Gabriele Proietti Mattia

Advanced Operating Systems
and Virtualization

NG

Department of Computer,

[4] Syste m Ca | IS Control and Management

Engineering “A. Ruberti”,
Sapienza University of Rome

gpm.name - proiettimattia@diag.uniroma1.it AY.2020/2021-Vv3

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it

Outline

Introduction
Handler / Dispatcher
Invoking Process
1. User Space Invoking process
2. Kernel Wrapper Routines
3. X86_64 Invoking Process
4. vDSO
5. Conclusions

4. System Calls p)

4. System Calls

Introduction

Advanced Operating Systems and Virtualization ’ IAG

System Calls

Operating Systems offer processes running in User Mode a set of interfaces to interact with
hardware devices. This extra layer between applications and hardware has several
advantages:

1. making programming easier by freeing programmers to study low-level programming
for hardware devices

2. increasing system security because the kernel can check the accuracy of the request at
the interface level before attempting to satisfy it

3. increasing the programs portability because they can be compiled and executed
correctly on every kernel that offers the same set of interfaces

Linux implements most interfaces between User Mode and Kernel mode by means of system
calls.

4. System Calls = 4.1 Introduction 4

POSIX APIs

There is a difference between an APl and a system call. Since the former is and function
definition and the latter is an explicit request to the kernel made via a software interrupt.

Most of the the system calls API that are provided to programmers are given by the libc and
they refer to wrapper routines whose purpose is the one of invoking a system call. Usually,
each system call has a corresponding wrapper routine but the converse is not true:

- the API could offer services directly in User Mode
- asingle API function could make several system calls
- some API could wrap extra functions, for instance malloc(), calloc() and free() all

use the brk() system call to enlarge or reduce the process heap and they keep track of
the allocations

The POSIX standard only refers to APl and not to system calls, a system that is POSIX
compliant offers the set of POSIX APIs.

4. System Calls = 4.1 Introduction [

4. System Calls

Handler / Dispatcher

Advanced Operating Systems and Virtualization ’ IAG

System Calls Handler

When a User Mode process invokes a system call the CPU switches to Kernel Mode and starts
the execution of a kernel function. In the 8086 system calls can be invoked in two ways but
both end with a jump to an assembly language function that is called the system call handler.

Each system call is identified by a system call number which must be expressed by the user
mode process before starting the invoking process. This must usually be passed in the EAX
register. All the system calls return an integer value, in general a positive or o indicates
success, while negative values indicate error, in particular the negation of the error code -- the
kernel does not set errno, that is set by wrapper routines.

The system call handler is very similar to other exception handlers (that we will see later in the
course).

4. System Calls = 4.2 Handler / Dispatcher 7

System Call Handler

The system call handler, when invoked:

1. saves the content of most registers in the Kernel Mode stack
2. handles the system call by invoking a corresponding C function called system call

service routine (viaa call)

V2.4

3. after completing the execution of the system call the registers are loaded with the values
saved in the Kernel Mode stack and the CPU is switched back to User Mode

User Mode

Kernel Mode

A xyz() { : " system call: e sys_xyz() {
A SYSCALL sys_xyz()
Ne coo e Ve
el SYSEXIT =}
sjstemall Wapperroutne Sstemall o Sstemall
_+7 invocation in in libc standard handler service routine.. _
SyStem Call " application library -
) , program
Invoking .
placeholder Figure 10-1. Invoking a system call

System Call

T~ Exiting

placeholder

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

4. System Calls = 4.2 Handler / Dispatcher 8

System Call Flow

Set syscall parameters ~ Retrieve the system call

and exploit the GATE return value and sets
;////(trap) errno\\\\x time
— Process [libc . libc | Process [—

User Space

Kernel Space

t Syscall routine

1 Dispatcher ' Dispatcher
- ' N
syscall
table
N J

4. System Calls = 4.2 Handler / Dispatcher 9

System Call Dispatch Table V2.4

To associate each system call number with its corresponding to the corresponding service
routine the kernel uses a system call dispatch table, which is stored in a fixed size array called
sys_call_table array and has NR_syscall entries (289 in v2.6), the n'" entry of the array
contains the address to the service routine for the syscall n.

Remind that NR_syscall is not the actual number of implemented system calls, is only the size
of the possible maximum number of system calls, therefore there are free slots. In general the
not-used entries points to sys_ni_syscall() which is the service routine for the
“Non-implemented” system calls that always returns - ENOSYS.

kernel/timer.c
asmlinkage long sys_getuid(void)

{
/* Only we change this so SMP safe */
return current->uid;

Example of simple syscall service routine

4. System Calls = 4.2 Handler / Dispatcher 10

System Call Dispatcher V2.4

aka system_call()

196 * Return to user mode is not as complex as all this looks,
197 * but we want the default path for a system call return to
198 * go as quickly as possible which is why some of this is
199 * less clear than it otherwise should be.

