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Memory Management

3. Memory Management ⇒ 3.1 Memory Representation

During the boot, the Kernel relies on a temporary memory manager:

- it's compact and not very efficient
- The rationale is that there are not many memory requests during the boot

At steady state the boot allocator can no more be used, because:

- allocations/deallocations are frequent
- memory must be used wisely, accounting for hardware performance

We must also discover how much physical memory is available, and how it is organized.
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NUMA
As anticipated, in modern computer architectures allows to see memory organized in nodes. 
This because memory access latency heavily depends on the distance between the CPU and 
the memory banks. This kind of memory addressing is called Non-Uniform Memory Access 
(NUMA).

In the Linux Kernel each node is represented by the struct pg_data_t and all nodes are kept 
in a NULL terminated linked list called pgdat_list. Each node is linked to the other with the 
field pg_data_t->node_next. In UMA architectures we only one pg_data_t referenced by 
contig_page_data. 

53. Memory Management ⇒ 3.1 Memory Representation

v2.4



NUMA

63. Memory Management ⇒ 3.1 Memory Representation

CPU Sockets

Possible node0 
for CPU0

CPU0



pg_data_t

73. Memory Management ⇒ 3.1 Memory Representation

https://elixir.bootlin.com/linux/v5.11/source/include/linux/mmzone.h#L705 

typedef struct pglist_data {
zone_t node_zones[MAX_NR_ZONES];
zonelist_t node_zonelists[GFP_ZONEMASK+1];
int nr_zones;
struct page *node_mem_map;
unsigned long *valid_addr_bitmap;
struct bootmem_data *bdata;
unsigned long node_start_paddr;
unsigned long node_start_mapnr;
unsigned long node_size;
int node_id;
struct pglist_data *node_next;

} pg_data_t;

https://elixir.bootlin.com/linux/2.4.31/source/include/linux/mmzone.h#L166

v2.4
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https://elixir.bootlin.com/linux/v5.11/source/include/linux/mmzone.h#L705


Zones

83. Memory Management ⇒ 3.1 Memory Representation

Each node is divided in a number of blocks called zones, which represents ranges within the 
memory. A zone is described by the struct zone_struct typedef as zone_t. On x86 there are 
three kinds of zone:

- ZONE_DMA is directly mapped by the kernel in the lower part of memory and it is destined 
to ISA (Industry Standard Architecture) devices, in x86 first 16 MB

- ZONE_NORMAL is directly mapped by the kernel into the upper region of the linear address 
space, in x86 from 16MB to 896MB

- ZONE_HIGHMEM is the remaining available memory and it is not directly mapped by the 
kernel, in x86 from 896MB to end of memory.

The Page table is usually located at the top beginning of ZONE_NORMAL. To access memory 
between 1GB and 4GB the kernel temporarily maps pages from high memory to 
ZONE_NORMAL. 

ZONE_NORMAL is fixed in size, addressing 16GiB can require 176MB of data structures!



Please remind that for example in x86_64 if we have only 2GB of RAM, all the RAM will be 
ZONE_DMA32. If instead we have 16GB the kernel will allocate memory by following possible 
flags you pass and the available memory type. See also /proc/pagetypeinfo 

Zones

93. Memory Management ⇒ 3.1 Memory Representation

x86 x86_64

ZONE_DMA First 16MB First 16MB

ZONE_DMA32 - First 4GB

ZONE_NORMAL From 16MB to 896MB From 4GB to end

ZONE_HIGHMEM From 896MB to end -

ZONE_MOVABLE* User Defined User Defined

Comparison

v5.11

https://www.kernel.org/doc/html/latest/admin-guide/mm/memory-hotplug.html


Zones

103. Memory Management ⇒ 3.1 Memory Representation

Physical Memory on x86
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0xc0000000 = PAGE_OFFSET (in x86)

Process Virtual Address Space on x86
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Zones Initialization

113. Memory Management ⇒ 3.1 Memory Representation

Zones are initialized after the kernel page tables have been fully set up by paging_init(). The 
goal is to determine what parameters to send to:

- free_area_init() for UMA machines
- free_area_init_node() for NUMA machines

The initialization grounds on PFNs max PFN is read from BIOS e820 table.



zone_t

123. Memory Management ⇒ 3.1 Memory Representation

v2.4

https://elixir.bootlin.com/linux/2.4.31/source/include/linux/mmzone.h#L39 

typedef struct zone_struct {
spinlock_t lock;
unsigned long free_pages;
zone_watermarks_t watermarks[MAX_NR_ZONES];
unsigned long need_balance;
unsigned long nr_active_pages,nr_inactive_pages;
unsigned long nr_cache_pages;
free_area_t free_area[MAX_ORDER];
wait_queue_head_t *wait_table;
unsigned long wait_table_size;
unsigned long wait_table_shift;
struct pglist_data *zone_pgdat;
struct page *zone_mem_map;
unsigned long zone_start_paddr;
unsigned long zone_start_mapnr;
char *name;
unsigned long size;
unsigned long realsize;

} zone_t;

https://elixir.bootlin.com/linux/2.4.31/source/include/linux/mmzone.h#L39


Zone Watermarks

133. Memory Management ⇒ 3.1 Memory Representation

When available memory in the system is low, the 
pageout daemon kswapd is woken up to start freeing 
pages. Each zone has three watermarks called pages 
low, pages min and pages high, which help track how 
much pressure a zone is under.

- pages low When the pages low number of free 
pages is reached, kswapd is woken up by the 
buddy allocator

- pages min When pages min is reached, the 
allocator will do the kswapd work in a 
synchronous fashion

- pages high After kswapd has been woken to 
start freeing pages, it will not consider the zone 
to be “balanced” when pages high pages are 
free

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: 
Prentice Hall, 2004.



Nodes, Zones and Pages

143. Memory Management ⇒ 3.1 Memory Representation

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.



Core Map
The Core Map is an array of mem_map_t structures defined in include/linux/mm.h and kept in 
ZONE_NORMAL. The struct page is associated to every physical frame available in the system.

153. Memory Management ⇒ 3.1 Memory Representation

typedef struct page {
struct list_head list;
struct address_space *mapping;
unsigned long index;
struct page *next_hash;
atomic_t count;
unsigned long flags;
struct list_head lru;
struct page **pprev_hash;
struct buffer_head * buffers;

#if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
void *virtual;

#endif /* CONFIG_HIGMEM || WANT_PAGE_VIRTUAL */
} mem_map_t;

List head to which the page belongs. 
A page may belong to different lists

Address space (e.g. inode) and 
index to which the page belongs

Usage counter, if zero 
the page may be free’d

Page flags:
#define PG_locked 0
#define PG_referenced 2
#define PG_uptodate 3
#define PG_dirty 4
#define PG_lru 6
#define PG_reserved 14

v2.4



Core Map

163. Memory Management ⇒ 3.1 Memory Representation

How to manage flags

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.

v2.4



Core Map

173. Memory Management ⇒ 3.1 Memory Representation

On UMA

Initially we have the core map pointer, mem_map defined in mm/memory.c. The pointer 
initialization is done within the function free_area_init(). After the initialization each entry 
will keep the value 0 within the count field and the value 1 into flags for the PG_RESERVED flag. 
Therefore we do not have any virtual reference to the frame and the frame is reserved. The 
un-reserving is done by the mem_init() function.

On NUMA

There’s not a global mem_map array since every node keeps its own map in its own memory. 
The map is pointed by pg_data_t -> node_mem_map but the map organization is the same. 
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Zoned Page Frame Allocator
The kernel subsystem that handles the memory allocation for contiguous page frames is 
called zoned page frame allocator.

193. Memory Management ⇒ 3.2 Buddy System

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

Receives the 
allocation requests 
for dynamic 
memory, then it 
searches a zone 
for performing the 
allocation

Manages the 
page frames 
allocation inside 
each zone

Small cache for 
speeding up 
allocation 
requests for 
single page 
frames

v2.4



Fragmentation
When allocating groups of contiguous page frames, the algorithm that we need to design, 
must deal with a well-know problem called External Fragmentation.We allocate #1, #2, #3, 
#4 and #5 consecutively, then we deallocate #2 and #4. Where can we put a new allocation 
request for a size of #2 + #4 for example? We have that memory available but it is not 
contiguous.

