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Memory Management

During the boot, the Kernel relies on a temporary memory manager:

- it's compact and not very efficient
- The rationale is that there are not many memory requests during the boot

At steady state the boot allocator can no more be used, because:

- allocations/deallocations are frequent
- memory must be used wisely, accounting for hardware performance

We must also discover how much physical memory is available, and how it is organized.
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NUMA V2.4

As anticipated, in modern computer architectures allows to see memory organized in nodes.
This because memory access latency heavily depends on the distance between the CPU and
the memory banks. This kind of memory addressing is called Non-Uniform Memory Access
(NUMA).

In the Linux Kernel each node is represented by the struct pg_data_t and all nodes are kept
in a NULL terminated linked list called pgdat_1list. Each node is linked to the other with the
field pg_data_t->node_next. In UMA architectures we only one pg_data_t referenced by
contig_page_data.
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N U MA CPU Sockets

Possible node0
for CPUO
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pg _data_t V2.4

typedef struct pglist data {
zone_t node_zones|[MAX_NR_ZONES];
Preferred zone —zonelist_t node_zonelists|GFP_ZONEMASK+1];
allocation order .
_ int nr_zones;
Pointer to the first struct page *node_mem_map;

fth . . .
E?%ZimSSEEEY unsigned long *valid_addr_bitmap;

node struct bootmem_data *bdata; Starting physical
unsigned long node start_paddr; - address of the node
unsigned long node_start_mapnr; (PFN)

Total number of
pages in the node

unsigned long node_size;

int node_id;

struct pglist_data *node_next;
} pg_data_t;

https://elixir.bootlin.com/linux/2.4.31/source/include/linux/mmzone.h#L166

https://elixir.bootlin.com/linux/vs.11/source/include/linux/mmzone.h#L 70
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https://elixir.bootlin.com/linux/v5.11/source/include/linux/mmzone.h#L705

Zones

Each node is divided in a number of blocks called zones, which represents ranges within the
memory. A zone is described by the struct zone_struct typedef as zone_t. On x86 there are
three kinds of zone:

- ZONE_DMA is directly mapped by the kernel in the lower part of memory and it is destined
to ISA (Industry Standard Architecture) devices, in x86 first 16 MB

- ZONE_NORMAL is directly mapped by the kernel into the upper region of the linear address
space, in x86 from 16 MB to 8g6MB

- ZONE_HIGHMEM is the remaining available memory and it is not directly mapped by the
kernel, in x86 from 896MB to end of memory.

The Page table is usually located at the top beginning of ZONE_NORMAL. To access memory
between 1GB and 4GB the kernel temporarily maps pages from high memory to
ZONE_NORMAL.

ZONE_NORMAL is fixed in size, addressing 16GiB can require 176 MB of data structures!

3. Memory Management = 3.1 Memory Representation 8



Zones

Comparison
x86 x86_64
ZONE_DMA First .6 MB First :6MB
ZONE_DMA32 - First 4GB
ZONE_NORMAL From 16MB to 896MB From 4GB to end
ZONE_HIGHMEM From 896MB to end -
ZONE_MOVABLE* User Defined User Defined

Please remind that for example in x86_64 if we have only 2GB of RAM, all the RAM will be
ZONE_DMA32. If instead we have 16GB the kernel will allocate memory by following possible
flags you pass and the available memory type. See also /proc/pagetypeinfo
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Zones Initialization

Zones are initialized after the kernel page tables have been fully set up by paging_init(). The
goal is to determine what parameters to send to:

- free_area_1init() for UMA machines
- free_area_1init_node() for NUMA machines

The initialization grounds on PFNs max PFN is read from BIOS e820 table.

- BIOS provided physical RAM map:
[mem OxO00000000000OO00-OXOOOOOONEEOEEIF7Fff] usable
[mem Ox000000NOOOO9T800-OXOONOOOONOEEOIFFff] reserved
[mem Ox0000000000OFOOOO-OXOOOOEOOEREOFFfff] reserved
[mem Ox00000COONOO100000-0XxO0EEOEObTdIffff] usable
[mem Ox00000000bfdafOEO-OXxO0O00000bTddOfff] ACPI NVS
[mem Ox00000000bfdd1000-0x00000000bfdfffff] ACPI data
[mem Ox00000000bfe@OOOO-OXO0000000bfefffff] reserved

[mem Ox00000000e0OOOOOO-OXxO0000000efffffff] reserved
[mem Ox00000000fecOOOOO-OXxO0000000FFffffff] reserved
[mem OxO000000100000000-0Xx000000043effffff] usable
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zone_t V2.4

typedef struct zone struct {
spinlock_t lock;
unsigned long free pages;
zone_watermarks_t watermarks[MAX_NR_ZONES];
unsigned long need balance;
unsigned long nr_active pages,nr_inactive_pages;
unsigned long nr_cache_pages;
free_area_t free_area|MAX_ORDER];
wait_queue_head_t *wait_table;
unsigned long wait_table_size;
unsigned long wait_table_shift;
struct pglist_data *zone_pgdat;
struct page *zone_mem_map;
unsigned long zone start_paddr;
unsigned long zone_ start_mapnr;
char *name;
unsigned long size;
unsigned long realsize;
} zone_t;

https://elixir.bootlin.com/linux/2.4.31/source/include/linux/mmzone.h#L 39
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https://elixir.bootlin.com/linux/2.4.31/source/include/linux/mmzone.h#L39

Zone Watermarks

When available memory in the system is low, the
pageout daemon kswapd is woken up to start freeing
pages. Each zone has three watermarks called pages
low, pages min and pages high, which help track how
much pressure a zone is under.

