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Initial Life of the Linux Kernel
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1. BIOS/UEFI

Actual hardware setup

2. Bootloader Stage 1
Executes the stage 2 bootloader (skipped for UEFI)

3. Bootloader Stage 2
Loads and starts the kernel

4. Kernel
Takes control and initializes the machine (machine-dependent operations)

5. Init (or systemd)
First process: basic environment initialization

6. Runlevels/Targets
Initializes the user environment
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Initial Life

The Stage 2 Bootloader (or UEFI) loads in

. .. . Loaded from
RAM the image of the kernel. Thisimage is kemel mage on
really different from the one that we have :
at steady state. We remind that when CPU
starts it is in Real Mode with 1MB of

0xFFFFF 1MB

0xA0000 640K

X below is somewhere under 640K. It

addressable memory depends on the boot loader.

Boot command line

~256 bytes
X +0x10000 X +64K

. . > Stack/heap for real-mode kernel code.
Where is the entry point? When the kernel R — 32K —

switches to Protected Mode? e s

Many kernel header fields

fidhytos Real-mode
Loaded from Real-mode kernel entry point kemel
kernel image on 2 bytes header

. X +512 bytes
disk Legacy Kemel Boot Sector
512 bytes
(includes first 15 bytes of the kernel

header)
- X X

https://manybutfinite.com/post/kernel-boot-process/
http://Ixr.linux.no/#linux+v2.6.25.6/Documentation/i386/boot.txt
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https://manybutfinite.com/post/kernel-boot-process/
http://lxr.linux.no/#linux+v2.6.25.6/Documentation/i386/boot.txt

From Real to Protected Mode v2.6

Time Flow

CPU in Protected Mode, paging disabled
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CPU in Real Mode

N\
|
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https://manybutfinite.com/post/kernel-boot-process/
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First Instruction V2.6

The first executed instruction is a 2-byte jump to start_of_setup directly written REDICES

in machine code.

110 .globl _start

141 _start:

112 # Explicitly enter this as bytes, or the assembler
113 # tries to generate a 3-byte jump here, which causes
114 # everything else to push off to the wrong offset.
115 .byte 0Oxeb # short (2-byte) jump

116 .byte start_of_setup-if
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https://elixir.bootlin.com/linux/v2.6.25.6/source/arch/x86/boot/header.S#L110

start_of_setup() V2.6

This is a short routine that makes some initial setup: Real Mode

- itsetsup astack
- zeroes the bss section
- jumpstomain()inarch/x86/boot/main.c

In this portion of code the kernel still runs in real mode, and the function implements part of
the Kernel Boot Protocol, for example it loads the boot options in memory.
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http://lxr.linux.no/#linux+v2.6.25.6/Documentation/i386/boot.txt

ma"l.n() v2.6

The goal of the main() function is to prepare the machine to enter protected | ReaMode
and then to the switch. Therefore it:
- enables the A2o line
- sets up the Interrupt Descriptor Table (IDT) and the Global Descriptor Table (GDT)
- sets up memory, asks BIOS which is the available memory for creating a physical address
map. As a general rule, the kernel is installed in RAM starting from the physical address

0X00100000, i.e. from the second megabyte. For kernel 2.6, a typical amount of required
RAM is 3MB.

In the end the function calls go_to_protected mode() in arch/x86/boot/pm.c

2. Step 4: Kernel Boot = 2.1 Initial Life of the Linux Kernel 9


https://elixir.bootlin.com/linux/v2.6.25.6/source/arch/x86/boot/main.c#L122

go_to_protected_mode() v5.11

g9 /x Real Mode
100 * Actual invocation sequence

101 */

102 void go_to_protected_mode(void)

103 {

104 /* Hook before leaving real mode, also disables interrupts */
105 realmode_switch_hook();

106

107 /* Enable the A20 gate */

108 if (enable_a20()) {

109 puts("A20 gate not responding, unable to boot...\n");
110 die();

111 }

112

116 /* Mask all interrupts in the PIC */

1157 mask_all_interrupts();

118

119 /* Actual transition to protected mode... */

120 setup_1idt();

121 setup_gdt();

122 protected_mode_jump(boot_params.hdr.code32_start,

123 (u32)&boot_params + (ds() << 4));

124 }

https://elixir.bootlin.com/linux/vs.11/source/arch/x86/boot/pm.c#Lgg
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https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/pm.c#L99

go_to_protected_mode()

Interrupt Descriptor Table Real Mode

In real mode the Interrupt Vector Table is always at address 0. The IDTR register is set up in the
following way:

90  /*

91 * Set up the IDT

92 */

93 static void setup_idt(void)

94 {

95 static const struct gdt_ptr null_idt = {0, 0};
96 asm volatile("lidtl %0" : : "m" (null_idt));
97 }

https://elixir.bootlin.com/linux/vs.11/source/arch/x86/boot/pm.c#L.93
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https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/pm.c#L93

go_to_protected_mode() v5.11
Global Descriptor Table (GDT) S

64 static void setup_gdt(void)

65 {

66 /* There are machines which are known to not boot with the GDT
67 being 8-byte unaligned. Intel recommends 16 byte alignment. */
68 static const u64 boot_gdt[] __attribute__((aligned(16))) = {
69 /* CS: code, read/execute, 4 GB, base 0 */

70 [GDT_ENTRY_BOOT_CS] = GDT_ENTRY(0xc09, 0, Oxfffff),
7l /* DS: data, read/write, 4 GB, base 0 */

72 [GDT_ENTRY_BOOT_DS] = GDT_ENTRY(0xc093, 0, Oxfffff),
73 /* TSS: 32-bit tss, 104 bytes, base 4096 */

74 /* We only have a TSS here to keep Intel VT happy;

5 we don't actually use it for anything. */

76 [GDT_ENTRY_BOOT_TSS] = GDT_ENTRY(0x0089, 4096, 103),
vy };

78 /* Xen HVM incorrectly stores a pointer to the gdt_ptr, instead
79 of the gdt_ptr contents. Thus, make it static so it will
80 stay in memory, at least long enough that we switch to the
81 proper kernel GDT. */

82 static struct gdt_ptr gdt;

83

84 gdt.len = sizeof(boot_gdt)-1;

85 gdt.ptr = (u32)&boot_gdt + (ds() << 4);

86

87 asm volatile("lgdtl %0" : : "m" (gdt));

88 }

https://elixir.bootlin.com/linux/vs.11/source/arch/x86/boot/pm.c#L 64
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https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/pm.c#L64

protected_mode_jump()

After setting the initial IDT and GDT, the kernel jumps to protected mtde %
via protected_mode_jump() in arch/x86/boot/pmjump.S. This routine:

