
Department of Computer,
Control and Management
Engineering “A. Ruberti”,
Sapienza University of Rome

Advanced Operating Systems
and Virtualization

[2] Step 4: Kernel Boot

Gabriele Proietti Mattia

gpm.name · proiettimattia@diag.uniroma1.it A.Y. 2020/2021 · v6

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it

Outline

1. Initial Life of the Linux Kernel
2. startup_32()

3. start_kernel()

1. A Primer on Memory Organization
2. Bootmem and Memblock Allocators
3. Paging Introduction
4. Paging Initialization
5. TLB
6. Final operations and recap

2

[2] Step 4: Kernel Boot

Initial Life of the Linux Kernel

2.1

Advanced Operating Systems and Virtualization

2. Step 4: Kernel Boot

Outline

2. Step 4: Kernel Boot ⇒ 2.1 Initial Life of the Linux Kernel 4

1. BIOS/UEFI
Actual hardware setup

2. Bootloader Stage 1
Executes the stage 2 bootloader (skipped for UEFI)

3. Bootloader Stage 2
Loads and starts the kernel

4. Kernel
Takes control and initializes the machine (machine-dependent operations)

5. Init (or systemd)
First process: basic environment initialization

6. Runlevels/Targets
Initializes the user environment

Initial Life

2. Step 4: Kernel Boot ⇒ 2.1 Initial Life of the Linux Kernel 5

The Stage 2 Bootloader (or UEFI) loads in
RAM the image of the kernel. This image is
really different from the one that we have
at steady state. We remind that when CPU
starts it is in Real Mode with 1MB of
addressable memory.

Where is the entry point? When the kernel
switches to Protected Mode?

https://manybutfinite.com/post/kernel-boot-process/
http://lxr.linux.no/#linux+v2.6.25.6/Documentation/i386/boot.txt

https://manybutfinite.com/post/kernel-boot-process/
http://lxr.linux.no/#linux+v2.6.25.6/Documentation/i386/boot.txt

From Real to Protected Mode

62. Step 4: Kernel Boot ⇒ 2.1 Initial Life of the Linux Kernel

https://manybutfinite.com/post/kernel-boot-process/

v2.6

Real Mode

https://manybutfinite.com/post/kernel-boot-process/

First Instruction

72. Step 4: Kernel Boot ⇒ 2.1 Initial Life of the Linux Kernel

The first executed instruction is a 2-byte jump to start_of_setup directly written

in machine code.

https://elixir.bootlin.com/linux/v2.6.25.6/source/arch/x86/boot/header.S#L110

v2.6

Real Mode

https://elixir.bootlin.com/linux/v2.6.25.6/source/arch/x86/boot/header.S#L110

start_of_setup()
This is a short routine that makes some initial setup:

- it sets up a stack
- zeroes the bss section
- jumps to main() in arch/x86/boot/main.c

In this portion of code the kernel still runs in real mode, and the function implements part of
the Kernel Boot Protocol, for example it loads the boot options in memory.

82. Step 4: Kernel Boot ⇒ 2.1 Initial Life of the Linux Kernel

v2.6

Real Mode

http://lxr.linux.no/#linux+v2.6.25.6/Documentation/i386/boot.txt

main()
The goal of the main() function is to prepare the machine to enter protected mode
and then to the switch. Therefore it:

- enables the A20 line
- sets up the Interrupt Descriptor Table (IDT) and the Global Descriptor Table (GDT)
- sets up memory, asks BIOS which is the available memory for creating a physical address

map. As a general rule, the kernel is installed in RAM starting from the physical address
0x00100000, i.e. from the second megabyte. For kernel 2.6, a typical amount of required
RAM is 3MB.

In the end the function calls go_to_protected_mode() in arch/x86/boot/pm.c

92. Step 4: Kernel Boot ⇒ 2.1 Initial Life of the Linux Kernel

v2.6

Real Mode

https://elixir.bootlin.com/linux/v2.6.25.6/source/arch/x86/boot/main.c#L122

go_to_protected_mode()

102. Step 4: Kernel Boot ⇒ 2.1 Initial Life of the Linux Kernel

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/pm.c#L99

v5.11

Real Mode

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/pm.c#L99

go_to_protected_mode()

In real mode the Interrupt Vector Table is always at address 0. The IDTR register is set up in the
following way:

112. Step 4: Kernel Boot ⇒ 2.1 Initial Life of the Linux Kernel

Interrupt Descriptor Table

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/pm.c#L93

v5.11

Real Mode

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/pm.c#L93

go_to_protected_mode()

122. Step 4: Kernel Boot ⇒ 2.1 Initial Life of the Linux Kernel

Global Descriptor Table (GDT)

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/pm.c#L64

v5.11

Real Mode

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/pm.c#L64

protected_mode_jump()

132. Step 4: Kernel Boot ⇒ 2.1 Initial Life of the Linux Kernel

v5.11

Real ModeAfter setting the initial IDT and GDT, the kernel jumps to protected mode
via protected_mode_jump() in arch/x86/boot/pmjump.S. This routine:

- sets PE in CR0
- issues a ljmp to its very next instruction to load in CS the boot CS sector
- sets up a data segment for flat 32-bit mode
- sets up a temporary stack