- pages low When the pages low number of free
pages is reached, kswapd is woken up by the
buddy allocator

- pages min When pages min is reached, the
allocator will do the kswapd work in a
synchronous fashion

- pages high After kswapd has been woken to
start freeing pages, it will not consider the zone
to be “balanced” when pages high pages are
free

3. Memory Management = 3.1 Memory Representation

zone->free_pages

Total Size
zone_t->size

Zone balanced.
kswapd woken up kswapd sleeps

Allocating process
frees pages synchronously
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Rate of page consumption GFP_ATOMIC allocations

is slowed by kswapd but can go below the watermark
still allocating too fast

Figure 2.2. Zone Watermarks

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River:
Prentice Hall, 2004.
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Nodes, Zones and Pages

/
ZONE_NORMAL

/ /

Zone_mem_map Zone_mem_map

/ /

Figure 2.1. Relationship Between Nodes, Zones and Pages

ZONE_HIGHMEM

zone_mem_map

struct page

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.
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Core Map V2.4

The Core Map is an array of mem_map_t structures defined in include/linux/mm.h and kept in
ZONE_NORMAL. The struct page is associated to every physical frame available in the system.

List head to which the page belongs.

typedef struct page { ‘  A page may belong to different lists
struct list_head list;
struct address_space *mapping;

Usage counter, if zero unsigned long index; A Address space (e.g. inode) and

the page may be free'd struct page *next_hash; index to which the page belongs

atomic_t count;
unsigned long flags; < Page flags:
struct list_head lru; #define PG_locked 0
struct page **pprev_hash; #define PG_referenced 2
struct buffer_head * buffers; #define PG_uptodate 3

#if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL) #define PG_dirty 4
void *virtual; #define PG_lru 6

#endif /* CONFIG_HIGMEM || WANT_PAGE_VIRTUAL */ #define PG_reserved 14

} mem_map_t;

3. Memory Management = 3.1 Memory Representation 15




Core Map

How to manage flags

Bit Name Set Test Clear

PG_active SetPageActive () PageActive() ClearPageActive()
PG_arch_1 None None None

PG_checked SetPageChecked() PageChecked () None

PG dirty SetPageDirty () PageDirty () ClearPageDirty ()
PG_error SetPageError () PageError () ClearPageError ()
PG_highmem None PageHighMem () None

PG_launder SetPageLaunder () PageLaunder () ClearPageLaunder ()
PG_locked LockPage () PageLocked () UnlockPage ()

PG_1lru TestSetPageLRU() PageLRU() TestClearPageLRU ()
PG_referenced | SetPageReferenced() | PageReferenced() | ClearPageReferenced()
PG_reserved SetPageReserved () PageReserved () ClearPageReserved ()
PG_skip None None None

PG_slab PageSetSlab() PageSlab() PageClearSlab()
PG_unused None None None

PG_uptodate SetPageUptodate () PageUptodate () ClearPageUptodate ()

Table 2.2. Macros for Testing, Setting and Clearing page—flags Status Bits

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.
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Core Map

On UMA

Initially we have the core map pointer, mem_map defined in mm/memory.c. The pointer
initialization is done within the function free_area_1init(). After the initialization each entry
will keep the value o within the count field and the value 1 into flags for the PG_RESERVED flag.
Therefore we do not have any virtual reference to the frame and the frame is reserved. The

un-reserving is done by the mem_init() function.

On NUMA

There’s not a global mem_map array since every node keeps its own map in its own memory.
The map is pointed by pg_data_t -> node_mem_map but the map organization is the same.

3. Memory Management = 3.1 Memory Representation 17
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Zoned Page Frame Allocator V2.4

The kernel subsystem that handles the memory allocation for contiguous page frames is
called zoned page frame allocator.

: Small cache for
Receives the .
, Zone allocator speeding up
allocation requests .
. allocation
for dynamic
. requests for
memory, then it .
single page
searches a zone
. e N\ ~ frames
for performing the
. \/ \ 4 \4
allocation Per-CPU page Per-CPU page Per-CPU page
frame cache frame cache frame cache
: = - Manages the
Buddy system Buddy system Buddy system page frames
- 4 \ - allocation inside
each zone
ZONE_DMA Memory Zone ZONE_NORMAL Memory Zone ZONE_HIGHMEM Memory Zone

Figure 8-2. Components of the zoned page frame allocator

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.
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Fragmentation

When allocating groups of contiguous page frames, the algorithm that we need to design,
must deal with a well-know problem called External Fragmentation.We allocate #1, #2, #3,
#4 and #5 consecutively, then we deallocate #2 and #4. Where can we put a new allocation
request for a size of #2 + #4 for example? We have that memory available but it is not

contiguous.

#1 #2 #3 #4 #5
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Fragmentation

There are two approaches, in general to solve the problem:

1. use the paging circuitry to map group of non-contiguous pages into intervals of
contiguous linear addresses

2. develop a suitable technique to keep track of the existing blocks of free contiguous page
frames, avoiding as much as possible the need to split up large free block to satisfy a
request for a smaller one

The Linux kernel prefers the second, for 3 good reasons:

- in some cases we really need contiguous pages, not only contiguous linear addresses
(e.g. DMA)

- frequent page table modifications lead to higher average memory access times, e.g.
flushing the TLB

- large chunks of physical memory can be accessed with 4MB pages, reducing TLB miss
and speeding up access times

3. Memory Management = 3.2 Buddy System 21




Buddy System V2.4

The technique followed by the Linux kernel for solving external fragmentation is based on the
well-known buddy system algorithm. The Buddy System keeps all the free pages grouped into
11 lists of blocks that contain groups of 1,2,4,8,16,32,64,128,256,512 and 1024 contiguous
frames. 1024 page frames correspond to 4MB of memory.