- setsPEinCRo

- issues a ljmp to its very next instruction to load in CS the boot CS sector

- sets up a data segment for flat 32-bit mode

- setsupa temporary stack

37 movl %ecr®, %edx

38 orb $X86_CRO_PE, %dl # Protected mode
39 movl %edx, %cro

40

41 # Transition to 32-bit mode

42 .byte 0x66, Oxea # Ljmpl opcode
43 2 .long .Lin_pm32 # offset

44 .word __BOOT_CS # segment

https://elixir.bootlin.com/linux/vs.11/source/arch/x86/boot/pmjump.S#L 24
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https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/pmjump.S#L24

startup_32() #primary

protected_mode_jump() jumps into startup 32() Protected
arch/x86/boot/compressed/head_32.S and this routine does the following:

- sets the segments to known values (__BOOT_DS)

- loads a new stack

- clears again the BSS section

- determines the actual position in memory via a call/pop (image below)
- callsextract kernel() (previously named decompress_kernel())

50 /*

51 * Calculate the delta between where we were compiled to run

52 * at and where we were actually loaded at. This can only be done
53 * with a short local call on x86. Nothing else will tell us what
54 * address we are running at. The reserved chunk of the real-mode
55 * data at Oxle4 (defined as a scratch field) are used as the stack
56 * for this calculation. Only 4 bytes are needed.

57 */

58 leal (BP_scratch+4) (%esi), %esp

59 call 1f

60 s popl %edx

61 addl  $_GLOBAL_OFFSET_TABLE_+(.-1b), %edx

https://elixir.bootlin.com/linux/vs.11/source/arch/x86/boot/compressed/head 32.S#Ls5o
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https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/compressed/head_32.S
https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/compressed/misc.c#L341
https://elixir.bootlin.com/linux/v5.11/source/arch/x86/boot/compressed/head_32.S#L50

KASLR

Kernel Address Space Layout Randomization

In order to prevent that an attacker patches the kernel memory image, at the boot time the
kernel randomly decides where to decompress itself in memory relying on the most accurate
source of entropy available. However, since the kernel in mapped using 2MB aligned pages,
the number of valid slots is limited.

The current layout of the kernel's virtual address space only leaves 512M for the kernel
code—and 1.5G for modules. Since there is no need for that much module space, his patches
reduce that to 1G, leaving 1G for the kernel, thus 512 possible slots (as it needs to be 2M aligned).
The number of slots may increase when the modules' location is added to KASLR.

-- https://lwn.net/Articles/569635/
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https://lwn.net/Articles/569635/
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startup_32() #secondary

After the decompression the true image of kernel can run, and this is done by a jump to
startup 32() atarch/x86/kernel/head_32.S. This routine sets up the environment for the

first Linux process (process 0):

- initializes the segmentation registers with their final values

- clears again the bss

- builds the page table

- enables paging

- creates the final IDT

- jumps to the architecture-dependent kernel entry point (i.e. start_kernel() at

init/kernel.c)

2. Step 4: Kernel Boot = 2.2 startup_32() 17



https://elixir.bootlin.com/linux/v5.11/source/arch/x86/kernel/head_32.S#L67

Memory

During the initialization the steady-state kernel must take control of the available physical
memory. This because it will have to manage it with respect to the virtual address spaces of all
processes, in particular it needs to be able to:

- allocate and deallocate memory
- swap

For this reason, upon starting, the kernel must have an early organization setup out of the
box. For this reason the kernel use a set of statically generated page tables.
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Process Page Tables v2.6

On 32bit architecture, the process address space is divided in two parts:

- linear addresses from 0x00000000 to Oxbfffffff (about 3GB) can be addressed when a
process runs in User or Kernel Mode
- linear addresses from 0xc0000000 to Oxffffffff (about 1GB) can be addressed when a

process runs in Kernel Mode
0xc0000000

User/Kernel Only Kernel

When the process runs in User Mode it issues linear addresses < 0xc0000000, when in Kernel
Mode >= 0xc0000000.

What should be kept in mind is that addresses lower than 0xc0000000 (value often referred as
PAGE_OFFSET) depend on the specific process, the others are the same for every process and
equal to the corresponding entries of the Master Kernel Page General Directory.
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Kernel Page Tables

The kernel maintains a set of page tables of its own use rooted at a so-called *Master Kernel
Page Global Directory”. After the system initialization this set of pages tables is never used by
any process or kernel thread, but the highest entries will be the reference model for the
corresponding entries of the Page Global Directories of every regular process in the system
(we will see that every process has a PGD).

The setup of these tables is a two step activity:

1. the kernel first creates a limited address space, including code, data, the initial Page
Tables and a dynamic area (of 128KB) -- this structure is known at compile time
2. the kernel takes advantage of all of the existing RAM and sets up the page table properly

2. Step 4: Kernel Boot = 2.2 startup_32() 20



Kernel Page Tables v2.6

Provisional Kernel Page Tables

A provisional Page Global Directory (PGD) is initialized statically during the kernel
compilation, while the provisional Page Tables are initialized by startup_32().

Linear Address
Page frame # 0x00100000 ~ 2MB

0 1 0x9f 0x100 Ox2ff

KERNEL

_text _etext _edata _end

- Unavailable page frames

|:] Available page frames
[ Kemel code Provisional

|:| Initialized kernel data Pa ge Tables
- Uninitialized kernel data

Figure 2-13. The first 768 page frames (3 MB) in Linux 2.6

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.
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Kernel Page Tables v2.6

Provisional Kernel Page Tables

The Page Global Directory (PGD) is stored in the swapper_page_dir variable. Now suppose
that all the kernel segments, the provisional page tables and the dynamic area fits 8MB of
RAM. In the early paging, with pages of size 4MB we needed 2 entries in the Page Table.

Now, the objective of this phase of paging is to allow these 8MB of RAM to be easily
addressed both in real mode and protected mode. Therefore the kernel must create a
mapping from both the linear address 0x00000000 through 0x007fffff and the linear
addresses 0xc0000000 through 0xcO7fffff into the physical 0x00000000 through
Ox007fffff.

