
it in RAM at address 0000:7c00

- finally the control is given with the instruction ljmp $0x0000,$0x7c00

181. The x86 Boot Process ⇒ 1.1 BIOS/UEFI ⇒ 1.1.2 BIOS

BIOS Operations

191. The x86 Boot Process ⇒ 1.1 BIOS/UEFI ⇒ 1.1.2 BIOS

RAM after BIOS startup

Low Memory

VGA Display

16-bit devices,
Expansion ROM

BIOS ROM

0x00000000

0x000A0000 (640KB)

0x000C0000 (768KB)

0x000F0000 (960KB)

0x00100000 (1MB) 0xF000:FFF0 = 0x000FFFF0
(Reset Vector)

Available RAM in the early days

Step 2: Stage 1 Bootloader

1.2

Advanced Operating Systems and Virtualization

1. x86 Boot Process

Boot sequence

1. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader 21

1. BIOS/UEFI
Actual hardware setup

2. Bootloader Stage 1
Executes the stage 2 bootloader (skipped for UEFI)

3. Bootloader Stage 2
Loads and starts the kernel

4. Kernel
Takes control and initializes the machine (machine-dependent operations)

5. Init (or systemd)
First process: basic environment initialization

6. Runlevels/Targets
Initializes the user environment

MBR

1.2.1

Advanced Operating Systems and Virtualization

1. x86 Boot Process
2. Step 2: Stage 1 Bootloader

The Master Boot Record (MBR)

1. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.1 MBR

The first sector (512 bytes) of the disk contains the Master Boot Record, which stores
executable code and the partition table of the disk.

Partition Table

The partition table contains up to 4 entries but it can be extended to multiple sectors of the
disk in order to address more partitions.

Nowadays, with UEFI, MBR has been replaced with GPT which will we see later.

23

Boot Code [Stage 1 Bootloader]
(446 bytes)

Partition Table
(64 bytes)

55
AA

Partition 1
M
B
R

Partition 2
Partition 3
(Extended) disk

MBR

Extended Partition Table

Additional Boot Code

The Master Boot Record (MBR)

241. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.1 MBR

Anatomy

This is a jump to the
executable code

Executable code starts
here

This area is the BIOS
Parameter Block (BPB) a

data structure that contains
the physical data of the disk

Moral of the story
We have only a 384 bytes program
for starting the OS!

Each partition is described
with 16 bytes of data, we

have space for 4 partitions

The Master Boot Record (MBR)

251. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.1 MBR

The actual code
.code16
.text

.globl _start;

_start:
jmp stage1_start

OEMLabel: .string "BOOT"
BytesPerSector: .short 512
SectorsPerCluster: .byte 1
ReservedForBoot: .short 1
NumberOfFats: .byte 2
RootDirEntries: .short 224
LogicalSectors: .short 2880
MediumByte: .byte 0x0F0
SectorsPerFat: .short 9
SectorsPerTrack: .short 18
Sides: .short 2

HiddenSectors: .int 0
LargeSectors: .int 0
DriveNo: .short 0
Signature: .byte 41 #41 = floppy
VolumeID: .int 0x00000000 # any value
VolumeLabel: .string "myOS "
FileSystem: .string "FAT12 "

.stage1_start:
cli # Disable interrupts
xorw %ax,%ax # Segment zero
movw %ax,%ds
movw %ax,%es
movw %ax,%ss

...

http://web.archive.org/web/20200607220642/http://polytimenerd.blogspot.com/2012/06/write-your
-own-kernel-bootloader-stub.html

http://web.archive.org/web/20200607220642/http://polytimenerd.blogspot.com/2012/06/write-your-own-kernel-bootloader-stub.html
http://web.archive.org/web/20200607220642/http://polytimenerd.blogspot.com/2012/06/write-your-own-kernel-bootloader-stub.html

Stage 1 Bootloader

261. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.1 MBR

Tasks

The stage 1 bootloader must:

- enable the A20 line

- switch to 32-bit protected mode

- setup a stack

- load the kernel, but for doing that we need to navigate the filesystem so this must be
done by the Stage 2 bootloader

Stage 1 Bootloader

The intel 80286, the successor of the 8086, increased the addressable memory to 16MB, that
means 24 bits for addresses.