The data structures used by the algorithm are:

- the mem_map array, that is the core map that we already discussed. Actually, each zone is
concerned with a subset of the mem_map elements

- an array of eleven elements of free_area_t, one for each group size. This array is
stored in the free_area field of the zone descriptor and contains the linked list of free
page blocks and a pointer to a bitmap (*map), in which each bit represents a pair of
buddies. The bit is set to @ when both buddies are full or free, and 1 when only one
buddy is used.

3. Memory Management = 3.2 Buddy System 22




Buddy System V2.4

Data Structures

/*

* Simple doubly linked list implementation.

*
4? TypeaRT Struct ZaueEsHEUSH { * Some of the internal functions (" xxx") are useful when
75 Ve * manipulating whole lists rather than single entries, as
76 * free areas of different sizes * sometimes we already know the next/prev entries and we can
77 */ * generate better code by using them directly rather than
78 free_area_t free_area[MAX_ORDER] ; * uysing the generic single-entry routines.
79

*
&

https:l/elixir.bootl%(omllinux/z.4.21/source/include/linux/m mzone.h#178

struct list_head {
struct list_head *next, *prev;

27 typedef struct free_area_struct {

28 struct list_head free_list;
29 unsigned long *map;

30 } free_area_t;

3. Memory Management = 3.2 Buddy System 23



https://elixir.bootlin.com/linux/2.4.31/source/include/linux/mmzone.h#L30
https://elixir.bootlin.com/linux/2.4.31/source/include/linux/mmzone.h#L78
https://elixir.bootlin.com/linux/2.4.31/source/include/linux/list.h#L18

Buddy System

order free_area_t Free page blocks
zone->free_area

0 —P-D—DD—DD—DD 2’ page sized blocks
1

2

3

4 — e — 24 page sized blocks
5

6

7

8

3) > AX‘ORDER_i)age sized blocks

Y |MAX_ORDER

Figure 6.1. Free Page Block Management

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.

3. Memory Management = 3.2 Buddy System 24




Buddy System V2.4

—P next

[Jstruct page

Flgure 3-22: Linking blocks in the buddy system.

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.
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Buddy System V2.4

Allocation

Suppose that you want to allocate 256 contiguous page frames, the algorithm check if there is
a free 256 block, if not it checks in the list of 512. If it exists it allocates 256 pages for satisfying
the request and the other 256 are added into the list of free 256-page-frame blocks. If there is
no free 512-page block the kernel looks for next larger block, 1024. If it exists, it allocates 256
of the 1024 page frames to satisfy the request, then inserts the first 512 of the remaining 768
into the list of free 512-page-frame blocks and the last 256 pages frames into the list of free
256-page-frame blocks.

Deallocation

When freeing memory, the kernel attempts to merge a pair of buddy blocks of size b together
into a single block of size 2b. Only if (i) they have the same size, (ii) they are contiguous, (iii)
the physical address of the first block is multiple of 2 x b x 2*2.

During the allocation and deallocation interrupts must be disabled and this is node by using a
particular kind of spinlock (we will see later in the course).
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Buddy System

1024

d 256 512
g 128 128 512
h 256 - 128 512
i 1024

https://www.programmersought.com/article/q6 192
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Retrieving a page from free_area list

The function rmqueue() is used to find a free block in a zone.

static struct page * fastcall rmqueue(zone_t *zone, unsigned int order)

{
free_area_t * area = zone->free_area + order; 181 /%
unsigned int curr;order " order; 182 * list entry - get the struct for this entry
struct list_head hgad, CURN ; 183 * @ptr: the &struct list head pointer.
unsigned long flags, 184 * @type: the type of the struct this is embedded in.
struct page *page; 185 * @member : the name of the list struct within the struct
: : . 186 i
321?_10ck_1rqsave(&zone->1ock, flags); i #define list_entry(ptr, type, member) \
head - Sarea->free_list; 188 ((type *)((char *)(ptr)-(unsigned long) (&((type *)0)->member)))
curr = head->next;
if (curr !'= head) {
unsigned int index;
20 — EAEEERTEGG (BN, Struct page, 1st); The list_entry macro allows you to retrieve the
‘ B S entry in the linked list that has the ptr you specify.
list_del(curr)
index = page - zone->zone_mem_map; . L. L.
if (curr_order ! MAX_ORDER-1) In this case it is used for retrieving the struct page
MARK_USED (index, curr _order, area); .
zone->free_pages -= 1UL << order; from the 'Fl'ee_a rea ||St
page = expand(zone, page, index, order, curr_order, area);
} while (curr_order < MAX_ORDER);
spin_unlock_irgqrestore(&zone->lock, flags);
return NULL;
}

https://elixir.bootlin.com/linux/2.4.31/source/mm/page alloc.c#L242
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https://elixir.bootlin.com/linux/2.4.31/source/mm/page_alloc.c#L242
https://elixir.bootlin.com/linux/2.4.31/source/include/linux/list.h#L187

Adding a page to free_area list

The expand() function called by rmqueue() add the free block to the zone by using the
function/macro (in other kernel versions) list_add().

220 static inline struct page * expand (zone_t *zone, struct page *page,

221 unsigned long index, int low, int high, free_area_t * area)
222 { .
i i = << i . 48 * list add - add a new entry
223 un51gned long S12E 1 hlgh' 49 * @new: new entry to be added
224 50 * @head: list head to add it after
; : > 5l *
225 while (hlgh ].OW) { 52 * Insert a new entry after the specified head.
226 if (BAD_RANGE(ZO“G, page)) 58 * This is good for implementing stacks.
227 B i 54 */
UG() 55 static inline void list_add(struct list_head *new, struct list_head *head)
228 area- - 5
229 high--; 57 __list_add(new, head, head->next);
. 58 }

230 Size >>= 1.
231 list_add(&(page) ->list, &(area)->free_list); .
232 q L ’ ’ JH * Insert a new entry between two known consecutive entries.
233 index += size; *
234 page += size; * This is only for internal list manipulation where we know
235 } * the prev/next entries already!