This mapping will be explained in Slide 61.
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Kernel Page Tables

Provisional Kernel Page Tables

User/Kernel

Process Address Space

8MB

0x00000000

8MB

\
>

0x00000000

8MB

2. Step 4: Kernel Boot = 2.2 startup_32()

Only Kernel

Kernel Address Space

Physical Memory

0xc0000000 = PAGE_OFFSET (in x86)

Only Kernel
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Enabling Paging

https://elixir.bootlin.com/linux/vs.11/source/arch/x86/kernel/head 32.S#131

30 /* Physical address */

31  #define pa(X) ((X) - __PAGE_OFFSET)

.globl initial_page_table
initial_page_table:
fill 1024,4,0

/*

* Enable pwging

L 4
movl $pa(initial_page_table), %eax
movl %eax,%cr3 /* set the page table pointer.. */
movl $[&.0) STATE,%eax
movl %eax,%cro /* ..and set paging (PG) bit */
1jmp $__BOOT_CS,$1f /* Clear prefetch and normalize %eip */

/* Shift the stack pointer to a virtual address */
addl $__PAGE_OFFSET, %esp

https://elixir.bootlin.com/linux/vs.11/source/arch/x86/kernel/head 32.S#L250
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https://elixir.bootlin.com/linux/v5.11/source/arch/x86/kernel/head_32.S#L250
https://elixir.bootlin.com/linux/v5.11/source/arch/x86/kernel/head_32.S#L31

Kernel-Level MM Data Structures

The main data structures for memory management in the kernel are:

- Kernel Page Tables, that keeps the memory mapping for kernel level code and data, it
will pointed by swapper_pg_dir

- Core Map, that keeps the status information for any frame (or page) of the physical
memory and the free memory frames for any NUMA node

Process Address Space
0xc0000000

User/Kernel Only Kernel

swapper_pg_dir
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Kernel Initialization

Time Flow
L
CPU in Protected Mode, paging enabled. Architecture-inde pendent kernel, mostly_t\
PID zero
initfr:\[;i:eé'%w ( mnt/F:gurzl‘::rSBZ arch/x86/kernel/process_32.c:180
AT cpu_idle()
start_kernel() L rest_init() Kemelidla thraad

New kernel thread

PID 1 ( |
PID 1 55 PID 1
init/
mll(t/maln c:808 in c:768 kernel_execve
ernel_init() init_post() /sbinfinit
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Cores Initialization

start_kernel() executes on a single core (the master). All of the other cores keep waiting
that the master has finished.

The kernel uses the function smp_processor_1id() for obtaining the ID of the current core.
The function is architecture-dependent a written in assembly code by using a specific
hardware identification protocol. In modern version it uses the APIC. The function can be used
both at kernel startup and at steady state.
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Kernel initialization signature

The start kernel() function is declared as

asmlinkage __visible void __init __no_sanitize_address start_kernel(void)

Where:

- asmlinkage tells the compiler that the calling convention is such that parameters are
passed on stack

- __visible prevent Link-Time Optimization (since gcc 4.5)

- __1init tells the kernel that the function is only used at initialization phase so memory
can be freed’ after

- __no_sanitize_address prevent address sanitizing (since gcc 4.8)
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https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L849
https://elixir.bootlin.com/linux/v5.11.2/C/ident/asmlinkage
https://elixir.bootlin.com/linux/v5.11.2/C/ident/__visible
https://elixir.bootlin.com/linux/v5.11.2/C/ident/__init
https://elixir.bootlin.com/linux/v5.11.2/C/ident/__no_sanitize_address
https://elixir.bootlin.com/linux/v5.11.2/C/ident/start_kernel

Main operations

The main operations carried out by start kernel() (init/main.c)are:

1. setup_arch() thatinitializes the architecture
2. build_all_zonelists() - builds the memory zones

page_alloc_init() / mem_init() - the steady state allocator (Buddy System) is initialized
and the boot one removed

sched_init() - initializes the scheduler
trap_init() - the final IDT is built
time_init() - the system time is initialized
kmem_cache_init() - the slab allocator is initialized
arch_call_rest_init() / rest init() - preparesthe environment
a. kernel_thread(kernel init) - startsthe kernel thread for process 1 is created

i. kernel init freeable() -> prepare namespace() -> initrd_load() - mounts
the initramfs, a temporary filesystem used to start the init process

ii. run_init process() -> kernel_execve() - Execute /bin/init
b. cpu startup entry()-> do idle() - starts the idle process

w

© N Ok
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https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L849
https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L675
https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L1417
https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L1498
https://elixir.bootlin.com/linux/v5.11.2/source/init/do_mounts.c#L569
https://elixir.bootlin.com/linux/v5.11.2/C/ident/run_init_process
https://elixir.bootlin.com/linux/v5.11.2/source/kernel/sched/idle.c#L391
https://elixir.bootlin.com/linux/v5.11.2/source/kernel/sched/idle.c#L261

setup_arch()

The main operations carried out by setup _arch() (/arch/x86/kernel/setup.c) are:

1. load_cr3() - initializes kernel page tables

2. _ flush_tlb_all() - flushthe TLB

3. init_bootmem() - initializes the bootmem allocator (v < )
4

e820__memory_setup() |/ e820__reserve_resources() - initializes the available
memory (also for memblock allocator)
5. x86 init.paging.pagetable init() -> native pagetable init() ->

paging_init() - initializes paging
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https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/kernel/setup.c#L766
https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/kernel/setup.c#L1164
https://elixir.bootlin.com/linux/v5.11.2/source/arch/x86/mm/init_32.c#L444
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NUMA

Linux is available for a great number of architectures, for this reason a machine independent
way of describing memory is needed.

Large scale machines memory may be arranged into banks that incur a different access delay
depending on the distance from the CPU. For this reason a memory bank can be assigned to
each CPU, or a bank can be suitable for Direct Memory Access (DMA) near the devices.

Each of these banks is called in linux a node and the concept of accessing the memory in
nodes is called Non-Uniform Memory Access (NUMA) (with a single node we have a UMA
architecture). Each node is represented by the struct pg_data_t and all nodes are kept in

linked list.

2. Step 4: Kernel Boot = 2.3 startup_kernel() = 2.3.1 A Primer on Memory Organization



N U MA CPU Sockets

Possible node0
for CPUO

g
g

O u.‘:./-]F”r V"
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Zones

Each node is divided in a number of blocks called zones, which represents ranges within the
memory. On x86 there are three kinds of zone:

- ZONE_DMA is directly mapped by the kernel in the lower part of memory and it is destined
to ISA (Industry Standard Architecture) devices, in x86 first 216 MB

- ZONE_NORMAL is directly mapped by the kernel into the upper region of the linear
address space, in x86 from 16MB to 8g6MB

- ZONE_HIGHMEM is the remaining available memory and it is not directly mapped by the
kernel, in x86 from 896MB to end of memory.

The Page table is usually located at the top beginning of ZONE_NORMAL. To access memory
between 1GB and 4GB the kernel temporarily maps pages from high memory to
ZONE_NORMAL.

ZONE_NORMAL is fixed in size, addressing 16GiB can require 176 MB of data structures!