For maintaining the compatibility with the programs written for the 8086 the 21th bit is forced
to zero, in this way, the memory “wrap-around” when exceeds the 1MB limit. For example:

0xF800:8000 → 0x00100000

 → 0x0000 0000 0001 0000 0000 0000 0000 0000

By forcing the 21th to 0 (line A20) the address starts from the beginning of the memory

 → 0x0000 0000 0000 0000 0000 0000 0000 0000

271. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.1 MBR

The A20 line

Stage 1 Bootloader

For forcing the A20 to zero the IBM decided to make a modification on the motherboard, in
particular by using a a spare pin of the 8042 keyboard controller. The pin has been routed to
the A20 line, so called Gate A20.

The A20 is disabled by default when the CPU starts and it must be enabled before entering in
protected mode.

281. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.1 MBR

The A20 line

call wait_for_8042

movb $0xd1, %al #command write

outb %al, $0x64

call wait_for_8042

movb $0xdf, %al # Enable A20

outb %al, $0x60

call wait_for_8042

wait_for_8042:

 inb %al, $0x64

 testb $2,%al # Bit2 set=busy

 jnz wait_for_8042

 ret

x86 Protected Mode

1.2.2

Advanced Operating Systems and Virtualization

1. x86 Boot Process
2. Step 2: Stage 1 Bootloader

x86 Protected Mode
The x86 protected mode was introduced with the 80286 (1982) and it was
extended with memory paging in the 80386 (1985). Still today, modern PCs
starts in Real Mode for backward compatibility, therefore the Protected
Mode must be enabled during the startup.

301. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.2 x86 Protected Mode

x86 Registers
https://upload.wikimedia.org/wikipedia/commons/4/41/Table_of_x86_Registers.png

From left, Intel 80286 and 80386

https://upload.wikimedia.org/wikipedia/commons/4/41/Table_of_x86_Registers.png

x86 Protected Mode

The CR0 register is 32 bits long on the 386 and higher processors. On x64 processors in long
mode, it (and the other control registers) is 64 bits long. CR0 has various control flags that
modify the basic operation of the processor.

311. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.2 x86 Protected Mode

CR0 Register

https://en.wikipedia.org/wiki/Control_register

https://en.wikipedia.org/wiki/Control_register

x86 Protected Mode

The first action to do for entering protected mode is to set the bit 0 (PE) of CR0 to 1, but this is
not enough for enabling all of the facilities. We need to set the CS and the only way to do this
is to use a far jump (ljmp), then the code will execute in 32/64 bit mode.

321. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.2 x86 Protected Mode

Entering Basic Protected Mode

ljmp 0x0000, PE_mode

.code32

PE_mode:
 # Set up the protected-mode data segment registers
 movw $PROT_MODE_DSEG, %ax
 movw %ax, %ds
 movw %ax, %es
 movw %ax, %fs
 movw %ax, %gs
 movw %ax, %ss

x86 Memory Addressing

Advanced Operating Systems and Virtualization

1.2.3

1. x86 Boot Process
2. Step 2: Stage 1 Bootloader

Memory Addresses
The 8086 defined three kinds of memory addresses:

- a logical address that is used in the ASM code is always composed by two parts: a
segment (selector) and an offset within the segment (e.g. 0xFFFF:FFFF)

- a linear address that in a 32bit architecture is a 32bit unsigned integer and can be used
to address up to 4GB (e.g. 0x00000000 - 0xFFFFFFFF)

- a physical address that is used to address memory cells in memory chips, they
correspond to the electrical signal sent along the address pins of the cpu to the memory
bus.

Address are translated by the MMU (Memory Management Unit) set of circuits.

341. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.3 x86 Memory Addressing

MMU

Segmentation

In protected mode a segment in no longer a raw
number but it contains an index to a table of
segment descriptors. The table is an array
containing 8-byte records of this kind:

There are three type of segments: code, data and
system. The main sections are:

- Base, a 32-bit linear address that pointing to
the beginning of the segment

- Limit, the size of the segment
- G, the granularity (if 0 size is bytes otherwise

it is a multiple of 4096)
- DPL, the descriptor privilege a number from

0 to 3 to control the access to the segment

351. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.3 x86 Memory Addressing

Segments Descriptors

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

System flag set = non-system

Privileges

361. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.3 x86 Memory Addressing

Privileges

Ring 3 has restricted access to memory
management, instructions execution and
I/O ports

Figures with blue caption are from the latest version of the Intel Manual

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

Segmentation

371. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.3 x86 Memory Addressing

Segments Descriptors Tables and Selectors

The Segment Descriptors are stored either in:

- the Global Descriptor Table (GDT) that is system wide and pointed by the register GDTR
(with the size)

- the Local Descriptor Table (LDT) that was specific for one process and it was pointed by
the register LDTR (with the size), today is not used anymore

Segment Selectors

Each segment register (CS, DS, SS, FS, GS), contains a Segment Selector (16bit). Beside of the
index to the GDT also contains TI (the table indicator 0/1 = GDT/LDT) and the RPL that we will
see later. Remember that a logical address is a segment selector + offset.