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/pmjump.S#L24

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/pmjump.S#L24

startup_32() #primary
protected_mode_jump() jumps into startup_32() in
arch/x86/boot/compressed/head_32.S and this routine does the following:

- sets the segments to known values (__BOOT_DS)
- loads a new stack
- clears again the BSS section
- determines the actual position in memory via a call/pop (image below)
- calls extract_kernel() (previously named decompress_kernel())

142. Step 4: Kernel Boot ⇒ 2.1 Initial Life of the Linux Kernel

v5.11

Protected

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/compressed/head_32.S#L50

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/compressed/head_32.S
https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/compressed/misc.c#L341
https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/compressed/head_32.S#L50

KASLR

In order to prevent that an attacker patches the kernel memory image, at the boot time the
kernel randomly decides where to decompress itself in memory relying on the most accurate
source of entropy available. However, since the kernel in mapped using 2MB aligned pages,
the number of valid slots is limited.

The current layout of the kernel's virtual address space only leaves 512M for the kernel
code—and 1.5G for modules. Since there is no need for that much module space, his patches
reduce that to 1G, leaving 1G for the kernel, thus 512 possible slots (as it needs to be 2M aligned).
The number of slots may increase when the modules' location is added to KASLR.

-- https://lwn.net/Articles/569635/

152. Step 4: Kernel Boot ⇒ 2.1 Initial Life of the Linux Kernel

Kernel Address Space Layout Randomization

https://lwn.net/Articles/569635/

startup_32()

2.2

Advanced Operating Systems and Virtualization

2. Step 4: Kernel Boot

startup_32() #secondary
After the decompression the true image of kernel can run, and this is done by a jump to
startup_32() at arch/x86/kernel/head_32.S. This routine sets up the environment for the
first Linux process (process 0):

- initializes the segmentation registers with their final values
- clears again the bss
- builds the page table
- enables paging
- creates the final IDT
- jumps to the architecture-dependent kernel entry point (i.e. start_kernel() at

init/kernel.c)

172. Step 4: Kernel Boot ⇒ 2.2 startup_32()

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/kernel/head_32.S#L67

Memory
During the initialization the steady-state kernel must take control of the available physical
memory. This because it will have to manage it with respect to the virtual address spaces of all
processes, in particular it needs to be able to:

- allocate and deallocate memory
- swap

For this reason, upon starting, the kernel must have an early organization setup out of the
box. For this reason the kernel use a set of statically generated page tables.

182. Step 4: Kernel Boot ⇒ 2.2 startup_32()

Process Page Tables
On 32bit architecture, the process address space is divided in two parts:

- linear addresses from 0x00000000 to 0xbfffffff (about 3GB) can be addressed when a
process runs in User or Kernel Mode

- linear addresses from 0xc0000000 to 0xffffffff (about 1GB) can be addressed when a
process runs in Kernel Mode

When the process runs in User Mode it issues linear addresses < 0xc0000000, when in Kernel
Mode >= 0xc0000000.

What should be kept in mind is that addresses lower than 0xc0000000 (value often referred as
PAGE_OFFSET) depend on the specific process, the others are the same for every process and
equal to the corresponding entries of the Master Kernel Page General Directory.

192. Step 4: Kernel Boot ⇒ 2.2 startup_32()

v2.6

User/Kernel Only Kernel

0xc0000000

Kernel Page Tables

202. Step 4: Kernel Boot ⇒ 2.2 startup_32()

The kernel maintains a set of page tables of its own use rooted at a so-called “Master Kernel
Page Global Directory”. After the system initialization this set of pages tables is never used by
any process or kernel thread, but the highest entries will be the reference model for the
corresponding entries of the Page Global Directories of every regular process in the system
(we will see that every process has a PGD).

The setup of these tables is a two step activity:

1. the kernel first creates a limited address space, including code, data, the initial Page
Tables and a dynamic area (of 128KB) -- this structure is known at compile time

2. the kernel takes advantage of all of the existing RAM and sets up the page table properly

Kernel Page Tables

A provisional Page Global Directory (PGD) is initialized statically during the kernel
compilation, while the provisional Page Tables are initialized by startup_32().

212. Step 4: Kernel Boot ⇒ 2.2 startup_32()

Provisional Kernel Page Tables

v2.6

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

Provisional
Page Tables

Linear Address
0x00100000 ˜ 2MB

K E R N E L

Kernel Page Tables

The Page Global Directory (PGD) is stored in the swapper_page_dir variable. Now suppose
that all the kernel segments, the provisional page tables and the dynamic area fits 8MB of
RAM. In the early paging, with pages of size 4MB we needed 2 entries in the Page Table.

Now, the objective of this phase of paging is to allow these 8MB of RAM to be easily
addressed both in real mode and protected mode. Therefore the kernel must create a
mapping from both the linear address 0x00000000 through 0x007fffff and the linear
addresses 0xc0000000 through 0xc07fffff into the physical 0x00000000 through
0x007fffff.

This mapping will be explained in Slide 61.