2. Step 4: Kernel Boot = 2.3 startup_kernel() = 2.3.1 A Primer on Memory Organization



Zones

Process Virtual Address Space
0xc0000000 = PAGE_OFFSET (in x86)

User/Kernel Only Kernel

Physical Memory on x86

\ 0 l 16MB 896MB End

|

ZONE_DMA

ZONE_NORMAL ZONE_HIGHMEM



2.3.2

2. Step 4: Kernel Boot
3. start_kernel()

Bootmem and Memblock
Allocators
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Bootmem allocator

In the previous section we concluded that the memory map of the initial kernel image is
known at compile time. It's impractical to initialize all of the core kernel memory structures at
compile time. The Linux kernel have a link-time memory manager, embedded into the kernel
image, called bootmem allocator (linux/bootmem.h).

The Bootmem allocator relies on bitmaps (instead of linked list of free blocks) that tells if any
4KB page in the currently reachable memory is busy or free. It also offers API (only at boot
time) to get free buffers, i.e. sets of contiguous page-aligned areas.

Bootmem allocator is a First Fit allocator. To satisfy the allocations that are less than a page,
the allocator records the last allocated Page Frame Number (PFN) and the offset. Subsequent
allocations are stored in the same page.

2. Step 4: Kernel Boot = 2.3 startup_kernel() = 2.3.2 Bootmem and Memblock Allocators



Bootmem organization

Data - Compact status of 0x80000000
busy/free buffers fran
Linker free

Bootmem
bitmap free

0xc0800000
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Initializing bootmem

The information used by the bootmem allocator is represented by struct bootmem_data. An
array to hold up to MAX_NUMNODES such structures is statically allocated and then it is

discarded when the system initialization completes. Each entry in this array corresponds to a
node with memory. For UMA systems only entry o is used.

2. Step 4: Kernel Boot = 2.3 startup_kernel() = 2.3.2 Bootmem and Memblock Allocators




Initializing bootmem

The bootmem allocator is initialized during early architecture specific setup. Each architecture
is required to supply a setup_arch() (called by start_kernel()) function which, among other
tasks, is responsible for acquiring the necessary parameters to initialise the boot memory
allocator. These parameters define limits of usable physical memory:

- min_low_pfn - the lowest PFN that is available in the system
- max_low_pfn - the highest PFN that may be addressed by low memory
(ZONE_NORMAL)

- max_pfn - the last PFN available to the system.

After those limits are determined, the init_bootmem() or init_bootmem_node() function
should be called to initialize the bootmem allocator. The UMA case should use the
init_bootmem function. It will initialize contig_page_data structure that represents the only
memory node in the system. In the NUMA case the init_bootmem_node function should be
called to initialize the bootmem allocator for each node.
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Bootmem APIs

#include <linux/bootmem.h>
void *alloc_bootmem(unsigned long size);

Allocate size number of bytes from ZONE_NORMAL. The allocation will be aligned to the L1 hardware cache to get the maximum
benefit from the hardware cache

void *alloc_bootmem_low(unsigned long size);

Allocate size number of bytes from ZONE_DMA. The allocation will be aligned to the L1 hardware cache

void *alloc_bootmem_pages(unsigned long size);

Allocate size number of bytes from ZONE_NORMAL aligned on a page size so that full pages will be returned to the caller

void *alloc_bootmem_low_pages(unsigned long size);
Allocate size number of bytes from ZONE_NORMAL aligned on a page size so that full pages will be returned to the caller

void free_bootmem(unsigned long addr, unsigned long size);

Bootmem APl is only available for code linked in the kernel image.

https://www.kernel.org/doc/gorman/html/understand/understandoo8.html

2. Step 4: Kernel Boot = 2.3 startup_kernel() = 2.3.2 Bootmem and Memblock Allocators


https://www.kernel.org/doc/gorman/html/understand/understand008.html

Memblock allocator

Memblock is a method of managing memory regions during the early boot period when the
usual kernel memory allocators are not up and running. The memblock allocator, differently
from the bootmem does not use bitmaps for keeping track of allocated regions, but
collections of regions.

Memblock views the system memory as collections of contiguous regions. There are several
types of these collections:

e memory - describes the physical memory available to the kernel; this may differ from the
actual physical memory installed in the system, for instance when the memory is
restricted with mem= command line parameter

e reserved -describesthe regions that were allocated

e physmem - describes the actual physical memory available during boot regardless of the
possible restrictions and memory hot(un)plug; the physmem type is only available on
some architectures.

https://www.kernel.org/doc/html/latest/core-api/boot-time-mm.html
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Memblock Allocator V5.11

Data Structures 7
76
77
78
79
80
81
82
83
84
85
86
42 />
43 * struct memblock_region - represen
44 * @base: base address of the region
45 * @size: size of the region
46 * @flags: memory region attributes
47 * @nid: NUMA node id
48 */
49 struct memblock_region {
50 phys_addr_t base;
51 phys_addr_t size;
52 enum memblock_flags flags;
53 #ifdef CONFIG_NEED_MULTIPLE_NODES
54 int nid;
55 #endif
56 };

https://elixir.bootlin.com/linux/vs.11.2/sourcefi

/**
* struct memblock - memblock allocator metadata
* @bottom_up: is bottom up direction?
* @urrent_limit: physical address of the current allocation limit
* @memory: usable memory regions
* @reserved: reserved memory regions
¥/
struct memblock {
bool bottom_up; /* is bottom up direction? */
phys_addr_t current_limit;
struct memblock_type memory;
struct memblock_type reserved;

-
. 58 Vaid

ts a memory region 59 * struct memblock type - collection of memory regions of certain type
60 * @cnt: number of regions
61 * @max: size of the allocated array
2 * @total_size: size of all regions
6 * @regions: array of regions
64 * @name: the memory type symbolic name
65 */

struct memblock_type {
unsigned long cnt;
unsigned long max;
phys_addr_t total_size;

70 struct memblock_region *regions;
71 char *name;
72 };
nclude/linux/memblock.h#L 42 https://elixir.bootlin.com/linux/vs.11.2/source/include/linux/memblock.h#L 58
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https://elixir.bootlin.com/linux/v5.11.2/source/include/linux/memblock.h#L74

Memblock allocator
Architecture

Each region is represented by struct memblock_region that defines the region extents, its
attributes and NUMA node id on NUMA systems. Every memory type is described by the
struct memblock_type which contains an array of memory regions along with the allocator
metadata.

The "memory” and “reserved” types are nicely wrapped with struct memblock. This structure
is statically initialized at build time. The region arrays are initially sized to
INIT_MEMBLOCK_REGIONS for "“memory” and INIT_MEMBLOCK_RESERVED_REGIONS for
“reserved”. The region array for “physmem” is initially sized to INIT_PHYSMEM_REGIONS.