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

Segmentation

In the Linux kernel segmentation is redundant and used in very limited way, since paging is
favoured. All Linux Processes running is User Mode use the user code segment (__USER_CS)
and the user data segment (__USER_DS), the ones that runs in Kernel Mode uses the kernel
code segment (__KERNEL_CS) and the kernel data segment (__KERNEL_DS). All of these
segments have base 0 and max limit, therefore all processes may use the same logical
addresses and coincide with the linear addresses.

381. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.3 x86 Memory Addressing

In the Linux Kernel

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

Segmentation

391. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.3 x86 Memory Addressing

Logical to Linear Resolution

https://manybutfinite.com/post/memory-translation-and-segmentation/

ASM Code

Segmentation cannot
be disabled (Intel “flat
model”)

https://manybutfinite.com/post/memory-translation-and-segmentation/

Segmentation

401. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.3 x86 Memory Addressing

Caching

Accessing the GDT every time an address has to be translated is not performance-wise. For
this reason the 8086 provides an additional non-programmable register (for every segment
register) which contains the last resolved 8byte Segment Descriptor.

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

x86 Privileges and Protection

Advanced Operating Systems and Virtualization

1.2.4

1. x86 Boot Process
2. Step 2: Stage 1 Bootloader

Privileges and Protection
We have seen that each S. Descriptor has a DPL (Descriptor Privilege Level), each S. Selector
has an RPL (Requestor Privilege Level). We also need a current execution privilege level (CPL),
that describes the current privileges that the CPU has.

Now, how the memory protection is enforced by using these metadata? And how we can
change our current privilege level?

421. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.4 x86 Privileges and Protection

Decreasing the ring level
should be denied or
controlled

Increasing the ring level
should be allowed

Privileges Levels
More in detail, the privilege fields are three:

1. RPL is the Requestor Privilege Level and it is present only in data segment selectors (e.g.
SS, DS registers)

2. CPL is the Current Privilege Level and it is present only in code segment selectors (i.e. CS
register that can be loaded only with ljmp/call); the CPL it’s always equals to the current
CPU privilege level

3. DPL is the Descriptor Privilege Level and it is present in segment descriptors of the GDT

When enforcing memory protection? In two cases:

- when memory is accessed through a linear address
- when a data segment is loaded from a selector

431. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.4 x86 Privileges and Protection

Protection upon segment load

441. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.4 x86 Privileges and Protection

https://manybutfinite.com/post/cpu-rings-privilege-and-protection/

https://manybutfinite.com/post/cpu-rings-privilege-and-protection/

Gates

451. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.4 x86 Privileges and Protection

Accessing a segment with a higher privilege (lower ring)
with no control might allow malicious code to subvert
the kernel. To transfer control, code must pass through a
controlled gate.

Gates are represented again by descriptors, in particular
by system descriptors (S = 0). There are different kinds
of gates descriptors:

- interrupt-gate descriptors
- trap-gate descriptors
- task-gate descriptors
- (call-gate descriptors)

These descriptors are referenced by the Interrupt
Descriptor Table (IDT), pointed by the IDTR register.

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

IDT and GDT

461. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.4 x86 Privileges and Protection

There is one GDT in the picture per CPU core.

The GDT in Linux (2.6)

471. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.4 x86 Privileges and Protection

different for each processor

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

The TSS (Task State Segment)
The Base field of the TSS entry in the GDT (the TSSD) for the n-th CPU stored a pointer to the
n-th entry of the init_tss array (Kernel 2.6 - L1 L2).

481. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.4 x86 Privileges and Protection

According to the Intel Manual, the role of the structure is to contain
all the necessary information about the current “task” (i.d.
process/thread). It stores:

- processor registers (as in the figure)
- I/O ports permissions
- Inner-level stack pointers
- a link to the previous TSS (after a context switch)

Linux does not use hardware context switches but it is obliged to
maintain a TSS for each CPU. A TSS is maintained by the Linux
kernel only for active processes.