203. Memory Management ⇒ 3.2 Buddy System

#1 #3 #5#2 #4

?



Fragmentation
There are two approaches, in general to solve the problem:

1. use the paging circuitry to map group of non-contiguous pages into intervals of 
contiguous linear addresses

2. develop a suitable technique to keep track of the existing blocks of free contiguous page 
frames, avoiding as much as possible the need to split up large free block to satisfy a 
request for a smaller one

The Linux kernel prefers the second, for 3 good reasons:

- in some cases we really need contiguous pages, not only contiguous linear addresses 
(e.g. DMA)

- frequent page table modifications lead to higher average memory access times, e.g. 
flushing the TLB

- large chunks of physical memory can be accessed with 4MB pages, reducing TLB miss 
and speeding up access times

213. Memory Management ⇒ 3.2 Buddy System



Buddy System
The technique followed by the Linux kernel for solving external fragmentation is based on the 
well-known buddy system algorithm. The Buddy System keeps all the free pages grouped into 
11 lists of blocks that contain groups of 1,2,4,8,16,32,64,128,256,512 and 1024 contiguous 
frames. 1024 page frames correspond to 4MB of memory.

The data structures used by the algorithm are:

- the mem_map array, that is the core map that we already discussed. Actually, each zone is 
concerned with a subset of the mem_map elements

- an array of eleven elements of free_area_t, one for each group size. This array is 
stored in the free_area field of the zone descriptor and contains the linked list of free 
page blocks and a pointer to a bitmap (*map), in which each bit represents a pair of 
buddies. The bit is set to 0 when both buddies are full or free, and 1 when only one 
buddy is used.

223. Memory Management ⇒ 3.2 Buddy System

v2.4



Buddy System

233. Memory Management ⇒ 3.2 Buddy System

Data Structures

v2.4

https://elixir.bootlin.com/linux/2.4.31/source/include/linux/mmzone.h#L30 

https://elixir.bootlin.com/linux/2.4.31/source/include/linux/mmzone.h#L78 

https://elixir.bootlin.com/linux/2.4.31/source/include/linux/list.h#L18 

https://elixir.bootlin.com/linux/2.4.31/source/include/linux/mmzone.h#L30
https://elixir.bootlin.com/linux/2.4.31/source/include/linux/mmzone.h#L78
https://elixir.bootlin.com/linux/2.4.31/source/include/linux/list.h#L18


Buddy System

243. Memory Management ⇒ 3.2 Buddy System

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.



Buddy System

253. Memory Management ⇒ 3.2 Buddy System

v2.4

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.



Buddy System
Allocation

Suppose that you want to allocate 256 contiguous page frames, the algorithm check if there is 
a free 256 block, if not it checks in the list of 512. If it exists it allocates 256 pages for satisfying 
the request and the other 256 are added into the list of free 256-page-frame blocks. If there is 
no free 512-page block the kernel looks for next larger block, 1024. If it exists, it allocates 256 
of the 1024 page frames to satisfy the request, then inserts the first 512 of the remaining 768 
into the list of free 512-page-frame blocks and the last 256 pages frames into the list of free 
256-page-frame blocks.

Deallocation

When freeing memory, the kernel attempts to merge a pair of buddy blocks of size b together 
into a single block of size 2b. Only if (i) they have the same size, (ii) they are contiguous, (iii) 
the physical address of the first block is multiple of 2 ⨉ b ⨉ 212.

During the allocation and deallocation interrupts must be disabled and this is node by using a 
particular kind of spinlock (we will see later in the course).

263. Memory Management ⇒ 3.2 Buddy System

v2.4



Buddy System

273. Memory Management ⇒ 3.2 Buddy System

https://www.programmersought.com/article/96354519239/ 

https://www.programmersought.com/article/96354519239/


Retrieving a page from free_area list
The function rmqueue() is used to find a free block in a zone.