222. Step 4: Kernel Boot ⇒ 2.2 startup_32()

Provisional Kernel Page Tables

v2.6

Kernel Page Tables

232. Step 4: Kernel Boot ⇒ 2.2 startup_32()

Provisional Kernel Page Tables

User/Kernel Only Kernel

0xc0000000 = PAGE_OFFSET (in x86)

Only Kernel

0x00000000

Process Address Space

Kernel Address Space

Physical Memory

0x00000000

8MB

8MB

8MB

Enabling Paging

242. Step 4: Kernel Boot ⇒ 2.2 startup_32()

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/kernel/head_32.S#L250

v5.11

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/kernel/head_32.S#L31

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/kernel/head_32.S#L250
https://elixir.bootlin.com/linux/v5.11/source/arch/x86/kernel/head_32.S#L31

Kernel-Level MM Data Structures

252. Step 4: Kernel Boot ⇒ 2.2 startup_32()

The main data structures for memory management in the kernel are:

- Kernel Page Tables, that keeps the memory mapping for kernel level code and data, it
will pointed by swapper_pg_dir

- Core Map, that keeps the status information for any frame (or page) of the physical
memory and the free memory frames for any NUMA node

User/Kernel Only Kernel

0xc0000000

Process Address Space

swapper_pg_dir

start_kernel()

2.3

Advanced Operating Systems and Virtualization

2. Step 4: Kernel Boot

Kernel Initialization

2. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() 27

Cores Initialization

282. Step 4: Kernel Boot ⇒ 2.3 startup_kernel()

start_kernel() executes on a single core (the master). All of the other cores keep waiting
that the master has finished.

The kernel uses the function smp_processor_id() for obtaining the ID of the current core.
The function is architecture-dependent a written in assembly code by using a specific
hardware identification protocol. In modern version it uses the APIC. The function can be used
both at kernel startup and at steady state.

Kernel initialization signature
The start_kernel() function is declared as

asmlinkage __visible void __init __no_sanitize_address start_kernel(void)

Where:

- asmlinkage tells the compiler that the calling convention is such that parameters are
passed on stack

- __visible prevent Link-Time Optimization (since gcc 4.5)

- __init tells the kernel that the function is only used at initialization phase so memory
can be freed’ after

- __no_sanitize_address prevent address sanitizing (since gcc 4.8)

292. Step 4: Kernel Boot ⇒ 2.3 startup_kernel()

v5.11

https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L849
https://elixir.bootlin.com/linux/v5.11.2/C/ident/asmlinkage
https://elixir.bootlin.com/linux/v5.11.2/C/ident/__visible
https://elixir.bootlin.com/linux/v5.11.2/C/ident/__init
https://elixir.bootlin.com/linux/v5.11.2/C/ident/__no_sanitize_address
https://elixir.bootlin.com/linux/v5.11.2/C/ident/start_kernel

Main operations
The main operations carried out by start_kernel() (init/main.c) are:

1. setup_arch() that initializes the architecture
2. build_all_zonelists() - builds the memory zones
3. page_alloc_init() / mem_init() - the steady state allocator (Buddy System) is initialized

and the boot one removed
4. sched_init() - initializes the scheduler
5. trap_init() - the final IDT is built
6. time_init() - the system time is initialized
7. kmem_cache_init() - the slab allocator is initialized
8. arch_call_rest_init() / rest_init() - prepares the environment

a. kernel_thread(kernel_init) - starts the kernel thread for process 1 is created
i. kernel_init_freeable() -> prepare_namespace() -> initrd_load() - mounts

the initramfs, a temporary filesystem used to start the init process
ii. run_init_process() -> kernel_execve() - Execute /bin/init

b. cpu_startup_entry() -> do_idle() - starts the idle process

302. Step 4: Kernel Boot ⇒ 2.3 startup_kernel()

v5.11

https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L849
https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L675
https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L1417
https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L1498
https://elixir.bootlin.com/linux/v5.11.2/source/init/do_mounts.c#L569
https://elixir.bootlin.com/linux/v5.11.2/C/ident/run_init_process
https://elixir.bootlin.com/linux/v5.11.2/source/kernel/sched/idle.c#L391
https://elixir.bootlin.com/linux/v5.11.2/source/kernel/sched/idle.c#L261

setup_arch()
The main operations carried out by setup_arch() (/arch/x86/kernel/setup.c) are:

1. load_cr3() - initializes kernel page tables
2. __flush_tlb_all() - flush the TLB
3. init_bootmem() - initializes the bootmem allocator (v < 5)
4. e820__memory_setup() / e820__reserve_resources() - initializes the available

memory (also for memblock allocator)
5. x86_init.paging.pagetable_init() -> native_pagetable_init() ->

paging_init() - initializes paging

312. Step 4: Kernel Boot ⇒ 2.3 startup_kernel()

v5.11

https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/kernel/setup.c#L766
https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/kernel/setup.c#L1164
https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/mm/init_32.c#L444

A Primer on Memory
Organization

2.3.1

Advanced Operating Systems and Virtualization

2. Step 4: Kernel Boot
3. start_kernel()

NUMA
Linux is available for a great number of architectures, for this reason a machine independent
way of describing memory is needed.

Large scale machines memory may be arranged into banks that incur a different access delay
depending on the distance from the CPU. For this reason a memory bank can be assigned to
each CPU, or a bank can be suitable for Direct Memory Access (DMA) near the devices.