: 4
236 if (BAD_RANGE (zone,page)) static inline void __ list_add(struct list_head *new,
237 BUG() ; struct list_head *prev,
238 return page; i struct list_head *next)
239 }

next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
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Concept

On x86 the kernel directly maps only ZONE_DMA and ZONE_NORMAL for a total of 8g6MB, but
obviously machines started to have more than 4GB of RAM. Due to the fixed limit 3GB/1GB of
the address space, the kernel cannot map directly more than 8g6MB, for this reason all the
memory mapping that exceeds that size are temporarily and they refer to the High Memory

concept. .
Mapping area of

HighMem in kernel the

virtual address space

Mapping of all
physical page
frames

VMALLOC

Juslsisied |~

sdewxi4

AN
sbuiddepy

DN

Figure 3-15: Division of the kernel address space on IA-32 systems.

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.
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PKMap

The kernel virtual address spaces from address PKMAP_BASE to FIXADDR_START is reserved
for a PKMap, namely a Persistent Kernel Map located near the end of the address space.
There are about 32MB of page table space for mapping pages from high memory into the
usable space.

For mapping pages, a simple PT of 1024 entries is stored at the beginning of the PKMap area
to allow the temporary (very short time) mapping of up to 1024 pages from high mem with

functions kmap() and kunmap(). That page is initialized at the end of pagetable_init()
function.

The current state of page table entries is managed by a simple array called pkmap_count with
LAST_KMAP (= PTRS_PER_PTE = 1024 or 512 when PAE is enabled) entries.
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pkmap_count V2.4

25 ¥
26 * Virtual count is not a pure "count".

27 * 0 means that it is not mapped, and has not been mapped
28 ¥ since a TLB flush - it is usable.

29 * 1 means that there are no users, but it has been mapped
30 u since the last TLB flush - so we can't use 1it.

cill * n means that there are (n-1) current users of 1it.

32 )

S static int pkmap_count[LAST_PKMAP];

https://elixir.bootlin.com/linux/2.4.31/source/mm/highmem.c#L33
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APIs V2.4

- kmap() it permits a short-duration mapping of a single page, requires global
synchronization

- kmap_atomic() permits a very short duration mapping of a single page but it is
restricted to the CPU that issued it and the task must be on that CPU until the
termination, usage is discouraged

- kunmap() decrements the associated page counter. When the counter is 1 the mapping is
not needed anymore but the CPU has still cached that mapping, for this reason TLB must
be flushed manually

- kunmap_atomic() unmaps a page that has been mapped atomically

3. Memory Management = 3.3 High Memory
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Reclaiming Boot Memory

The finalization of memory
management is done within the

function mem_init() which is in @

charge of destroying the bootmem

allocator, calculating the << @
dimensions of low and high =

memory and printing out an
informational message to the user. free_all_bootmen one_highpage_init

On x86 the principle function called

bY mem_i n |t IS free_all_bootmem_core
free _pages_init(). ’
ClearPageReserved

Figure 5.2. Call Graph: mem_init ()

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.
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free_all_bootmem_core

The free_all_bootmem is called by each NUMA node and in the end it calls
free_all_bootmem_core which does the following.

For each unallocated pages known to the allocator of that node

- clearsthe PG_RESERVED bit
- setusage countto1
- call __free_pages() so that the buddy allocator can build its free lists

Free all pages used for the bitmap and give them to the buddy allocator.
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free_all _bootmem_core V2.4

245 static unsigned long __init free_all_bootmem core(pg_data_ t *pgdat)

246 {

247 struct page *page = pgdat->node_mem_map;

248 bootmem_data_t *bdata = pgdat->bdata;

249 unsigned long i, count, total = 0;

250 unsigned long idx;

2511l

252 if (!bdata->node_bootmem_map) BUG();

253

254 count = 0;

255 idx = bdata->node_low_pfn - (bdata->node_boot start >> PAGE_SHIFT);
256 for (1 = 0; i < idx; i++, page++) {

2517 if (!'test_bit(i, bdata->node_bootmem_map)) {
258 count++;

259 ClearPageReserved (page) ;

260 set_page_count(page, 1);

261 __free_page(page) ;

262 }

263 }

264 total += count;

https://elixir.bootlin.com/linux/2.4.31/source/mm/bootmem.c#L 245
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Finalizing
When free_all_bootmem returns all the pages in ZONE_NORMAL have been given to the buddy
allocator, the rest of free_pages_1init initializes the high memory.

In particular, one_highpage init() is called for every page between highstart_pfn and
highend_pfnand it simply:

clears the PG_RESERVED flag

set the PG_HIGHMEM flag

set the counttoa

calls __free_pages() to release it to the Buddy Allocator

At this point, the boot memory allocator is no longer required, and the buddy allocator is the
main physical page allocator for the system. Note also that not only is the data for the boot
allocator removed, but also all code that was used to bootstrap the system.
free_all_bootmem() is marked by __init().
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Allocation Contexts

In general, in a kernel, we can recognize two kinds of memory allocation contexts at
steady-state.

- Process Context, that refers to an allocation that has been requested through a system
call, typical of userspace processes.

Within this context, if the request cannot be served, the process is put on wait by
following also a priority-based approach
- Interrupt Context, that refers to an allocation due to a interrupt handler

Within this context, if the request cannot be served there’s no waiting time and the
approach is not priority based

3. Memory Management = 3.5 Steady-state memory allocation



Physical Frame Allocation APlIs

Within the kernel, the following
functions for memory allocation
can be used, they are declared
at <linux/malloc.h>.