The memblock_allow_resize() enables automatic resizing of the region arrays during
addition of new regions. This feature should be used with care so that memory allocated for
the region array will not overlap with areas that should be reserved, for example initrd.
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Memblock allocator
API

After the initialization of memory regions done by setup_arch() with functions memblock_add()
or memblock_add_node() functions. We can use the following APlIs:

e memblock_phys_alloc*() - these functions return the physical address of the allocated

memory
o memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align, phys_addr_t  start,
phys_addr_t end);
o  memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid);
o  memblock_phys_alloc(phys_addr_t size, phys_addr_t align)
e memblock alloc*() - these functions return the virtual address of the allocated

memory:
o memblock_alloc(phys_addr_t size, phys_addr_t align)
memblock_alloc_raw(phys_addr_t size, phys_addr_t align)
memblock_alloc_from(phys_addr_t size, phys_addr_t align, phys_addr_t min_addr)
memblock_alloc_low(phys_addr_t size, phys_addr_t align)

O
O
O
o memblock_alloc_node(phys_addr_t size, phys_addr_t align, int nid)
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Memblock allocator

After boot
As the system boot progresses, the architecture specific mem_init() function frees all the
memory to the buddy page allocator.

Unless an architecture enables CONFIG_ARCH_KEEP_MEMBLOCK, the memblock data structures
(except “physmem”) will be discarded after the system initialization completes.
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/«x
* Mark E820 reserved areas as busy for the resource

74

static struct resource __initdata *e820_res;

Memblock use case

e820 _—
1138 struct resource *res;
1139 u64 end;

res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
SMP_CACHE_BYTES) ;

In the x86 architecture, the €820 is the shorthand
for obtaining the memory map of the system. At P
boot time, by looking at the dmesg you will find: B tasf ares) » SENEEARTR orERERts

e820_res = res;

BIOS-provided physical RAM map:
[mem Ox0OOEEEEOEOEEOEOO-O0XxOO00000000009F7ff] usable
[mem Ox0OOEEEOEEEOIF800-O0xOO00000000009FFff] reserved
[mem Ox00EEEEEEEEOTOOOO-0XxOO0000000000fffff] reserved
[mem Ox0000EEEEEO100000-0xO00000OObFdIffff] usable

for (1 = 0; 1 < e820_table->nr_entries; i++) {
struct e820_entry *entry = e820_table->entries + 1i;

end = entry->addr + entry->size - 1;

52 if (end != (resource_size_t)end) {
[mem Ox000000EObfdafeEO-0xO0000000ObFddOfff] ACPI NVS 1153 res++;
[mem ©0x00000000bfdd1000-0x00000000bfdfffff] ACPI data 4 continue:
[mem Ox00000000bfe@OOO0-0x00000000bfefffff] reserved }
[mem Ox000EEEOEeOOOOOOO-0xO0000000efffffff] reserved 1 res->start = entry->addr;

[mem ©0x00000000fecOOOOO-0x00000000FFffffff] reserved res->end
[mem 0x0000000100000000-0x000000043effffff] usable 1158 FasLSaNE

end;
e820_type_to_string(entry);

1159 — res->flags = e820_type_to_iomem_type(entry);
1160 res->desc e820_type_to_1iores_desc(entry);
The e820 subsystem must mark some specific areas . e
1163 * Don't register the region that could be conflicted with
to be reserved, for example the can be reserved for + PCT device BAR resources and insert then later tn
e . 1165 * pcibios_resource_survey():
the kernel, for BIOS facilities or drivers. The code on = Y/

if (do_mark_busy(entry->type, res)) {
3 res->flags |= IORESOURCE_BUSY;
1169 insert_resource(&iomem_resource, res);
1170 }

res++;

the right just does this by using memblock.

}
https://elixir.bootlin.com/linux/vs.11.2/source/arch/x86/kernel/e820.c#L1129
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Superseding

In recent versions of the kernel (5+), the bootmem allocator has been removed in favour of the
memblock allocator on almost all architectures. See this patch https://lwn.net/Articles/764807/

mm: remove bootmem allocator

From: Mike Rapoport <rppt-AT-linux.vnet.ibm.com>
To: linux-mm-AT-kvack.org

Subject: [PATCH 00/30] mm: remove bootmem allocator
Date: Fri, 14 Sep 2018 15:10:15 +0300

Message-ID: <1536927045-23536-1-git-send-email-rppt@linux.vnet.ibm.com>

Hi,

These patches switch early memory management to use memblock directly
without any bootmem compatibility wrappers. As the result both bootmem and
nobootmem are removed.

The patchset survived allyesconfig builds on arm, armé4, i386, mips, nds32,
parisc, powerpc, riscv, s390 and x86 and most of the *_defconfig builds for
all architectures except unicore32.

The patchset is based on v4.19-rc3-mmotm-2018-09-12-16-40, so I needed a
small PSI fix from [1] for some of the builds.

I did my best to verify that the failures are not caused by my changes, but
I may have missed something. Most defconfig build failures I've seen were
caused by assembler being unhappy about unsupported opcode, wrong encoding
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Pages handling

Prior to version 2.6.11 the Linux paging model consisted of 3 indirection levels, next versions
introduced another level of indirections for a total of 4.

Linear Address

GLOBAL DIR UPPER DIR MIDDLE DIR

OFFSET

pud pmd pte

Page Table 0’

Y
Page Middle
Directory
— O

Page Upper [ RN

Directory . >
Page Global \ 0’
Directory A4 i L

Na=\a
3 ?*\_‘

Figure 2-12. The Linux paging model
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Splitting the address

For splitting the linear address there are three kinds of macros that can be used:

- SHIFT macros specify the length in bits mapped to each PT level

- MASK macros AND'd with an address mask out all the upper bits and they are often used
for understanding if an address is aligned to a given level within the page table

- SIZE macros reveal how many bytes are addressed by each entry at each level

Linear Address Linear Address
BITS_PER_LONG BITS_PER_LONG
- - — —
Global (PGD) Middle (PMD) Table (PTE) Offset Global (PGD) Middle (PMD) Table (PTE) Offset
PAGE_SHIFT PAGE_MASK : PAGE_SIZE
- - >l -
PMD_SHIFT PMD_MASK i PMD_SIZE
- > - - >
PGDIR_SHIFT ~_PGDIR_MASK PGDIR_SIZE
: S - VI‘ Lol
Figure 3.2. Linear Address Bit Size Macros Figure 3.3. Linear Address Size and Mask Macros

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.
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Configuring the PT

Those macros are declared in the following source files:

- arch/x86/include/asm/pgtable-2level types.h
- arch/x86/include/asm/pgtable-3level types.h
- arch/x86/include/asm/pgtable 64 types.h

With other kinds of macros like PTRS_PER_* which describe the number of entries in PTs

27 /*

28 * PGDIR_SHIFT determines what a top-level page table entry can map
29 */

30 #define PGDIR_SHIFT 30

31 #define PTRS_PER_PGD 4

32

33 /*

34 * PMD_SHIFT determines the size of the area a middle-level
35 * page table can map

36 */

37 #define PMD_SHIFT 21

38 #define PTRS_PER_PMD 512

39

40 @ /*

41 * entries per page directory level

42 */

43 #define PTRS_PER_PTE 512
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Page Table data structures

As already introduced earlier, swapper_pg_dir keeps the virtual memory address of the PGD
(PDE) portion of the kernel page table. The data structure is initialized at compile time,
depending on the memory layout defined for the kernel bootable image.