283. Memory Management ⇒ 3.2 Buddy System

v2.4

https://elixir.bootlin.com/linux/2.4.31/source/mm/page_alloc.c#L242 

https://elixir.bootlin.com/linux/2.4.31/source/include/linux/list.h#L187 

The list_entry macro allows you to retrieve the 
entry in the linked list that has the ptr you specify.

In this case it is used for retrieving the struct page 
from the free_area list

https://elixir.bootlin.com/linux/2.4.31/source/mm/page_alloc.c#L242
https://elixir.bootlin.com/linux/2.4.31/source/include/linux/list.h#L187


The expand() function called by rmqueue() add the free block to the zone by using the 
function/macro (in other kernel versions) list_add().

Adding a page to free_area list

293. Memory Management ⇒ 3.2 Buddy System

v2.4
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Concept

3. Memory Management ⇒ 3.3 High Memory

On x86 the kernel directly maps only ZONE_DMA and ZONE_NORMAL for a total of 896MB, but 
obviously machines started to have more than 4GB of RAM. Due to the fixed limit 3GB/1GB of 
the address space, the kernel cannot map directly more than 896MB, for this reason all the 
memory mapping that exceeds that size are temporarily and they refer to the High Memory 
concept.

31

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.

Mapping area of 
HighMem in kernel the 
virtual address space



PKMap
The kernel virtual address spaces from address PKMAP_BASE to FIXADDR_START is reserved 
for a PKMap, namely a Persistent Kernel Map located near the end of the address space. 
There are about 32MB of page table space for mapping pages from high memory into the 
usable space.

For mapping pages, a simple PT of 1024 entries is stored at the beginning of the PKMap area 
to allow the temporary (very short time) mapping of up to 1024 pages from high mem with 
functions kmap() and kunmap(). That page is initialized at the end of pagetable_init() 
function.

The current state of page table entries is managed by a simple array called pkmap_count with 
LAST_KMAP (= PTRS_PER_PTE = 1024 or 512 when PAE is enabled) entries.

323. Memory Management ⇒ 3.3 High Memory



pkmap_count

333. Memory Management ⇒ 3.3 High Memory

https://elixir.bootlin.com/linux/2.4.31/source/mm/highmem.c#L33 

v2.4

https://elixir.bootlin.com/linux/2.4.31/source/mm/highmem.c#L33


APIs

343. Memory Management ⇒ 3.3 High Memory

- kmap() it permits a short-duration mapping of a single page, requires global 
synchronization

- kmap_atomic() permits a very short duration mapping of a single page but it is 
restricted to the CPU that issued it and the task must be on that CPU until the 
termination, usage is discouraged

- kunmap() decrements the associated page counter. When the counter is 1 the mapping is 
not needed anymore but the CPU has still cached that mapping, for this reason TLB must 
be flushed manually

- kunmap_atomic() unmaps a page that has been mapped atomically

v2.4



Memory Finalization

3.4

Advanced Operating Systems and Virtualization

2. Memory Management



The finalization of memory 
management is done within the 
function mem_init() which is in 
charge of destroying the bootmem 
allocator, calculating the 
dimensions of low and high 
memory and printing out an 
informational message to the user. 

On x86 the principle function called 
by mem_init is 
free_pages_init().

Reclaiming Boot Memory

363. Memory Management ⇒ 3.4 Memory Finalization

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.



free_all_bootmem_core
The free_all_bootmem is called by each NUMA node and in the end it calls 
free_all_bootmem_core which does the following.

For each unallocated pages known to the allocator of that node 

- clears the PG_RESERVED bit
- set usage count to 1
- call __free_pages() so that the buddy allocator can build its free lists

Free all pages used for the bitmap and give them to the buddy allocator.

373. Memory Management ⇒ 3.4 Memory Finalization



free_all_bootmem_core

383. Memory Management ⇒ 3.4 Memory Finalization

v2.4

https://elixir.bootlin.com/linux/2.4.31/source/mm/bootmem.c#L245 

https://elixir.bootlin.com/linux/2.4.31/source/mm/bootmem.c#L245


Finalizing

393. Memory Management ⇒ 3.4 Memory Finalization

When free_all_bootmem returns all the pages in ZONE_NORMAL have been given to the buddy 
allocator, the rest of free_pages_init initializes the high memory.