Each of these banks is called in linux a node and the concept of accessing the memory in
nodes is called Non-Uniform Memory Access (NUMA) (with a single node we have a UMA
architecture). Each node is represented by the struct pg_data_t and all nodes are kept in
linked list.

332. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.1 A Primer on Memory Organization

NUMA

342. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.1 A Primer on Memory Organization

CPU Sockets

Possible node0
for CPU0

CPU0

Zones

352. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.1 A Primer on Memory Organization

Each node is divided in a number of blocks called zones, which represents ranges within the
memory. On x86 there are three kinds of zone:

- ZONE_DMA is directly mapped by the kernel in the lower part of memory and it is destined
to ISA (Industry Standard Architecture) devices, in x86 first 16 MB

- ZONE_NORMAL is directly mapped by the kernel into the upper region of the linear
address space, in x86 from 16MB to 896MB

- ZONE_HIGHMEM is the remaining available memory and it is not directly mapped by the
kernel, in x86 from 896MB to end of memory.

The Page table is usually located at the top beginning of ZONE_NORMAL. To access memory
between 1GB and 4GB the kernel temporarily maps pages from high memory to
ZONE_NORMAL.

ZONE_NORMAL is fixed in size, addressing 16GiB can require 176MB of data structures!

Zones

36

Physical Memory on x86

0

ZONE_NORMAL ZONE_HIGHMEM

16MB 896MB

ZONE_DMA

End

User/Kernel Only Kernel

0xc0000000 = PAGE_OFFSET (in x86)

Process Virtual Address Space

Bootmem and Memblock
Allocators

2.3.2

Advanced Operating Systems and Virtualization

2. Step 4: Kernel Boot
3. start_kernel()

Bootmem allocator

2. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.2 Bootmem and Memblock Allocators

In the previous section we concluded that the memory map of the initial kernel image is
known at compile time. It’s impractical to initialize all of the core kernel memory structures at
compile time. The Linux kernel have a link-time memory manager, embedded into the kernel
image, called bootmem allocator (linux/bootmem.h).

The Bootmem allocator relies on bitmaps (instead of linked list of free blocks) that tells if any
4KB page in the currently reachable memory is busy or free. It also offers API (only at boot
time) to get free buffers, i.e. sets of contiguous page-aligned areas.

Bootmem allocator is a First Fit allocator. To satisfy the allocations that are less than a page,
the allocator records the last allocated Page Frame Number (PFN) and the offset. Subsequent
allocations are stored in the same page.

38

Bootmem organization

392. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.2 Bootmem and Memblock Allocators

Initializing bootmem
The information used by the bootmem allocator is represented by struct bootmem_data. An
array to hold up to MAX_NUMNODES such structures is statically allocated and then it is
discarded when the system initialization completes. Each entry in this array corresponds to a
node with memory. For UMA systems only entry 0 is used.

402. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.2 Bootmem and Memblock Allocators

Initializing bootmem

412. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.2 Bootmem and Memblock Allocators

The bootmem allocator is initialized during early architecture specific setup. Each architecture
is required to supply a setup_arch() (called by start_kernel()) function which, among other
tasks, is responsible for acquiring the necessary parameters to initialise the boot memory
allocator. These parameters define limits of usable physical memory:

- min_low_pfn - the lowest PFN that is available in the system
- max_low_pfn - the highest PFN that may be addressed by low memory

(ZONE_NORMAL)
- max_pfn - the last PFN available to the system.

After those limits are determined, the init_bootmem() or init_bootmem_node() function
should be called to initialize the bootmem allocator. The UMA case should use the
init_bootmem function. It will initialize contig_page_data structure that represents the only
memory node in the system. In the NUMA case the init_bootmem_node function should be
called to initialize the bootmem allocator for each node.

Bootmem APIs
#include <linux/bootmem.h>

void *alloc_bootmem(unsigned long size);

Allocate size number of bytes from ZONE_NORMAL. The allocation will be aligned to the L1 hardware cache to get the maximum
benefit from the hardware cache

void *alloc_bootmem_low(unsigned long size);

Allocate size number of bytes from ZONE_DMA. The allocation will be aligned to the L1 hardware cache

void *alloc_bootmem_pages(unsigned long size);

 Allocate size number of bytes from ZONE_NORMAL aligned on a page size so that full pages will be returned to the caller

void *alloc_bootmem_low_pages(unsigned long size);
Allocate size number of bytes from ZONE_NORMAL aligned on a page size so that full pages will be returned to the caller

void free_bootmem(unsigned long addr, unsigned long size);

Bootmem API is only available for code linked in the kernel image.

422. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.2 Bootmem and Memblock Allocators

https://www.kernel.org/doc/gorman/html/understand/understand008.html

https://www.kernel.org/doc/gorman/html/understand/understand008.html

Memblock allocator
Memblock is a method of managing memory regions during the early boot period when the
usual kernel memory allocators are not up and running. The memblock allocator, differently
from the bootmem does not use bitmaps for keeping track of allocated regions, but
collections of regions.

Memblock views the system memory as collections of contiguous regions. There are several
types of these collections:

● memory - describes the physical memory available to the kernel; this may differ from the
actual physical memory installed in the system, for instance when the memory is
restricted with mem= command line parameter

● reserved - describes the regions that were allocated
● physmem - describes the actual physical memory available during boot regardless of the

possible restrictions and memory hot(un)plug; the physmem type is only available on
some architectures.

432. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.2 Bootmem and Memblock Allocators

v5.11

https://www.kernel.org/doc/html/latest/core-api/boot-time-mm.html

https://www.kernel.org/doc/html/latest/core-api/boot-time-mm.html

Memblock Allocator

442. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.2 Bootmem and Memblock Allocators

Data Structures

v5.11

https://elixir.bootlin.com/linux/v5.11.2/source/include/linux/memblock.h#L42 https://elixir.bootlin.com/linux/v5.11.2/source/include/linux/memblock.h#L58

https://elixir.bootlin.com/linux/v5.11.2/source/include/linux/memblock.h#L74

https://elixir.bootlin.com/linux/v5.11.2/source/include/linux/memblock.h#L42
https://elixir.bootlin.com/linux/v5.11.2/source/include/linux/memblock.h#L58
https://elixir.bootlin.com/linux/v5.11.2/source/include/linux/memblock.h#L74

Memblock allocator

Each region is represented by struct memblock_region that defines the region extents, its
attributes and NUMA node id on NUMA systems. Every memory type is described by the
struct memblock_type which contains an array of memory regions along with the allocator
metadata.

The “memory” and “reserved” types are nicely wrapped with struct memblock. This structure
is statically initialized at build time. The region arrays are initially sized to
INIT_MEMBLOCK_REGIONS for “memory” and INIT_MEMBLOCK_RESERVED_REGIONS for
“reserved”. The region array for “physmem” is initially sized to INIT_PHYSMEM_REGIONS.

The memblock_allow_resize() enables automatic resizing of the region arrays during
addition of new regions. This feature should be used with care so that memory allocated for
the region array will not overlap with areas that should be reserved, for example initrd.

452. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.2 Bootmem and Memblock Allocators

Architecture

Memblock allocator

After the initialization of memory regions done by setup_arch() with functions memblock_add()
or memblock_add_node() functions. We can use the following APIs:

● memblock_phys_alloc*() - these functions return the physical address of the allocated
memory
○ memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align, phys_addr_t start,

phys_addr_t end);
○ memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid);
○ memblock_phys_alloc(phys_addr_t size, phys_addr_t align)

● memblock_alloc*() - these functions return the virtual address of the allocated
memory:
○ memblock_alloc(phys_addr_t size, phys_addr_t align)
○ memblock_alloc_raw(phys_addr_t size, phys_addr_t align)
○ memblock_alloc_from(phys_addr_t size, phys_addr_t align, phys_addr_t min_addr)
○ memblock_alloc_low(phys_addr_t size, phys_addr_t align)
○ memblock_alloc_node(phys_addr_t size, phys_addr_t align, int nid)

462. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.2 Bootmem and Memblock Allocators

API

Memblock allocator

As the system boot progresses, the architecture specific mem_init() function frees all the
memory to the buddy page allocator.

Unless an architecture enables CONFIG_ARCH_KEEP_MEMBLOCK, the memblock data structures
(except “physmem”) will be discarded after the system initialization completes.

472. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.2 Bootmem and Memblock Allocators

After boot

Memblock use case

In the x86 architecture, the e820 is the shorthand
for obtaining the memory map of the system. At
boot time, by looking at the dmesg you will find:

The e820 subsystem must mark some specific areas
to be reserved, for example the can be reserved for
the kernel, for BIOS facilities or drivers. The code on
the right just does this by using memblock.

482. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.2 Bootmem and Memblock Allocators

e820

https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/kernel/e820.c#L1129

v5.11

https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/kernel/e820.c#L1129

Superseding
In recent versions of the kernel (5+), the bootmem allocator has been removed in favour of the
memblock allocator on almost all architectures. See this patch https://lwn.net/Articles/764807/

492. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.2 Bootmem and Memblock Allocators

https://lwn.net/Articles/764807/

Paging Introduction

2.3.3

Advanced Operating Systems and Virtualization

2. Step 4: Kernel Boot
3. start_kernel()

Pages handling

2. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.3 Paging Introduction

Prior to version 2.6.11 the Linux paging model consisted of 3 indirection levels, next versions
introduced another level of indirections for a total of 4.

51

pgd pud pmd pte

Splitting the address
For splitting the linear address there are three kinds of macros that can be used:

- SHIFT macros specify the length in bits mapped to each PT level
- MASK macros AND’d with an address mask out all the upper bits and they are often used

for understanding if an address is aligned to a given level within the page table
- SIZE macros reveal how many bytes are addressed by each entry at each level

522. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.3 Paging Introduction

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.

Configuring the PT
Those macros are declared in the following source files:

- arch/x86/include/asm/pgtable-2level_types.h
- arch/x86/include/asm/pgtable-3level_types.h
- arch/x86/include/asm/pgtable_64_types.h

With other kinds of macros like PTRS_PER_* which describe the number of entries in PTs

532. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.3 Paging Introduction

https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/include/asm/pgtable-3level_types.h#L27

https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/include/asm/pgtable-2level_types.h
https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/include/asm/pgtable-3level_types.h
https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/include/asm/pgtable_64_types.h
https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/include/asm/pgtable-3level_types.h#L27

Page Table data structures
As already introduced earlier, swapper_pg_dir keeps the virtual memory address of the PGD
(PDE) portion of the kernel page table. The data structure is initialized at compile time,
depending on the memory layout defined for the kernel bootable image.