The TR register of each CPU contains the TSSD of the corresponding
TSS (Base and Limit are cached and non programmable)

https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/include/asm/processor.h#L269
https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/include/asm/processor.h#L192

The TSS (Task State Segment)

491. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.4 x86 Privileges and Protection

The TSS on x86_64 (amd64)

501. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.4 x86 Privileges and Protection

On x86_64 hardware context switch is no more
supported, indeed as we can see the registers are
disappeared from the TSS.

From the Intel Manual:
Although hardware task-switching is not supported in 64-bit mode, a
64-bit task state segment (TSS) must exist. Figure 7-11 shows the
format of a 64-bit TSS. The TSS holds information important to 64-bit
mode and that is not directly related to the task-switch mechanism.
This information includes:
- RSPn — The full 64-bit canonical forms of the stack pointers (RSP)

for privilege levels 0-2.
- ISTn — The full 64-bit canonical forms of the interrupt stack table

(IST) pointers.
- I/O map base address — The 16-bit offset to the I/O permission bit

map from the 64-bit TSS base.
The operating system must create at least one 64-bit TSS after
activating IA-32e mode. It must execute the LTR instruction (in 64-bit
mode) to load the TR register with a pointer to the 64-bit TSS
responsible for both 64-bit mode programs and compatibility-mode
programs.

From Ring 0 to 3

511. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.4 x86 Privileges and Protection

https://manybutfinite.com/post/cpu-rings-privilege-and-protection/

https://manybutfinite.com/post/cpu-rings-privilege-and-protection/

Paging

1.2.5

Advanced Operating Systems and Virtualization

1. x86 Boot Process
1. Step 1: BIOS/UEFI

Paging

1. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

The last step for the x86 Protected Mode, is to enable memory paging. This is not done
automatically when enabling x86 protected mode.

The Paging unit translates linear addresses to physical ones, the advantages wrt the
segmentation (that we remind is not used by the kernel) is that it offers a smaller granularity
memory protection. The paging unit also checks the request type again the access rights of
the linear address, and if access is not granted it generates a Page Fault exception.

To enable paging we need to set up some data structures before. As the term itself, when the
paging is enabled, the memory is represented as a set of pages of fixed size (4Kb). A page is a
set of contiguous linear addresses. With paging, RAM is thinked as partitioned into
fixed-length page frames, each page frame can contain a page, they have the same size.

53

Paging

The data structures that maps linear addresses to physical addresses are called page tables.
The linear address, in the x86 architecture is divided as in the following figure (2 levels of
indirection):

541. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

In the x86 architecture

Different for
every process

Paging
Every active process must have a Page Directory, but there’s no need to allocate all the Page
Tables. In the x86 paging mechanism:

- each block (PDE and PTE) is an array of 4-bytes
- we can map 1K x 1K pages
- every page is 4KB so we can address a total of 4GB

551. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

Paging

561. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

Complete path

Northbridge

RAM

TLB

571. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

Translation Lookaside Buffer

Virtual Page Number
(the page number
described in the logical
address)

Physical Page
Number (the page
frame number in
RAM)

Paging

581. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

Operations

The Paging circuitry performs the following operations:

1. Upon a TLB miss the firmware access the page table
2. It checks the bit P (present) of the table:

a. If it is 0 we have a page fault and a trap is risen
i. CPU registers (incl. EIP and CS) are saved on the system stack and they will be

restored returning from the trap
ii. The trap instruction is re-executed

iii. The re-execution can give rise to another trap and so on
b. If it is 1 the page is loaded

As for example, writing to a read-only page will give rise to a trap, which is handled by the
Segmentation Fault Handler.

Process Address Space

591. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

In Linux i386 (32bit)

0x00000000

0xBFFFFFFF

0xC0000000

0xFFFFFFFF

Kernel Space
1GB

User Space
3GB

Physical Address Extension (PAE)

601. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

The Physical Address Extension (PAE) has been introduced by Intel, starting with the Pentium
Pro (1995) for increasing the RAM size support over 4GB. In practice, the address pins where
increased to 36bit (max 64GB) but this required a new page indirection scheme that was
increased to 3 levels. Linear addresses obviously remained of 32bit!

The support to PAE is enabled by setting the
PAE bit (5th bit) in the CR4 register.

Long Mode in x86_64 (amd64)
Increasing the memory pins to 64bit, again required to extend the page indirection scheme.
The PAE scheme is further extended with the long mode addressing.

Canonical Addresses

With 64bits of logical memory we have 264 possible addresses, but bits 49-64 are short
circuited. This allows up to 248 canonical form addresses, for a total of 256TB of addressable
RAM.