In particular, one_highpage_init() is called for every page between highstart_pfn and 
highend_pfn and it simply:

- clears the PG_RESERVED flag
- set the PG_HIGHMEM flag
- set the count to 1
- calls __free_pages() to release it to the Buddy Allocator

At this point, the boot memory allocator is no longer required, and the buddy allocator is the 
main physical page allocator for the system. Note also that not only is the data for the boot 
allocator removed, but also all code that was used to bootstrap the system. 
free_all_bootmem() is marked by __init(). 

https://elixir.bootlin.com/linux/2.4.31/source/arch/i386/mm/init.c#L450
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Allocation Contexts

3. Memory Management ⇒ 3.5 Steady-state memory allocation

In general, in a kernel, we can recognize two kinds of memory allocation contexts at 
steady-state.

- Process Context, that refers to an allocation that has been requested through a system 
call, typical of userspace processes.

Within this context, if the request cannot be served, the process is put on wait by 
following also a priority-based approach

-  Interrupt Context , that refers to an allocation due to a interrupt handler

Within this context, if the request cannot be served there’s no waiting time and the 
approach is not priority based

41



Physical Frame Allocation APIs
Within the kernel, the following 
functions for memory allocation 
can be used, they are declared 
at <linux/malloc.h>. 

Memory allocation requests 
created with these functions 
are obviously managed by the 
Buddy Allocator.

423. Memory Management ⇒ 3.5 Steady-state memory allocation

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.



Physical Frame Deallocation API

433. Memory Management ⇒ 3.5 Steady-state memory allocation

Remember that within the Buddy Allocator, the caller needs to remember the allocated size 
and the address. If you pass a wrong void* addr to free_page() you could corrupt the 
kernel.

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.



Flags

443. Memory Management ⇒ 3.5 Steady-state memory allocation

Gorman, Mel. Understanding the Linux virtual memory manager. 
Upper Saddle River: Prentice Hall, 2004.



Flags

453. Memory Management ⇒ 3.5 Steady-state memory allocation

High priority

Can sleep

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.



NUMA Policies

463. Memory Management ⇒ 3.5 Steady-state memory allocation

When we have a NUMA architecture, the function __get_free_pages() calls alloc_page_node() 
specifying a NUMA policy. A NUMA policy determines from which node the memory will be 
allocated. This support was added in kernel 2.6. 

set_mempolicy()

The function set_mempolicy sets the NUMA memory policy of the calling process.

Where mode can be:

- MPOL_DEFAULT allocate on node of the CPU that issued the command
- MPOL_BIND strictly allocate to the specified nodemask
- MPOL_INTERLEAVE interleaves allocation to the specified nodemask nodes 
- MPOL_PREFERRED sets the preferred node(s) for the allocation as nodemask

nodemask points to a bit mask of node IDs that contains up to maxnode bits

#include <numaif.h>
int set_mempolicy(int mode, unsigned long *nodemask, unsigned long maxnode);

https://www.kernel.org/doc/html/latest/admin-guide/mm/numa_memory_policy.html
https://linux.die.net/man/2/set_mempolicy

https://www.kernel.org/doc/html/latest/admin-guide/mm/numa_memory_policy.html
https://linux.die.net/man/2/set_mempolicy


NUMA Policies
mbind()

The function mbind() assigns a NUMA policy to the specified set of memory addresses.

move_pages()

This function moves the specified pages of the process pid to the memory nodes specified by 
nodes. The result of the move is reflected in status. The flags parameter indicates constraints 
on the pages to be moved.