Memory allocation requests
created with these functions
are obviously managed by the
Buddy Allocator.

3. Memory Management = 3.5 Steady-state memory allocation

struct page * alloc_page(unsigned int gfp_mask)
Allocates a single page and returns a struct address.

struct page * alloc_pages(unsigned int gfp mask, unsigned int
order)
Allocates 2°74°" number of pages and returns a struct page.

unsigned long get_free page(unsigned int gfp mask)
Allocates a single page, zeros it, and returns a virtual address.

unsigned long __get free page(unsigned int gfp mask)
Allocates a single page and returns a virtual address.

unsigned long __get free pages(unsigned int gfp mask, unsigned int
order)
Allocates 2°74¢* number of pages and returns a virtual address.

struct page * __get_dma pages(unsigned int gfp mask, unsigned int
order)
Allocates 2°79¢" number of pages from the DMA zone and returns a struct

page.

Table 6.1. Physical Pages Allocation API

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.




Physical Frame Deallocation API

void __free pages(struct page *page, unsigned int order)
Frees an order number of pages from the given page.

void __free page(struct page *page)
Frees a single page.

void free_page(void *addr)
Frees a page from the given virtual address.

Table 6.2. Physical Pages Free API

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.

Remember that within the Buddy Allocator, the caller needs to remember the allocated size
and the address. If you pass a wrong void* addr to free_page() you could corrupt the
kernel.
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Flag Description

FI ags __GFP_WAIT Indicates that the caller is not high priority and can sleep or
reschedule.

__GFP_HIGH Used by a high priority or kernel process. Kernel 2.2.x used it to
determine if a process could access emergency pools of memory.
In 2.4.x kernels, it does not appear to be used.

__GFP_IO Indicates that the caller can perform low-level 1/O. In 2.4.x, the
main effect this has is determining if try_to_free buffers()
can flush buffers. It is used by at least one journaled filesystem.
__GFP_HIGHIO | Determines that I/O can be performed on pages mapped in high
memory. It is only used in try_to_free buffers().

__GFP_FS Indicates if the caller can make calls to the filesystem layer. This
is used when the caller is filesystem related, the buffer cache, for
instance, and wants to avoid recursively calling itself.

Table 6.4. Low-Level GFP Flags Affecting Allocator Behavior

Flag Description
__GFP_DMA Allocate from ZONE_DMA if possible.
__GFP_HIGHMEM | Allocate from ZONE_HIGHMEM if possi-
ble.
GFP_DMA Act as alias for __GFP_DMA.
Table 6.3. Low-Level GFP Flags Affecting Zome Allocation Gorman, Mel. Understanding the Linux virtual memory manager.

Upper Saddle River: Prentice Hall, 2004.
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Flags

High priority
Flag Low-Lev;J/Flag Combination
GFP_ATOMIC | HIGH |~
GFP_NOIO HIGH — WAIT
GFP_NOHIGHIO | HIGH — WAIT — IO
GFP_NOFS HIGH — WAIT — 10 — HIGHIO
GFP_KERNEL HIGH — WAIT — 10 — HIGHIO — FS
GFP_NFS HIGH — WAIT — 10 — HIGHIO — FS
GFP_USER WAIT — IO HIGHIO — FS
GFP_HIGHUSER | WAIT HIGHIO — FS — HIGHMEM
GFP_KSWAPD WAIT\; \ﬁ HIGHIO — FS

Table 6.5. Low—Leveki\FP Flag Combinations for High-Level Use

Cansleep

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.
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NUMA Policies

When we have a NUMA architecture, the function __get_free_pages() calls alloc_page_node()
specifying a NUMA policy. A NUMA policy determines from which node the memory will be
allocated. This support was added in kernel 2.6.

set_mempolicy()

The function set_mempolicy sets the NUMA memory policy of the calling process.

#include <numaif.h>
int set_mempolicy(int mode, unsigned long *nodemask, unsigned long maxnode);

Where mode can be:

MPOL_DEFAULT allocate on node of the CPU that issued the command
MPOL_BIND strictly allocate to the specified nodemask

MPOL_INTERLEAVE interleaves allocation to the specified nodemask nodes
MPOL_PREFERRED sets the preferred node(s) for the allocation as nodemask

nodemask points to a bit mask of node IDs that contains up to maxnode bits

https://www.kernel.org/doc/html/latest/admin-guide/mm/numa memory policy.html
https://linux.die.net/man/2/set mempolicy
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NUMA Policies

mbind()
The function mbind() assigns a NUMA policy to the specified set of memory addresses.
#include <numaif.h>

long mbind(void *addr, unsigned long len, int mode,
const unsigned long *nodemask, unsigned long maxnode, unsigned flags);

move_pages()

This function moves the specified pages of the process pid to the memory nodes specified by
nodes. The result of the move is reflected in status. The flags parameter indicates constraints
on the pages to be moved.

#include <numaif.h>
long move_pages(int pid, unsigned long count,
void **pages, const int *nodes, int *status, int flags);

47
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Frequent Allocations and Deallocations

In general, within the kernel, fixed size data structures are very often allocated and released.
The Buddy System that we presented earlier clearly does not scale:

- thisis a classic case of frequent logical contention
- the buddy system on each NUMA node is protected by a (spin)lock
- internal fragmentation can rise too much

Example

Allocation and release of page tables requires a frequent allocation and deallocation of the
same fixed size structures. The functions that allows us to create page tables like

- pgd_alloc(), pmd_alloc() and pte_alloc()
- pgd_free(), pmd_free() and pte_free()

They relies on Kernel-level fast allocators.
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Fast Allocators

There are two fast allocators in the kernel:
- quicklists, used only for paging
- SLAB Allocator, used for other buffers. There are three implementations of the SLAB
allocator:
- the SLAB: implemented around 1994
- the SLUB: the unqueued SLAB allocator, default since 2.6.23
- the SLOB: Simple List Of Blocks, if the SLAB is not enabled this is the fallback
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Quicklists

Quicklists are used for implementing the page table cache. For the three functions
pgd/pmd/pte_alloc() we have three quicklists pgd/pmd/pte_quicklist per CPU. Each
architecture implements its own version of quicklists but the principle is the same.