Linux currently allows for 128TB of logical addressing and 64TB for physical addressing.
611. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

64bit 48bit

https://en.wikipedia.org/wiki/X86-64

https://en.wikipedia.org/wiki/X86-64

Linux Memory Layout on x64

621. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

Long Mode in x86_64 (amd64)

631. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

The long mode adds another level of indirection, for a total of 4.

This is also called the
GDT = General
Directory Table

Long Mode in x86_64 (amd64)

641. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

CR3 and Page Structure Entries

Huge Pages

651. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

The Linux kernel allows the usage of certain pages with bigger size than 4KB, up to 1GB (e.g.
useful for DBMS).

They are listed in /proc/meminfo and /proc/sys/vm/nr_hugepages. Once enabled, huge
pages can be mapped with mmap by using the flag MAP_HUGETLB or they can be directly
requested with the instruction, by using (with MADV_HUGEPAGE flag):

int madvise(void *addr, size_t length, int advice);

Long Mode in x86_64 (amd64)

Once we set up the proper data structures, we tell the CPU to enable the Long Mode in the
following way.

661. The x86 Boot Process ⇒ 1.2 Stage 1 Bootloader ⇒ 1.2.5 Paging

How can be enabled?

https://elixir.bootlin.com/linux/latest/source/arch/x86/boot/compressed/head_64.S#L268

https://elixir.bootlin.com/linux/latest/source/arch/x86/boot/compressed/head_64.S#L268

Step 3: Stage 2 Bootloader

1.3

Advanced Operating Systems and Virtualization

1. x86 Boot Process

Outline

1. The x86 Boot Process ⇒ 1.3 Stage 2 Bootloader 68

1. BIOS/UEFI
Actual hardware setup

2. Bootloader Stage 1
Executes the stage 2 bootloader (skipped for UEFI)

3. Bootloader Stage 2
Loads and starts the kernel

4. Kernel
Takes control and initializes the machine (machine-dependent operations)

5. Init (or systemd)
First process: basic environment initialization

6. Runlevels/Targets
Initializes the user environment

GRUB & UEFI

1.3.1

Advanced Operating Systems and Virtualization

1. x86 Boot Process
3. Step 3: Stage 2 Bootloader

Stage 2 Bootloader

1. The x86 Boot Process ⇒ 1.3 Stage 2 Bootloader ⇒ 1.3.1 GRUB/UEFI

The stage 1 bootloader (MBR) leaves the control to stage 2 bootloader which has the role of
starting the kernel.

- In Linux Distributions we usually have GRUB (formerly LILO), it uses
/boot/grub/grub.conf for loading the startup entries

- In Windows NT is ntldr which uses boot.ini as configuration file

The kernel image is loaded in RAM by using BIOS I/O services

- In Linux Distributions the kernel is located in /boot/vmlinuz-<version>
- In Windows NT the kernel is located at C:\Windows\System32\ntoskrnl.exe

70

Historical Linux Boot Code
The initial versions of the Linux kernel did not use any Stage 2 Bootloader (GRUB). The file
arch/i386/bootsect.S contains the historical boot sector that left the control to
arch/i386/bootsetup.S code which loaded the kernel image in memory. Today these files
are no more used.

The code in arch/i386/bootsetup.S initialized the architecture (e.g. CPU state for the kernel
boot) and in the end gave control to the initial kernel image.

711. The x86 Boot Process ⇒ 1.3 Stage 2 Bootloader ⇒ 1.3.1 GRUB/UEFI

UEFI

The Unified Extensible Firmware Interface is a set of specifications of software interfaces
between an operating system and the platform firmware. Initially developed by Intel (as EFI),
today UEFI is the actual replacement of the BIOS. The standard development is today lead by
the Unified EFI Forum, a non-profit alliance between major companies like AMD, Intel and
others.