Any entry in the PGD is accessed with displacement, but the main types for defining page
table entries are explicitly defined, even if they are just unsigned integers:

typedef struct { unsigned long pte low; } pte_t;
typedef struct { unsigned long pmd; } pmd_t;
typedef struct { unsigned long pgd; } pgd_t;

This is done essentially for enforcing type protection and for supporting PAE (where additional
4 bits are used for addressing more than 4GB of RAM).

An additional structure is used for storing page protection bits: pgprot_t.
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(C and weak typing)

Remember that C language is weak typed, therefore the following code will compile and
execute with nor error or warning:

typedef unsigned long pgd _t;
typedef unsigned long pte_t;
pgd_t x; pte_t y;

X =1Y;

y = X5
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Bit fields V5l

12 #define _PAGE_BIT_PRESENT
13 #define _PAGE_BIT_RW

14  #define _PAGE_BIT_USER

15  #define _PAGE_BIT_PWT

16  #define _PAGE_BIT_PCD

17  #define _PAGE_BIT_ACCESSED
18  #define _PAGE_BIT_DIRTY

/* 1s present */

/* writeable */

/* userspace addressable */

/* page write through */

/* page cache disabled */

/* was accessed (raised by CPU) */
/* was written to (raised by CPU) */

AU WN PR O

https://elixir.bootlin.com/linux/vs.11.2/source/arch/x86/include/asm/pgtable types.h#L12
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Bit fields and Masks

Type casting macros are defined in asm/page.h which takes the previous types and returns the
relevant part of the struct. They are pte_val(), pmd_val(), pgd_val() and pgprot_val().
For reverse type casting we have __pte(), __pmd(), __pgd(), __pgprot().

In the following example code, a check if a page is present is carried out:

93 /*
94 * Create a page table and place a pointer to it in a middle page
95 * directory entry:
96 */
static pte_t * __init one_page_table_init(pmd_t *pmd)
{

if (!(pmd_val(*pmd) & _PAGE_PRESENT)) {
pte_t *page_table = (pte_t *)alloc_low_page();

paravirt_alloc_pte(&init_mm, __pa(page_table) >> PAGE_SHIFT);
set_pmd(pmd, __pmd(__pa(page_table) | _PAGE_TABLE));
BUG_ON(page_table != pte_offset_kernel(pmd, 0));

}

return pte_offset_kernel(pmd, 0);
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Different PD Entries

Different kind of page entries are again described with macros in
/arch/x86/include/asm/pgtable_types.h

#define _PAGE_TABLE \
(_PAGE_PRESENT | _PAGE_RW | \
_PAGE_USER | _PAGE_ACCESSED | \
_PAGE_DIRTY)

#define KERNPG_TABLE \
(_PAGE_PRESENT | _PAGE_RW | \
_PAGE_ACCESSED | _PAGE_DIRTY)
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Bootstrapping v2.6

As already introduced, startup_32() enables the Paging unit. While the kernel code is
compiled with base address at PAGE_OFFSET + 1MB, the kernel is actually loaded at the
beginning of physical memory. The initialization of kernel page tables begins at compile time,
statically defining an array called swapper_pg_dir (at 6x00101000), that establishes page
table entries for 2 pages of 4MB each, pgd and pgl. These two pointers covers the addresses
from 1MB to gMB but they are placed at PAGE_OFFSET + 1MB.

Process Address Space
0xc0000000 = PAGE_OFFSET (in x86)

User/Kernel 8MB Only Kernel

I—) 0x00000000 Physical Memory

8MB
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Bootstrapping

The 8MB of addressable memory must be addressed both in real mode than in protected
mode. For this reason, for that memory area the physical address must be equal to the virtual
one. This strateqgy is realized by declaring statically 4 entries in the swapper_pg_dir:

- Entry 0 and 0x300 (768) point to pg0
- Entry 1 and 0x301 (769) point to pg1l
These entries have set bits P,R/W,U/S and cleared A,D,PCD,PWD and Page Size.

Physical Memory 0x00100000 = TMB

0x00000000 swapper_pg_dir identity map

_

OXO07ffff e pg®
pgl 0x007fffff = 8MB

D ——————_—
-—

PAGE_OFFSET = 0xc0000000
#768 kernel map
OxcO7fffff 4769

—_—
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Bootstrapping V2.4

The Provisional Page Table with only two pages is set with the following assembly
instructions

movl S$Sswapper_pg_dir-0xc0000000,%eax
movl %eax,%cr3

movl %cr0,%eax

orl $SOx80000000,%eax

movl %eax,%cr0
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Bootstrapping V2.4

The rest of kernel page tables are initialized by paging_init() called by setup_arch().

pagetable_init

alloc_bootmem_low_pages

Figure 3.4. Call Graph: paging init ()

kmap_get_fixmap_pte

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.
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pagetable_init() Va4

The initialization of kernel page tables starts with function paging_init() that initializes the
necessary pages for addressing ZONE_DMA and ZONE_NORMAL from PAGE_OFFSET.

for (; 1 < PTRS_PER_PGD; pgd++, i++) {
vaddr = 1*PGDIR_SIZE; /* 1 is set to map from 3 GB */ The starting address Vaddr IS set

if (end && (vaddr >= end)) break; to start f GB b
pmd = (pmd_t *) pgd;/* pgd initialized to (swapper_pg_dir+i) */ 05 ar. rom 3_ €cause we are
mapping the virtual addresses of

for (j = 0; j < PTRS_PER_PMD; pmd++, j++) { kernel pageS.
pte_base = pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
for (k = 0; k < PTRS_PER_PTE; pte++, k++) { The kernel prefers to use 4MB
vaddr = 1*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE; pages if the CPU support them,
if (end && (vaddr >= end)) break; . . .
( ( >= end)) this for reducing the TLB miss rate
*pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL); and speeding up the address
¥ translation.
set_pmd(pmd, __ pmd(_KERNPG_TABLE + __pa(pte_base)));
}
} https://elixir.bootlin.com/linux/2.4.31/source/arch/i386/mm/init.c#L 205
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Page table filling in pagetable_init()

Bootstrapping

After pagetable_init() execution, all the ZONE_NORMAL and ZONE_DMA is directly mapped
in the kernel. Memory is not allocated, is just mapped. Memory is allocated only for the Page

Tables.