473. Memory Management ⇒ 3.5 Steady-state memory allocation

#include <numaif.h>
long mbind(void *addr, unsigned long len, int mode, 

     const unsigned long *nodemask, unsigned long maxnode, unsigned flags);

#include <numaif.h>
long move_pages(int pid, unsigned long count, 

    void **pages, const int *nodes, int *status, int flags);
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Frequent Allocations and Deallocations
In general, within the kernel, fixed size data structures are very often allocated and released. 
The Buddy System that we presented earlier clearly does not scale:

- this is a classic case of frequent logical contention
- the buddy system on each NUMA node is protected by a (spin)lock
- internal fragmentation can rise too much

Example

Allocation and release of page tables requires a frequent allocation and deallocation of the 
same fixed size structures. The functions that allows us to create page tables like

- pgd_alloc(), pmd_alloc() and pte_alloc()
- pgd_free(), pmd_free() and pte_free()

They relies on Kernel-level fast allocators.

493. Memory Management ⇒ 3.5 Steady-state memory allocation ⇒ 3.5.1 Fast Allocations & Quicklists



Fast Allocators
There are two fast allocators in the kernel:

- quicklists, used only for paging
- SLAB Allocator, used for other buffers. There are three implementations of the SLAB 

allocator:
- the SLAB: implemented around 1994
- the SLUB: the unqueued SLAB allocator, default since 2.6.23
- the SLOB: Simple List Of Blocks, if the SLAB is not enabled this is the fallback

503. Memory Management ⇒ 3.5 Steady-state memory allocation ⇒ 3.5.1 Fast Allocations & Quicklists



Quicklists
Quicklists are used for implementing the page table cache. For the three functions 
pgd/pmd/pte_alloc() we have three quicklists pgd/pmd/pte_quicklist per CPU. Each 
architecture implements its own version of quicklists but the principle is the same. 

One method is the one of using the LIFO (Last-In First-Out) approach. During the allocation, 
one page is popped off the list, and during free, one is placed as the new head of the list. This 
is done while keeping a count of how many pages are used in the cache.

If a page is not available in the cache, then it will be allocated by using the Buddy System. 
Obviously, a large amount of free pages can exist in these caches, for this reason they are 
pruned by using a watermarking strategy.

 
513. Memory Management ⇒ 3.5 Steady-state memory allocation ⇒ 3.5.1 Fast Allocations & Quicklists



quicklist_alloc

523. Memory Management ⇒ 3.5 Steady-state memory allocation ⇒ 3.5.1 Fast Allocations & Quicklists

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/quicklist.h#L33 

v2.6

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/quicklist.h#L33


likely() and unlikely()

533. Memory Management ⇒ 3.5 Steady-state memory allocation ⇒ 3.5.1 Fast Allocations & Quicklists

The likely() and unlikely() are used for the branch prediction mechanism of the CPU. 
Branch prediction allows to optimize the CPU pipeline and increasing the performance of the 
CPU. The likely instruction will tell the compiler that the if condition will likely hit and the CPU 
can prepare the pipeline for that jump.

https://en.wikipedia.org/wiki/Branch_predictor 

The converse is for unlikely. When an likely branch 
will not be hit then the entire CPU pipeline will be 
flushed. This will have an impact on performances 
but it will rarely happen.

https://en.wikipedia.org/wiki/Branch_predictor
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Overview

553. Memory Management ⇒ 3.5 Steady-state memory allocation ⇒ 3.5.2 SLAB Allocator

The general idea behind the SLAB allocator is 
to have caches of commonly used objects 
kept in a initialized state available for use by 
the kernel.

The SLAB allocator consists of a variable 
number of caches, linked together by a doubly 
linked list called cache chain. Every cache 
manages objects of particular kind (e.g. 
mm_struct). Each cache maintains a block of 
contiguous pages in memory called slabs. 

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.



Aims
The purpose of the SLAB allocator is threefold:

1. allocating small blocks of memory to help eliminate internal fragmentation caused by 
the Buddy System

2. caching commonly used blocks so that the system does not wait time allocating, 
initializing and destroying object

3. better usage of L1 and L2 caches by aligning objects 

Aim #1

Two sets of caches are maintained for allocating objects from 25 (32KB) to 217 (131’072KB) 
bytes. One for DMA and one for standard allocation. These caches are called size-N (or 
size-N(DMA)), where N is the size of the allocation and they are allocated with the function 
kmalloc(). 