Features

● Ability to use large disks partitions (over 2 TB) with a GUID Partition Table (GPT)
● Flexible pre-OS environment, including network capability, GUI, multi language
● 32-bit (for example IA-32, ARM32) or 64-bit (for example x64, AArch64) pre-OS environment
● C language programming
● Modular design
● Backward and forward compatibility

721. The x86 Boot Process ⇒ 1.3 Stage 2 Bootloader ⇒ 1.3.1 GRUB/UEFI

 /ˈuːɪfaɪ/

UEFI

The UEFI boot manager takes control right after powering on the machine. It looks at the boot
configuration, loads the firmware settings from the nvRAM and then uses startup files located
in a specific FAT32 partition that must be created ad hoc (ESP - EFI System Partition). The
partition has a folder for every boot entry (OS) and a .efi files that follows a standard path
name:

- /efi/boot/boot_x64.efi
- /efi/boot/bootaa64.efi

EFI Program Example

731. The x86 Boot Process ⇒ 1.3 Stage 2 Bootloader ⇒ 1.3.1 GRUB/UEFI

Features

#include <efi.h>
#include <efilib.h>

EFI_STATUS
EFIAPI
efi_main (EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE *SystemTable)
{
 InitializeLib(ImageHandle, SystemTable);
 Print(L"Hello, world!\n");

 return EFI_SUCCESS;
}

UEFI

The GUID Partition Table is a partition table standard defined within UEFI. GPT makes use of
GUIDs (Globally Unique Identifiers) for identifying partitions.

741. The x86 Boot Process ⇒ 1.3 Stage 2 Bootloader ⇒ 1.3.1 GRUB/UEFI

GUID Partition Table (GPT)

UEFI

A certain kind of malware can take control of the system before the OS starts (e.g. MBR
Rootkits).

These Rootkits can hijack the IDT for I/O operations in order to execute their own wrapper.
Once the kernel is loaded, the rootkit notices that and patches the binary code while loading it
into RAM.

UEFI overcomes this issue by allowing only signed executables by using 3 kinds of keys:

- Platform Keys (PK): tell who owns and controls the hardware platform
- Key-Exchange Keys (KEK): shows who is allowed to update the hardware platform
- Signature Database Keys (DB): show who is allowed to boot the platform in secure mode

751. The x86 Boot Process ⇒ 1.3 Stage 2 Bootloader ⇒ 1.3.1 GRUB/UEFI

Secure Boot

Multi-core support

1.3.2

Advanced Operating Systems and Virtualization

1. x86 Boot Process
3. Step 3: Stage 2 Bootloader

Multi-core support

1. The x86 Boot Process ⇒ 1.3 Stage 2 Bootloader ⇒ 1.3.2 Multi-core Support

Who shall execute the startup code? For legacy reasons, startup code is always sequential and
it is executed by a single core (the master). For this reason, upon startup only one core is
active and the others are in idle state. We need a way to “wake” all of the other cores.

Interrupts on multicore architectures

The Advanced Programmable Interrupt Controller (APIC) is an interrupt controller. Every
processor has a Local-APIC which is used for sending inter-processor interrupts requests (IPIs).

LAPICs are connected through a logical bus called APIC Bus and interrupts are of two types:

- LINT 0: normal interrupts
- LINT 1: non-maskable interrupts

The I/O APIC contains a redirection table which is used to route the interrupts it receives from
peripheral buses to one or moder LAPICs.

77

LAPICs and APIC Bus

781. The x86 Boot Process ⇒ 1.3 Stage 2 Bootloader ⇒ 1.3.2 Multi-core Support

Interrupt Command Register

791. The x86 Boot Process ⇒ 1.3 Stage 2 Bootloader ⇒ 1.3.2 Multi-core Support

The ICR register is used for initiating an IPI. In that register is specified the kind of the interrupt
and the target core.

ICR Upper Part ICR Lower Part

INIT-SIPI-SIPI Sequence

801. The x86 Boot Process ⇒ 1.3 Stage 2 Bootloader ⇒ 1.3.2 Multi-core Support

address Local-APIC via register FS
mov $sel_fs, %ax
mov %ax, %fs

broadcast 'INIT' IPI to 'all-except-self'
mov $0x000C4500, %eax ; 11 00 0 1 0 0 0 101 00000000
mov %eax, %fs:(0xFEE00300)
wait until command is received
.B0: btl $12, %fs:(0xFEE00300)
jc .B0

broadcast 'Startup' IPI to 'all-except-self'
using vector 0x11 to specify entry-point
at real memory-address 0x00011000
mov $0x000C4611, %eax ; 11 00 0 0 1 0 0 0 110 00010001
mov %eax, %fs:(0xFEE00300)
.B1: btl $12, %fs:(0xFEE00300)
jc .B1

Advanced Operating Systems and
Virtualization

L E C T U R E R

Gabriele Proietti Mattia

B A S E D O N W O R K B Y

http://www.ce.uniroma2.it/~pellegrini/

81

[1] The x86 Boot Process

gpm.name · proiettimattia@diag.uniroma1.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