PAGE_OFFSET = 0xc0000000

—_—

0xcO7fffff

_

Physical Memory 0x00100000 = TMB

swapper_pg_dir

pgo
kernel map pgl 0x007fffff = 8MB
#768

s Indirection 896MB = End Of ZONE_NORMAL

levels

F*

HOHE OH OE B R

=]

Note that the identity map is removed by the function
zap_low_mappings() when no more needed




set_pmd() and __pa()/__va() V2.4

#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)

Parameters are:

- pmdptr, pointing to an entry of the PMD, of type pmd_t. The value to assign, of pmd_t
type is computed by using the macro

#tdefine _ pa(x)((unsigned long)(x)-PAGE_OFFSET)

Linux sets up a direct mapping from the physical address 0 to the virtual address PAGE_OFFSET
at 3GB on x86. The opposite can be done using the __va(x) macro.
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mk_pte_sys() V2.4

The function creates a page table entry given the physical address and the protection
metadata.

311 /* This takes a physical page address that is used by the remapping functions */

312 . #define mk_pte_phys(physpage, pgprot) __mk_pte((physpage) >> PAGE_SHIFT, pgprot)

https://elixir.bootlin.com/linux/2.4.22/source/include/asm-i386/pgtable.h#L 312

The input parameters are:

- Aframe physical address physpage, of type unsigned long
- Abit string pgprot for a PTE, of type pgprot_t

The macro builds a complete PTE entry, which includes the physical address of the target
frame. The return type is pte_t and it can be then assigned to one PTE entry.
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Loading the page table V2.4

344 [/

345 * paging_init() sets up the page tables - note that the first 8MB are
346 * already mapped by head.S.

347 .

348 * This routines also unmaps the page at virtual kernel address 0, so
349 * that we can trap those pesky NULL-reference errors in the kernel.
350 */

351 void __init paging_1init(void)

352 {

353 pagetable_init();

354

— » load_cr3(swapper_pg_dir);

365

365 » __flush_tlb_all();

367

368 #ifdef CONFIG_HIGHMEM

369 kmap_init();

370 #endif

371 zone_sizes_1init();

372 }
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|0ad_cr3() V2.4

184 ##define load_cr3(pgdir) \
185 asm volatile("movl %0,%%cr3": :"r" (__pa(pgdir)));

https://elixir.bootlin.com/linux/2.4.22/source/include/asm-i386/processor.h#L18

The load cr3 instruction is directly mapped to the assembly code which loads the address of

the PGD into CR3. -
V5.11

Latest versions of the kernel uses the paravirtualization scheme to map all of the basic
functions that for example regards the mmu, like writing CR3, creating PGD, PTE and so on.
So in modern kernel you will find load_cr3 mapped to

________ 1§§WM§ static inline void write_cr3(unsigned long Xx)
139 {
140 PVOP_VCALL1(mmu.write_cr3, x);
141  }

https://elixir.bootlin.com/linux/vs.12-rc2/source/arch/x86/include/asm/paravirt.h#1 138
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Final virtual kernel memory map

This is the final virtual memory map of the kernel, it has nothing to do with the physical

counterpart.
high_memory VMALLOC_START VMALLOC_END
Page tables \ yd /
created by Manoi % 2 = =
L. apping of all ] 85 =
pagetable_init() —— physical page / VMALLOC ) 2@ | 3
and allocated with frames / % s @
7 V)
bootmem
\ 8 MiBI | | . / /
~ _PAGE_OFFSET PKMAP_BASE
0xC000000 FIXADDR_START 4 GiB

Figure 3-15: Division of the kernel address space on IA-32 systems.

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.

As you can see the kernel may only address only 8g6MB because the last 128MB are reserved:
VMALLOC - virtual contiguous memory areas that are not contiguous in physical

memory, especially for user processes.
- persistent mappings - used for mapping highmem pages
- fixmaps - virtual addresses customly mapped to selectable physical frames
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Implicit and explicit operations

The degree of automation in the management process of TLB entries depends on the
hardware architecture. Kernel hooks exist for explicit management of TLB operations
(mapped at compile time to nops in case of fully-automated TLB management)

On x86, automation is only partial: automatic TLB flushes occur upon updates of the CR3

register (e.g. page table changes) but Changes inside the current page table are not
automatically reflected into the TLB.
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TLB Relevant events

Scale classification

- global: dealing with virtual addresses accessible by every CPU/core in
real-time-concurrency
- local: dealing with virtual addresses accessible in timesharing concurrency

Typology classification

- Virtual to physical address remapping
- Virtual address access rule modification (read only vs write access)

The typical management is TLB implicit renewal via flush operations
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TLB Flush Costs

Direct costs

- the latency of the firmware level protocol for TLB entries invalidation (selective vs
non-selective)
- thelatency for cross-CPU coordination in case of global TLB flushes

Indirect costs

- TLB renewal latency by the MMU firmware upon misses in the translation process of
virtual to physical addresses and this cost depends on the amount of entries to be refilled

- Tradeoff vs TLB APl and software complexity inside the kernel (selective vs non-selective
flush/renewal)
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Linux full TLB flush

929 void flush_t1lb_all(void)

930 {
931 count_vm_t1lb_event(NR_TLB_REMOTE_FLUSH);
932 on_each_cpu(do_flush_tlb_all, NULL, 1);
933 }

https://elixir.bootlin.com/linux/vs.12-rc2/source/arch/x86/mm/tlb.c#Lg29

This flushes the entire TLB on all processors running in the system (most expensive TLB flush
operation). After it completes, all modifications to the page tables are globally visible. This is
required after the kernel page tables, which are global in nature, have been modified.
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https://elixir.bootlin.com/linux/v5.12-rc2/source/arch/x86/mm/tlb.c#L929

Linux TLB Flush V2.4

38  #define __flush_tlb() \
39 do { \
40 unsigned int tmpreg; \
41 N
42 _asm__ _ volatile ( \
43 "movl %%cr3, %0; # flush TLB \n" \
44 "movl %0, %%cr3; Xn™ \
45 : "=r" (tmpreg) \
46 :: "memory"); N
47 } while (0)

48

49 V&

50 * Global pages have to be flushed a bit differently. Not a real

51! * performance problem because this does not happen often.