One method is the one of using the LIFO (Last-In First-Out) approach. During the allocation,
one page is popped off the list, and during free, one is placed as the new head of the list. This
is done while keeping a count of how many pages are used in the cache.

If a page is not available in the cache, then it will be allocated by using the Buddy System.
Obviously, a large amount of free pages can exist in these caches, for this reason they are
pruned by using a watermarking strategy.
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quicklist_alloc v2.6

88 static inline void *quicklist_alloc(int nr, gfp_t flags, void (*ctor)(void *))

34 {

35 struct quicklist *q;

36 void **p = NULL;

37

38 q =&get_cpu_var (quicklist) [nr];
39 p = gq->page;

40 if (likely(p)) {

41 q->page = p[0O];

42 p[0] = NULL;

43 g->nr_pages- -;

44 ¥

45 put_cpu_var(quicklist);

46 if (likely(p))

47 return p;

48

49 p = (void *)__get_free_page(flags | __GFP_ZERO);
50 if (ctor && p)

51 ctor(p);

52 return p;

53 }

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/quicklist.h#L33
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likely() and unlikely()

The likely() and unlikely() are used for the branch prediction mechanism of the CPU.
Branch prediction allows to optimize the CPU pipeline and increasing the performance of the
CPU. The likely instruction will tell the compiler that the if condition will likely hit and the CPU
can prepare the pipeline for that jump. Clock cycle

0 1 2 3 4 5 6 7 8
The converse is for unlikely. When an likely branch ]
will not be hit then the entire CPU pipeline will be Waiti 1
aiting
flushed. This will have an impact on performances instructions I [ 1N
but it will rarely happen. [ HER
e XOEEEXXXX
2 ) omesonens (5 I [ 1 I (X (X0 X
E_ Stage 3: Execute |:| . - .
smvameses 5 ) X1 X1 () 0 I I X
(N
Completed I:I . .
instructions |
]

https://en.wikipedia.org/wiki/Branch predictor

3. Memory Management = 3.5 Steady-state memory allocation = 3.5.1 Fast Allocations & Quicklists


https://en.wikipedia.org/wiki/Branch_predictor

3.5.2

2. Memory Management
5. Steady-State Memory Allocation

SLAB Allocator

Advanced Operating Systems and Virtualization ’ IAG



Overview

The general idea behind the SLAB allocator is

to have caches of commonly used objects @ @
kept in a initialized state available for use by
@ slabs_partial

the kernel.

The SLAB allocator consists of a variable
number of caches, linked together by a doubly

slabs slabs
linked list called cache chain. Every cache
manages objects of particular kind (e.g. , r J
mm_struct). Each cache maintains a block of pages pages pages

contiguous pages in memory called slabs. / / \
<

Figure 8.1. Layout of the Slab Allocator

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.
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Aims
The purpose of the SLAB allocator is threefold:

1. allocating small blocks of memory to help eliminate internal fragmentation caused by
the Buddy System

2. caching commonly used blocks so that the system does not wait time allocating,
initializing and destroying object

3. betterusage of L1 and L2 caches by aligning objects

Aim #1

Two sets of caches are maintained for allocating objects from 25 (32KB) to 2Y7 (131'072KB)
bytes. One for DMA and one for standard allocation. These caches are called size-N (or
size-N(DMA)), where N is the size of the allocation and they are allocated with the function
kmalloc().
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Aims
Aim #2

When a new slab is created a number of objects are packed into it and initialized using a
constructor if available. When an object is free'd, it is left in a initialized state so the next
allocation will be faster

Aim #3 - Coloring
If there is space left over after objects packed into a slab, the remaining space is used to color

the slab. Coloring is used for having objects in different line of CPU caches which helps ensure
that objects from the same slab cache will unlikely flush each other.

L1_CACHE_BYTES

Object Object Object Object

AZ—2oOroOoOnNn
OZ—28$O0OrO0OnNn
OZ—2$Or-ONn
OZ—28$O0OrO0OnNn
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Caches

There is one cache for each object to be cached (see /proc/slabinfo).

slabinfo - version: 2.1

# name <active_objs> <objsize> <objperslab> <pagesperslab> : tunables <limit> <batchcount>
<sharedfactor> : slabdata <active_slabs> <num_slabs> <sharedavails>