563. Memory Management ⇒ 3.5 Steady-state memory allocation ⇒ 3.5.2 SLAB Allocator



Aims
Aim #2

When a new slab is created a number of objects are packed into it and initialized using a 
constructor if available. When an object is free’d, it is left in a initialized state so the next 
allocation will be faster

Aim #3 - Coloring

If there is space left over after objects packed into a slab, the remaining space is used to color 
the slab. Coloring is used for having objects in different line of CPU caches which helps ensure 
that objects from the same slab cache will unlikely flush each other.
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Caches
There is one cache for each object to be cached (see /proc/slabinfo).  
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slabinfo - version: 2.1
# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> : tunables <limit> <batchcount> 
<sharedfactor> : slabdata <active_slabs> <num_slabs> <sharedavail>
inode_cache        35086  35086    608   53    8 : tunables    0    0    0 : slabdata    662    662      0
dentry            228365 228438    192   42    2 : tunables    0    0    0 : slabdata   5439   5439      0
vm_area_struct     98901  99240    200   40    2 : tunables    0    0    0 : slabdata   2481   2481      0
mm_struct            780    780   1088   30    8 : tunables    0    0    0 : slabdata     26     26      0
files_cache         1104   1104    704   46    8 : tunables    0    0    0 : slabdata     24     24      0
pid                 3424   3424    128   32    1 : tunables    0    0    0 : slabdata    107    107      0
dma-kmalloc-8k         0      0   8192    4    8 : tunables    0    0    0 : slabdata      0      0      0
...
kmalloc-rcl-8k         0      0   8192    4    8 : tunables    0    0    0 : slabdata      0      0      0
...
kmalloc-8k           436    436   8192    4    8 : tunables    0    0    0 : slabdata    109    109      0
kmalloc-4k          1376   1376   4096    8    8 : tunables    0    0    0 : slabdata    172    172      0
kmalloc-2k         14654  14928   2048   16    8 : tunables    0    0    0 : slabdata    933    933      0
kmalloc-1k          6532   6816   1024   32    8 : tunables    0    0    0 : slabdata    213    213      0
kmalloc-512        37177  37888    512   32    4 : tunables    0    0    0 : slabdata   1184   1184      0
kmalloc-256        14656  14656    256   32    2 : tunables    0    0    0 : slabdata    458    458      0
kmalloc-192        12508  12852    192   42    2 : tunables    0    0    0 : slabdata    306    306      0
kmalloc-128         3998   4256    128   32    1 : tunables    0    0    0 : slabdata    133    133      0
kmalloc-96         16884  16884     96   42    1 : tunables    0    0    0 : slabdata    402    402      0
kmalloc-64         41614  43776     64   64    1 : tunables    0    0    0 : slabdata    684    684      0
kmalloc-32         62336  62336     32  128    1 : tunables    0    0    0 : slabdata    487    487      0
kmalloc-16         39424  39424     16  256    1 : tunables    0    0    0 : slabdata    154    154      0
kmalloc-8          25600  25600      8  512    1 : tunables    0    0    0 : slabdata     50     50      0
kmem_cache_node      832    832     64   64    1 : tunables    0    0    0 : slabdata     13     13      0
kmem_cache           448    448    256   32    2 : tunables    0    0    0 : slabdata     14     14      0



Caches
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kmem_cache_node

https://elixir.bootlin.com/linux/v5.11.6/source/mm/slab.h#L525 

https://elixir.bootlin.com/linux/v5.11.6/source/mm/slab.h#L525


Caches
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Structure

Mauerer, Wolfgang. Professional Linux kernel architecture. John 
Wiley & Sons, 2010.



APIs
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Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.
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CPU Caches
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Caches lines are generally small (32/64 bits), the macro L1_CACHE_BYTES sets the number of 
bytes for the L1 cache.

Independently of the mapping scheme, close addresses fall in the same line but  cache-aligned 
addresses fall in different lines. We need to cope with cache performance issues at the level of 
kernel programming (typically not of explicit concern for user level programming).

Performance issues

- common members access: most-used members in a data structure should be placed at 
its head to maximize cache hits. This should happen provided that the slab- allocation 
(kmalloc()) system gives cache-line aligned addresses for dynamically allocated 
memory chunks

- loosely related fields should be placed sufficiently distant in the data structure so as to 
avoid performance penalties due to false cache sharing.