52 s

53 #define __ flush_tlb_global() \
54 do { X
55 unsigned int tmpreg; \
56 X
57 __asm__  volatile ( \
58 "movl %1, %%cr4; # turn off PGE \n" \
59 "movl %%cr3, %0; # flush TLB \n* \
60 "movl %0, %%cr3; \n* X
61 "movl %2, %%cr4; # turn PGE back on \n" AN
62 : "=&r" (tmpreg) N
63 :"r" (mmu_cr4_features & ~X86_CR4_PGE), \
64 "r" (mmu_cr4_features) \
65 : "memory"); \
66 } while (0)

67



Linux partial TLB flush

void flush_tlb_mm(struct mm_struct *mm)

This flushes all TLB entries related to a portion of the userspace memory context. On some

architectures (e.g. MIPS), this is required for all cores (usually it is confined to the local
processor).

This is called only after an operation affecting the entire address space:
- when cloning a process with a fork()
- when, in general, there is an interaction with the Copy-On-Write protection

void flush_tlb_page(struct vm_area_struct *vma, unsigned long a);

This API flushes a single page from the TLB. The two most common uses of it are to flush the
TLB after a page has been faulted in or has been paged out.
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https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/flush_tlb_mm_range
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/mm_struct
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/mm
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/flush_tlb_page
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/vm_area_struct
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/vma

Linux partial TLB flush

void flush_tlb_range(struct mm_struct *mm, unsigned long start,unsigned long end);

This flushes all entries within the requested user space range for the mm context. This is used
after a region has been moved (mremap()) or when changing permissions (mprotect()). This
APl is provided for architectures that can remove ranges of TLB entries quicker than iterating
with flush_tlb_page().

void flush_tlb_pgtables(struct mm_struct *mm, unsigned long start,
unsigned long end);

Used when the page tables are being torn down and free'd. Some platforms cache the lowest
level of the page table, which needs to be flushed when the pages are being deleted (e.g.
Sparc64). This is called when a region is being unmapped and the page directory entries are
being reclaimed.
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https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/flush_tlb_mm_range
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/mm_struct
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/mm
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/flush_tlb_mm_range
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/mm_struct
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/mm

Linux partial TLB flush

void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep);

Only called after a page fault completes. It tells that a new translation now exists at pte for
the virtual address addr. Each architecture decides how this information should be used.

For example, Sparc64 uses the information to decide if the local CPU needs to flush its data
cache. In some cases it is also used for preloading TLB entries
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https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/update_mmu_cache
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/vm_area_struct
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/vma
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/pte_t
https://elixir.bootlin.com/linux/v5.12-rc2/C/ident/ptep

2.3.6

2. Step 4: Kernel Boot
3. start_kernel()

Final Operations and Recap
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Kernel Boot Flow

Time Flow
|
[ CPU in Protected Mode, paging enabled. Architecture-inde pendent kernel, mostlyj\
PID zero
initf)r:\[z:irfeé%w ( |n|tIFr":x[;|rzli:r‘1132 arch/x86/kernel/process_32.c:180
AT cpu_idle()
start_kernel() L rest_init() Kemelidla thiaad

New kernel thread

PID 1 (
PID 1 ke PID 1
init/
m:(t/maln €:808 in c-769 kernel_execve
ernel_init() init_post() /sbin/init
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Main operations

The main operations carried out by start kernel() (init/main.c)are:

1.
2.

w

© N Ok

setup_arch() thatinitializes the architecture
build_all_zonelists() - builds the memory zones

page_alloc_init() / mem_init() - the steady state allocator (Buddy System) is initialized
and the boot one removed

sched_init() - initializes the scheduler
trap_init() - the final IDT is built
time_init() - the system time is initialized
kmem_cache_init() - the slab allocator is initialized
arch_call_rest_init() / rest init() - preparesthe environment
a. kernel_thread(kernel init) - startsthe kernel thread for process 1 is created

i. kernel init freeable() -> prepare namespace() -> initrd_load() - mounts
the initramfs, a temporary filesystem used to start the init process

ii. run_init process() -> kernel_execve() - Execute /bin/init
b. cpu startup entry()-> do idle() - starts the idle process
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https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L849
https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L675
https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L1417
https://elixir.bootlin.com/linux/v5.11.2/source/init/main.c#L1498
https://elixir.bootlin.com/linux/v5.11.2/source/init/do_mounts.c#L569
https://elixir.bootlin.com/linux/v5.11.2/C/ident/run_init_process
https://elixir.bootlin.com/linux/v5.11.2/source/kernel/sched/idle.c#L391
https://elixir.bootlin.com/linux/v5.11.2/source/kernel/sched/idle.c#L261

Final GDT

Linux’s GDT Segment Selectors Linux’s GDT Segment Selectors
null 0x0 1SS 0x80
reserved LDT 0x88
reserved PNPBIOS 32-bit code 0x90
reserved PNPBIOS 16-bit code 0x98
not used PNPBIOS 16-bit data 0xa0
not used PNPBIOS 16-bit data 0xa8
TLS #1 0x33 PNPBIOS 16-bit data 0xbo
TLS #2 0x3b APMBIOS 32-bit code 0xb8
TLS #3 0x43 APMBIOS 16-bit code 0xco
reserved APMBIOS data 0xc8
reserved not used
reserved not used
kernel code 0x60 (__KERNEL_CS) not used
kernel data 0x68 (__KERNEL_DS) not used
user code 0x73 (__USER_CS) not used
user data 0x7b (__USER_DS) double fault TSS 0xf8

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.
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391 void cpu_startup_entry(enum cpuhp_state state)

392 {
393 arch_cpu_1idle_prepare();
I d I e P ro c e S S 394 cpuhp_online_idle(state);
395 while (1)
/* 396 do_idle();

* Generic idle loop implementation
*

* Called with polling cleared.
*/
static void do_idle(void)

{

int cpu = smp_processor_id();

while (!need_resched()) {

rmb();
675 oo
local_irq_disable(); 676 * Called from the generic idle code.
677 L%
if (cpu_idle_force_poll || tick_check_broadcast_expired- > zOld arch_cpu_idle(void)

tick_nohz_idle_restart_tick();

cpu_idle_poll():; i AEFRIPRERL. g Paravirt. (newer kernels)
} else { 681 &
cpuidle_idle_call();

s ”“iZS'f static inline voild arch_safe_halt(void)
arch_cpu_idle_exit(); e,
) 150 PVOP_VCALLO(irq.safe_halt);

154!
schedule_idle(); }

static inline void native_halt(void) {
asm volatile("hlt": : :"memory");

2. Step 4: Kernel Boot = 2.3 startup_kernel() = 2.3.6 Final Operations and Recap


https://elixir.bootlin.com/linux/v5.11.2/source/kernel/sched/idle.c#L391

End of the Kernel Boot

The idle loop is the ending of the kernel booting process.

Since the very first long jump 1jmp $0xf000,50xe05b at the reset vector at FO0O: FFFO which
activated the BIOS, we have worked hard to setup a system which is spinning forever.

This is the end of the "romantic" Kernel boot procedure: we infinitely loop into a hlt instruction
or ...
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