inode_cache 35086 | 35086 608 | 53 8|: tunables 0 0 0 : slabdata 662 662 0
dentry 228365 (228438 192 | 42 2|: tunables 0 0 0 : slabdata 5439 5439 0
vm_area_struct 98901 | 99240 200 | 40 2|: tunables 0 0 0 : slabdata 2481 2481 0
mm_struct 780 780 | 1088 | 30 8|: tunables 0 0 0 : slabdata 26 26 0
files_cache 1104 | 1104 704 | 46 8|: tunables 0 0 0 : slabdata 24 24 0
pid 3424 3424 128 | 32 1(: tunables 0 0 0 : slabdata 107 107 0
dma-kmalloc-8k 0 0| 8192 4 8|: tunables 0 0 0 : slabdata 0 0 0
kmalloc-rcl-8k 0 0| 8192 4 8|: tunables 0 0 0 : slabdata 0 0 0
kmalloc-8k 436 436 | 8192 4 8|: tunables 0 0 0 : slabdata 109 109 0
kmalloc-4k 1376 | 1376 | 4096 8 8|: tunables 0 0 0 : slabdata 172 172 0
kmalloc-2k 14654 | 14928 | 2048 | 16 8|: tunables 0 0 0 : slabdata 933 933 0
kmalloc-1k 6532 | 6816 | 1024 | 32 8|: tunables 0 0 0 : slabdata 213 213 0
kmalloc-512 37177 | 37888 512 | 32 4]: tunables 0 0 0 : slabdata 1184 1184 0
kmalloc-256 14656 | 14656 256 | 32 2|: tunables 0 0 0 : slabdata 458 458 0
kmalloc-192 12508 | 12852 192 | 42 2|: tunables 0 0 0 : slabdata 306 306 0
kmalloc-128 3998 4256 128 | 32 1(: tunables 0 0 0 : slabdata 133 133 0
kmalloc-96 16884 | 16884 96 | 42 1(: tunables 0 0 0 : slabdata 402 402 0
kmalloc-64 41614 | 43776 64 | 64 1(: tunables 0 0 0 : slabdata 684 684 0
kmalloc-32 62336 | 62336 32 |128 1|: tunables 0 0 0 : slabdata 487 487 0
kmalloc-16 39424 | 39424 16 |256 1(: tunables 0 0 0 : slabdata 154 154 0
kmalloc-8 25600 | 25600 8 |512 1(: tunables 0 0 0 : slabdata 50 50 0
kmem_cache_node 832 832 64 | 64 1(: tunables 0 0 0 : slabdata 13 13 0
kmem_cache 448 448 256 | 32 2|: tunables 0 0 0 : slabdata 14 14 0
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Caches

kmem_cache _node

522 /*

523 * The slab lists for all objects.

524 )

525 struct kmem_cache_node {

526 spinlock_t list_lock;

521/

528 #ifdef CONFIG_SLAB

529 struct list_head slabs_partial;|/* partial list first, better asm code */
530 struct list_head slabs_full;

53! struct list_head slabs_free;

532 unsigned long total_slabs; /* length of all slab lists */
533 unsigned long free_slabs; /* length of free slab list only */
534 unsigned long free_objects;

535 unsigned int free_limit;

536 unsigned int colour_next; /* Per-node cache coloring */
537 struct array_cache *shared; /* shared per node */

538 struct alien_cache **alien; /* on other nodes */

539 unsigned long next_reap; /* updated without locking */
540 int free_touched; /* updated without locking */
541 #endif

542

543 #ifdef CONFIG_SLUB

544 unsigned long nr_partial;

545 struct list_head partial;

546 #ifdef CONFIG_SLUB_DEBUG

547 atomic_long_t nr_slabs;

548 atomic_long_t total_objects;

549 struct list_head full;

550 #endif

551 #endif

552

553 1 https://elixir.bootlin.com/linux/vs.11.6/source/mm/slab.h#L 525
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Figure 3-45: Fine structure of a slab cache.
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APls

kmem_cache_t * kmem_cache_create(const char *name, size_t size,
size_t offset, unsigned long flags,
void (*ctor) (void*, kmem_cache_t *, unsigned long),
void (*dtor) (void#*, kmem cache t *, unsigned long))
Creates a new cache and adds it to the cache chain.

void * kmem cache_alloc(kmem_cache_t *cachep, int flags)
Allocates a single object from the cache and returns it to the caller.

void kmem cache free(kmem cache_t *cachep, void *objp)
Frees an object and returns it to the cache.

void * kmalloc(size_t size, int flags)
Allocates a block of memory from one of the sizes cache.

void kfree(const void *objp)
Frees a block of memory allocated with kmalloc.

int kmem_cache destroy(kmem_cache t * cachep)
Destroys all objects in all slabs and frees up all associated memory before
removing the cache from the chain.

Table 8.1. Slab Allocator API for Caches

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.
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CPU Caches

Caches lines are generally small (32/64 bits), the macro L1_CACHE_BYTES sets the number of
bytes for the L1 cache.

Independently of the mapping scheme, close addresses fall in the same line but cache-aligned
addresses fall in different lines. We need to cope with cache performance issues at the level of
kernel programming (typically not of explicit concern for user level programming).

Performance issues

- common members access: most-used members in a data structure should be placed at
its head to maximize cache hits. This should happen provided that the slab- allocation
(kmalloc()) system gives cache-line aligned addresses for dynamically allocated
memory chunks

- loosely related fields should be placed sufficiently distant in the data structure so as to
avoid performance penalties due to false cache sharing.

The Kernel also need to face with cache aliasing.
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(Cache False Sharing)

This example explains the Cache False Sharing
problem.

Suppose that the sum_a and sum_b function
run concurrently. inc_b modifies only the y
value but doing this invalidates the cache,
sum_a is therefore obliged to reload from
memory the entire structure foo even if f.x
will be always the same.

For this reason, loosely related fields should be
located in the struct as much distant as
possible, in order to fall in different cache lines
and prevent the Cache False Sharing issue.
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struct foo {
int Xx;
int y;
b
static struct foo f;

/* The two following functions are running concurrently: */

int sum_a(void)

{
int s = 0;
for (int 1 = 0; 1 < 1000000; ++1)
s += f.x;
return s;
}
void inc_b(void)
{
for (int 1 = 0; 1 < 1000000; ++1)
++f.y;
}




(Cache Aliasing)

Cache aliasing occurs when multiple mappings to a physical page of memory have conflicting
caching states, such as cached and uncached. Due to these conflicting states, data in that
physical page may become corrupted when the processor's cache is flushed. If that page is
being used for DMA by a driver, this can lead to hardware stability problems and system
lockups.