Any entry in the PGD is accessed with displacement, but the main types for defining page
table entries are explicitly defined, even if they are just unsigned integers:

typedef struct { unsigned long pte_low; } pte_t;

typedef struct { unsigned long pmd; } pmd_t;

typedef struct { unsigned long pgd; } pgd_t;

This is done essentially for enforcing type protection and for supporting PAE (where additional
4 bits are used for addressing more than 4GB of RAM).

An additional structure is used for storing page protection bits: pgprot_t.

542. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.3 Paging Introduction

(C and weak typing)
Remember that C language is weak typed, therefore the following code will compile and
execute with nor error or warning:

typedef unsigned long pgd_t;

typedef unsigned long pte_t;

pgd_t x; pte_t y;

x = y;

y = x;

552. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.3 Paging Introduction

Bit fields

562. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.3 Paging Introduction

https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/include/asm/pgtable_types.h#L12

v5.11

https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/include/asm/pgtable_types.h#L12

Bit fields and Masks

572. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.3 Paging Introduction

Type casting macros are defined in asm/page.h which takes the previous types and returns the
relevant part of the struct. They are pte_val(), pmd_val(), pgd_val() and pgprot_val().
For reverse type casting we have __pte(), __pmd(), __pgd(), __pgprot().

In the following example code, a check if a page is present is carried out:

v5.11

Different PD Entries
Different kind of page entries are again described with macros in
/arch/x86/include/asm/pgtable_types.h

#define _PAGE_TABLE \

(_PAGE_PRESENT | _PAGE_RW | \

_PAGE_USER | _PAGE_ACCESSED | \

_PAGE_DIRTY)

#define _KERNPG_TABLE \

(_PAGE_PRESENT | _PAGE_RW | \

_PAGE_ACCESSED | _PAGE_DIRTY)

582. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.3 Paging Introduction

Paging Initialization

2.3.4

Advanced Operating Systems and Virtualization

2. Step 4: Kernel Boot
3. start_kernel()

As already introduced, startup_32() enables the Paging unit. While the kernel code is
compiled with base address at PAGE_OFFSET + 1MB, the kernel is actually loaded at the
beginning of physical memory. The initialization of kernel page tables begins at compile time,
statically defining an array called swapper_pg_dir (at 0x00101000), that establishes page
table entries for 2 pages of 4MB each, pg0 and pg1. These two pointers covers the addresses
from 1MB to 9MB but they are placed at PAGE_OFFSET + 1MB.

Bootstrapping

602. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.4 Paging Initialization

v2.6

User/Kernel Only Kernel

0xc0000000 = PAGE_OFFSET (in x86)

Process Address Space

Physical Memory0x00000000

8MB

8MB

Bootstrapping
The 8MB of addressable memory must be addressed both in real mode than in protected
mode. For this reason, for that memory area the physical address must be equal to the virtual
one. This strategy is realized by declaring statically 4 entries in the swapper_pg_dir:

- Entry 0 and 0x300 (768) point to pg0
- Entry 1 and 0x301 (769) point to pg1

These entries have set bits P,R/W,U/S and cleared A,D,PCD,PWD and Page Size.

612. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.4 Paging Initialization

swapper_pg_dir
Physical Memory

#0

#768

#1

#769

pg0

pg1

0x00100000 = 1MB

0x007fffff = 8MB

0x00000000

0x007fffff

PAGE_OFFSET = 0xc0000000

0xc07fffff

identity map

kernel map

Bootstrapping
The Provisional Page Table with only two pages is set with the following assembly
instructions

622. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.4 Paging Initialization

movl $swapper_pg_dir-0xc0000000,%eax
movl %eax,%cr3 /* set the page table pointer.. */
movl %cr0,%eax
orl $0x80000000,%eax
movl %eax,%cr0 /* ..and set paging (PG) bit */

v2.4

Bootstrapping
The rest of kernel page tables are initialized by paging_init() called by setup_arch().

632. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.4 Paging Initialization

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.

v2.4

pagetable_init()
The initialization of kernel page tables starts with function paging_init() that initializes the
necessary pages for addressing ZONE_DMA and ZONE_NORMAL from PAGE_OFFSET.

642. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.4 Paging Initialization

https://elixir.bootlin.com/linux/2.4.31/source/arch/i386/mm/init.c#L205

for (; i < PTRS_PER_PGD; pgd++, i++) {
 vaddr = i*PGDIR_SIZE; /* i is set to map from 3 GB */
 if (end && (vaddr >= end)) break;
 pmd = (pmd_t *) pgd;/* pgd initialized to (swapper_pg_dir+i) */

 for (j = 0; j < PTRS_PER_PMD; pmd++, j++) {

 pte_base = pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
 for (k = 0; k < PTRS_PER_PTE; pte++, k++) {
 vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE;
 if (end && (vaddr >= end)) break;

 *pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL);
 }
 set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte_base)));

 }
}

v2.4

The starting address vaddr is set
to start from 3GB because we are
mapping the virtual addresses of
kernel pages.