The Kernel also need to face with cache aliasing.



(Cache False Sharing)
This example explains the Cache False Sharing 
problem. 

Suppose that the sum_a and sum_b function 
run concurrently. inc_b modifies only the y 
value but doing this invalidates the cache, 
sum_a is therefore obliged to reload from 
memory the entire structure foo even if f.x 
will be always the same. 

For this reason, loosely related fields should be 
located in the struct as much distant as 
possible, in order to fall in different cache lines 
and prevent the Cache False Sharing issue.
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struct foo {
    int x;
    int y; 
};

static struct foo f;

/* The two following functions are running concurrently: */

int sum_a(void)
{
    int s = 0;
    for (int i = 0; i < 1000000; ++i)
        s += f.x;
    return s;
}

void inc_b(void)
{
    for (int i = 0; i < 1000000; ++i)
        ++f.y;
}



(Cache Aliasing)
Cache aliasing occurs when multiple mappings to a physical page of memory have conflicting 
caching states, such as cached and uncached. Due to these conflicting states, data in that 
physical page may become corrupted when the processor's cache is flushed. If that page is 
being used for DMA by a driver, this can lead to hardware stability problems and system 
lockups.

In general we have a Cache Aliasing issue when the same physical address is mapped with 
different virtual addresses. Therefore, if your cache is indexed by the virtual address you will 
load the same physical addresses multiple times. This problem is typical in ARM architectures 
(Source).
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https://docs.microsoft.com/en-us/previous-versions/bb905767(v=msdn.10)?redirectedfrom=MSDN


Cache Flush Operation
Cache flushes automation can be partial (similar to TLB), therefore there are function declared 
in the kernel which deal with cache flushing operations and they are implemented according 
to the specific architecture. In some cases, the flush operation uses the physical address of the 
cached data to support flushing (“strict caching systems”, e.g. HyperSparc). Hence, TLB 
flushes should always be placed after the corresponding data cache flush calls.
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Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.



Cache Flush APIs
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Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.



Large Allocations & vmalloc

3.5.4

Advanced Operating Systems and Virtualization

2. Memory Management
5. Steady-State Memory Allocation



Large-size Allocations

3. Memory Management ⇒ 3.5 Steady-state memory allocation ⇒ 3.5.4 Large Allocations and vmalloc

It is preferable when dealing with large amounts of memory to use physically contiguous 
pages in memory both for cache-related and memory-access-latency reasons. Unfortunately, 
due to external fragmentation problems with the buddy allocator, this is not always possible. 
Linux provides a mechanism through vmalloc() where non-contiguous physical memory 
can be used that is contiguous in virtual memory. If you remember the Linux virtual memory 
layout, the area is limited (128MB).
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Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.



Large-size Allocations
On x86, due to the limited size of the VMALLOC area, that kind of memory allocation is used 
sparingly, only for swap information and for mounting external kernel modules.

APIs
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Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.



kmalloc() vs vmalloc()
Allocation size:

- Bounded for kmalloc (cache aligned): the boundary depends on the architecture and the 
Linux version. Current implementations handle up to 8KB

- 64/128 MB for vmalloc

Physical contiguousness

- Yes for kmalloc
- No for vmalloc

Effects on TLB

- None for kmalloc
- Global for vmalloc (transparent to vmalloc users)
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Kernel Page Table Isolation (KPTI)
It is a protection mechanism introduced in Kernel 4.15 for facing the Meltdown vulnerability. 
The idea is that the Kernel address space when in user mode is reduced and contains only a 
small subset of pages, essential for calling the kernel facilities from user space (system calls).
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https://en.wikipedia.org/wiki/Kernel_page-table_isolation 
https://www.kernel.org/doc/html/latest/x86/pti.html 

https://en.wikipedia.org/wiki/Kernel_page-table_isolation
https://www.kernel.org/doc/html/latest/x86/pti.html


User/Kernel Level Data Movement
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Gorman, Mel. Understanding the Linux virtual memory 
manager. Upper Saddle River: Prentice Hall, 2004.
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