In general we have a Cache Aliasing issue when the same physical address is mapped with
different virtual addresses. Therefore, if your cache is indexed by the virtual address you will
load the same physical addresses multiple times. This problem is typical in ARM architectures
(Source).
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Cache Flush Operation

Cache flushes automation can be partial (similar to TLB), therefore there are function declared
in the kernel which deal with cache flushing operations and they are implemented according
to the specific architecture. In some cases, the flush operation uses the physical address of the
cached data to support flushing (“strict caching systems”, e.g. HyperSparc). Hence, TLB
flushes should always be placed after the corresponding data cache flush calls.

Flushing Full MM Flushing Range Flushing Page
flush_cache mm() flush_cache_range () flush_cache_page ()
Change all page tables | Change page table range | Change single PTE
flush t1b mm() flush tlb_range () flush tlb_page()

Table 3.4. Cache and TLB Flush Ordering

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.
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Cache Flush APIs

void flush_cache_all(void)

This flushes the entire CPU cache system, which makes it the most severe
flush operation to use. It is used when changes to the kernel page tables, which
are global in nature, are to be performed.

void flush_cachemm(struct mm_struct mm)
This flushes all entries related to the address space. On completion, no cache
lines will be associated with mm.

void flush cache range(struct mm struct *mm, unsigned long start,
unsigned long end)

This flushes lines related to a range of addresses in the address space. Like
its TLB equivalent, it is provided in case the architecture has an efficient way of
flushing ranges instead of flushing each individual page.

void flush _cache page(struct vm_area struct *vma, unsigned long
vmaddr)

This is for flushing a single-page-sized region. The VMA is supplied because
the mm_struct is easily accessible through vma—vm mm. Additionally, by testing
for the VM_EXEC flag, the architecture will know if the region is executable for
caches that separate the instructions and data caches. VMAs are described
further in Chapter 4.

Table 3.5. CPU Cache Flush API

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.
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Large-size Allocations

It is preferable when dealing with large amounts of memory to use physically contiguous
pages in memory both for cache-related and memory-access-latency reasons. Unfortunately,
due to external fragmentation problems with the buddy allocator, this is not always possible.
Linux provides a mechanism through vmalloc() where non-contiguous physical memory
can be used that is contiguous in virtual memory. If you remember the Linux virtual memory
layout, the area is limited (2128 MB).

VMALLOC_END

N

/ VMALLOC_START

% 4
Mapping of all // Z § § o
physical page / VMALLOC ZE=
frames % Z/ a3 3
\__PAGE_OFFSET /
0xC000000 :
4 GiB

Figure 3-15: Division of the kernel address space on IA-32 systems.

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.
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Large-size Allocations

On x86, due to the limited size of the VMALLOC area, that kind of memory allocation is used
sparingly, only for swap information and for mounting external kernel modules.

APls void * vmalloc(unsigned long size)
Allocates a number of pages in vmalloc space that satisfy the requested size.

void * vmalloc_dma(unsigned long size)
Allocates a number of pages from ZONE_DMA.

void * wvmalloc_32(unsigned long size)
Allocates memory that is suitable for 32-bit addressing. This ensures that

the physical page frames are in ZONE_NORMAL, which 32-bit devices will require

Table 7.1. Noncontiguous Memory Allocation API

void vfree(void *addr)
Frees a region of memory allocated with vmalloc(), vmalloc_dma() or

vmalloc_32()

Table 7.2. Noncontiguous Memory Free API

Gorman, Mel. Understanding the Linux virtual memory manager. Upper Saddle River: Prentice Hall, 2004.
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kmalloc() vs vmalloc()

Allocation size:

- Bounded for kmalloc (cache aligned): the boundary depends on the architecture and the
Linux version. Current implementations handle up to 8KB
- 64/128 MB for vmalloc

Physical contiguousness

- Yes for kmalloc
- No forvmalloc

Effectson TLB

- None for kmalloc
- Global for vmalloc (transparent to vmalloc users)
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Kernel Page Table Isolation (KPTI)

It is a protection mechanism introduced in Kernel 4.15 for facing the Meltdown vulnerability.
The idea is that the Kernel address space when in user mode is reduced and contains only a
small subset of pages, essential for calling the kernel facilities from user space (system calls).

Kernel page-table isolation
Kernel space Kernel space
Kernel space
User space User space User space
User mode Kernel mode User mode
Kernel mode

httos //www kernel orq/doc/html/latest/><86lot| html
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User/Kernel Level Data Movement

unsigned long copy_-from user(void *to, const void *from, unsigned
long n)
Copies n bytes from the user address(from) to the kernel address space(to).

unsigned long copy-to_user (void *to, const void *from, unsigned
long n)
Copies n bytes from the kernel address(from) to the user address space(to).

void copy.user_page(void *to, void xfrom, unsigned long address)

Copies data to an anonymous or COW page in userspace. Ports are responsi-
ble for avoiding D-cache aliases. It can do this by using a kernel virtual address
that would use the same cache lines as the virtual address.

void clear_user_page(void *page, unsigned long address)
Similar to copy_user_page (), except it is for zeroing a page.

void get_user(void *to, void *from)
Copies an integer value from userspace (from) to kernel space (to).

void put._user(void *from, void *to)
Copies an integer value from kernel space (from) to userspace (to).

long strncpy_from user (char *dst, const char *src, long count)
Copies a null terminated string of at most count bytes long from userspace
(src) to kernel space (dst).

long strlen user(const char *s, long n)
Returns the length, upper bound by n, of the userspace string including the
terminating NULL.

int access_ok(int type, unsigned long addr, unsigned long size)
Returns nonzero if the userspace block of memory is valid and zero otherwise.

Gorman, Mel. Understanding the Linux virtual memory
Table 4.6. Accessing Process Address Space API manager. Upper Saddle River: Prentice Hall, 2004.
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