The kernel prefers to use 4MB
pages if the CPU support them,
this for reducing the TLB miss rate
and speeding up the address
translation.

https://elixir.bootlin.com/linux/2.4.31/source/arch/i386/mm/init.c#L205

Bootstrapping
After pagetable_init() execution, all the ZONE_NORMAL and ZONE_DMA is directly mapped
in the kernel. Memory is not allocated, is just mapped. Memory is allocated only for the Page
Tables.

65

swapper_pg_dir
Physical Memory

#768

#769

pg0

pg1

0x00100000 = 1MB

0x007fffff = 8MB

PAGE_OFFSET = 0xc0000000

0xc07fffff

kernel map

#770

#n
#...

#...

#...

#...

#...

#...

896MB = End Of ZONE_NORMAL

Pa
ge

 ta
bl

e
fil

lin
g

in
 p

ag
et

ab
le

_i
ni

t(
)

Note that the identity map is removed by the function
zap_low_mappings() when no more needed

...

Indirection
levels

set_pmd() and __pa()/__va()
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)

Parameters are:

- pmdptr, pointing to an entry of the PMD, of type pmd_t. The value to assign, of pmd_t
type is computed by using the macro

#define __pa(x)((unsigned long)(x)-PAGE_OFFSET)

Linux sets up a direct mapping from the physical address 0 to the virtual address PAGE_OFFSET
at 3GB on x86. The opposite can be done using the __va(x) macro.

662. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.4 Paging Initialization

v2.4

mk_pte_sys()
The function creates a page table entry given the physical address and the protection
metadata.

The input parameters are:

- A frame physical address physpage, of type unsigned long
- A bit string pgprot for a PTE, of type pgprot_t

The macro builds a complete PTE entry, which includes the physical address of the target
frame. The return type is pte_t and it can be then assigned to one PTE entry.

672. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.4 Paging Initialization

v2.4

https://elixir.bootlin.com/linux/2.4.22/source/include/asm-i386/pgtable.h#L312

https://elixir.bootlin.com/linux/2.4.22/source/include/asm-i386/pgtable.h#L312

Loading the page table

682. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.4 Paging Initialization

https://elixir.bootlin.com/linux/2.4.22/source/arch/i386/mm/init.c#L351

v2.4

https://elixir.bootlin.com/linux/2.4.22/source/arch/i386/mm/init.c#L351

load_cr3()

The load cr3 instruction is directly mapped to the assembly code which loads the address of
the PGD into CR3.

Latest versions of the kernel uses the paravirtualization scheme to map all of the basic
functions that for example regards the mmu, like writing CR3, creating PGD, PTE and so on.
So in modern kernel you will find load_cr3 mapped to

692. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.4 Paging Initialization

v2.4

v5.11

https://elixir.bootlin.com/linux/2.4.22/source/include/asm-i386/processor.h#L184

https://elixir.bootlin.com/linux/v5.12-rc2/source/arch/x86/include/asm/paravirt.h#L138

https://elixir.bootlin.com/linux/2.4.22/source/include/asm-i386/processor.h#L184
https://elixir.bootlin.com/linux/v5.12-rc2/source/arch/x86/include/asm/paravirt.h#L138

Final virtual kernel memory map
This is the final virtual memory map of the kernel, it has nothing to do with the physical
counterpart.

As you can see the kernel may only address only 896MB because the last 128MB are reserved:

- VMALLOC - virtual contiguous memory areas that are not contiguous in physical
memory, especially for user processes.

- persistent mappings - used for mapping highmem pages
- fixmaps - virtual addresses customly mapped to selectable physical frames

70

Page tables
created by
pagetable_init()
and allocated with
bootmem

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.

TLB

2.3.5

Advanced Operating Systems and Virtualization

2. Step 4: Kernel Boot
3. start_kernel()

Implicit and explicit operations

2. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.5 TLB 72

The degree of automation in the management process of TLB entries depends on the
hardware architecture. Kernel hooks exist for explicit management of TLB operations
(mapped at compile time to nops in case of fully-automated TLB management)

On x86, automation is only partial: automatic TLB flushes occur upon updates of the CR3
register (e.g. page table changes) but Changes inside the current page table are not
automatically reflected into the TLB.

TLB Relevant events
Scale classification

- global: dealing with virtual addresses accessible by every CPU/core in
real-time-concurrency

- local: dealing with virtual addresses accessible in timesharing concurrency

Typology classification

- Virtual to physical address remapping
- Virtual address access rule modification (read only vs write access)

The typical management is TLB implicit renewal via flush operations

732. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.5 TLB

TLB Flush Costs
Direct costs

- the latency of the firmware level protocol for TLB entries invalidation (selective vs
non-selective)

- the latency for cross-CPU coordination in case of global TLB flushes

Indirect costs

- TLB renewal latency by the MMU firmware upon misses in the translation process of
virtual to physical addresses and this cost depends on the amount of entries to be refilled

- Tradeoff vs TLB API and software complexity inside the kernel (selective vs non-selective
flush/renewal)

742. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.5 TLB

Linux full TLB flush

This flushes the entire TLB on all processors running in the system (most expensive TLB flush
operation). After it completes, all modifications to the page tables are globally visible. This is
required after the kernel page tables, which are global in nature, have been modified.

752. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.5 TLB

https://elixir.bootlin.com/linux/v5.12-rc2/source/arch/x86/mm/tlb.c#L929

v5.12

https://elixir.bootlin.com/linux/v5.12-rc2/source/arch/x86/mm/tlb.c#L929

Linux TLB Flush

76

v2.4

This flushes all TLB entries related to a portion of the userspace memory context. On some
architectures (e.g. MIPS), this is required for all cores (usually it is confined to the local
processor).

This is called only after an operation affecting the entire address space:

- when cloning a process with a fork()
- when, in general, there is an interaction with the Copy-On-Write protection

This API flushes a single page from the TLB. The two most common uses of it are to flush the
TLB after a page has been faulted in or has been paged out.

Linux partial TLB flush

772. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.5 TLB

void flush_tlb_mm(struct mm_struct *mm)

void flush_tlb_page(struct vm_area_struct *vma, unsigned long a);

https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/flush_tlb_mm_range
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/mm_struct
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/mm
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/flush_tlb_page
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/vm_area_struct
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/vma

Linux partial TLB flush

This flushes all entries within the requested user space range for the mm context. This is used
after a region has been moved (mremap()) or when changing permissions (mprotect()). This
API is provided for architectures that can remove ranges of TLB entries quicker than iterating
with flush_tlb_page().

Used when the page tables are being torn down and free'd. Some platforms cache the lowest
level of the page table, which needs to be flushed when the pages are being deleted (e.g.
Sparc64). This is called when a region is being unmapped and the page directory entries are
being reclaimed.

782. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.5 TLB

void flush_tlb_range(struct mm_struct *mm, unsigned long start,unsigned long end);

void flush_tlb_pgtables(struct mm_struct *mm, unsigned long start,
 unsigned long end);

https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/flush_tlb_mm_range
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/mm_struct
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/mm
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/flush_tlb_mm_range
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/mm_struct
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/mm

Linux partial TLB flush

Only called after a page fault completes. It tells that a new translation now exists at pte for
the virtual address addr. Each architecture decides how this information should be used.

For example, Sparc64 uses the information to decide if the local CPU needs to flush its data
cache. In some cases it is also used for preloading TLB entries

792. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.5 TLB

void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep);

https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/update_mmu_cache
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/vm_area_struct
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/vma
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/pte_t
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/ptep

Final Operations and Recap

2.3.6

Advanced Operating Systems and Virtualization

2. Step 4: Kernel Boot
3. start_kernel()

Kernel Boot Flow

2. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.6 Final Operations and Recap 81

Main operations
The main operations carried out by start_kernel() (init/main.c) are:

1. setup_arch() that initializes the architecture
2. build_all_zonelists() - builds the memory zones
3. page_alloc_init() / mem_init() - the steady state allocator (Buddy System) is initialized

and the boot one removed
4. sched_init() - initializes the scheduler
5. trap_init() - the final IDT is built
6. time_init() - the system time is initialized
7. kmem_cache_init() - the slab allocator is initialized
8. arch_call_rest_init() / rest_init() - prepares the environment

a. kernel_thread(kernel_init) - starts the kernel thread for process 1 is created
i. kernel_init_freeable() -> prepare_namespace() -> initrd_load() - mounts

the initramfs, a temporary filesystem used to start the init process
ii. run_init_process() -> kernel_execve() - Execute /bin/init

b. cpu_startup_entry() -> do_idle() - starts the idle process

822. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.6 Final Operations and Recap

https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L849
https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L675
https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L1417
https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L1498
https://elixir.bootlin.com/linux/v5.11.2/source/init/do_mounts.c#L569
https://elixir.bootlin.com/linux/v5.11.2/C/ident/run_init_process
https://elixir.bootlin.com/linux/v5.11.2/source/kernel/sched/idle.c#L391
https://elixir.bootlin.com/linux/v5.11.2/source/kernel/sched/idle.c#L261

Final GDT

832. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.6 Final Operations and Recap

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

Idle Process

842. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.6 Final Operations and Recap

https://elixir.bootlin.com/linux/v5.11.2/source/kernel/sched/idle.c#L391

static inline void native_halt(void) {
asm volatile("hlt": : :"memory");

}

Paravirt. (newer kernels)

https://elixir.bootlin.com/linux/v5.11.2/source/kernel/sched/idle.c#L391

End of the Kernel Boot

852. Step 4: Kernel Boot ⇒ 2.3 startup_kernel() ⇒ 2.3.6 Final Operations and Recap

The idle loop is the ending of the kernel booting process.

Since the very first long jump ljmp $0xf000,$0xe05b at the reset vector at F000:FFF0 which
activated the BIOS, we have worked hard to setup a system which is spinning forever.

This is the end of the "romantic" Kernel boot procedure: we infinitely loop into a hlt instruction
or ...

Advanced Operating Systems and
Virtualization

L E C T U R E R

Gabriele Proietti Mattia

B A S E D O N W O R K B Y

http://www.ce.uniroma2.it/~pellegrini/

86

[2] Step 4: Kernel Boot

gpm.name · proiettimattia@diag.uniroma1.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