200 */

201

202 ENTRY (system_call)

203 pushl Seax # save orig_eax

204 SAVE_ALL

208 cmpl $(NR_syscalls),%eax

209 jae badsys

210 call *SYMBOL_NAME (sys_call_table) (,%eax,4)

211 movl %eax,EAX(%esp) # save the return value

212 ENTRY (ret_from_sys_call)

218 restore_éll:
219 RESTORE_ALL

https://elixir.bootlin.com/linux/2.4.31/source/arch/i386/kernel/entry.S#L 202

4. System Calls = 4.2 Handler / Dispatcher 11

https://elixir.bootlin.com/linux/2.4.31/source/arch/i386/kernel/entry.S#L202

4. System Calls

Invoking Process

Advanced Operating Systems and Virtualization ’ IAG

Entering and Exiting a System Call

Native applications can invoke a system call in two different ways:

1. by executing the int $0x80 assembly instruction, this was the only way in older versions

of the kernel
2. by executing the sysenter assembly instruction, introduced from Pentium Il and

supported from kernel 2.6

Similarly, the kernel can exit from a system call in two ways:

1. by executing iret assembly instruction
2. by executing the sysexit assembly instruction

The handlers for the two methods are:

1. system_call()

2. sysenter_entry()
However maintaining the compatibility of both strategies int/iret and sysenter/sysexit is
not easy as it might look for different reasons, for example the kernel should allow to execute
the system call even if the sysenter instruction is not supported.

4. System Calls = 4.3 Invoking Process 13

49 #define IA32_SYSCALL_VECTOR 0x80
50 #ifdef CONFIG_X86_32

i nt 0X80 51 | # define SYSCALL_VECTOR 0x80 V2.4
.L 52 #endif

The ox8o is registered during the trap_init() function as a trap géze.

365
366
367,
3

static inline void set_system_trap_gate(unsigned int n, void *addr)

BUG_ON((unsigned)n > OxFF);
_set_gate(n, GATE_TRAP, ad(Ijr, 0x3, 0, _ KERNEL_CS);
.7 !

69 t 27 / s
7/ /// |I II /,z
Trap Gate Descriptor PR : ! L’
- -
63 62 61 60 59 58 57 56 55‘54’5/3 52 51 50 49 48 47‘l 46 M5 44,43’42 41 40 39 38 37 36 35 34 33 32
-
1| D
OFFSET (16-31) PuL/P’II 0{1{1{1{1[{0|0|0| RESERVED
1
yak :
SEGMENT SELECTOR \ OFFSET (0-15)

3130292827 262524232221201918171615141312110 9 8 7 6 543210

824 void __init trap_init(void)

825 {

836 set_intr_gate(0, ÷_error);

837 set_intr_gate_ist(2, &nmi, NMI_STACK),

838 /* int4 can be called from all */

839 set_system intr_gate(4, &overflow),

840 set_intr_gate(5, &bounds);

841 set_intr_gate(6, &invalid_op);

842 set_intr_gate(7, &device_not_

843 #ifdef CONFIG_X86_ 32

844 set_task_gate(8, GDT_ENTRY DOUBLEFAU

845 #else

846 set_intr_gate_ist(8, &dgfible_fault/ DOUBLEFAULT_STACK) ;
847 #endif

848 set_intr_gate(9, &copfrocessor_segment_overrun);
849 set_intr_gate(10,

870 #ifdef CONFTG X8 32 /

S set_system_trap_gate(SYSCALL_VECTOR, &system_call);
872

873

881

4. System Calls = 4.3 Invoking Process

Set_bi = ,_used_vectors);
#endif
} System call handler

https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/kernel/traps.c#L 824

https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/kernel/traps.c#L824

sysenter/sysexit
aka Fast System Call

The int assembly instruction is inherently slow, because it performs several consistency and
security checks. The sysenter instruction is called Fast System Call by Intel, since it provides a
faster way to switch from User to Kernel Mode, the instruction make use of three MSR
registers (remember they are loaded with wrmsr and read with rdmsr - see Lab#3):

SYSENTER_CS_MSR
The Segment Selector of the kernel code segment

SYSENTER _EIP MSR
The linear address of the kernel entry point

SYSENTER_ESP_MSR
The kernel stack pointer

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

https://wiki.osdev.org/SYSENTER

4. System Calls = 4.3 Invoking Process 15

https://wiki.osdev.org/SYSENTER

The vsyscall page 2

Obviously a libc wrapper can use the systenter instruction only if both the CPU and the Linux
kernel supports it. This compatibility problem has a non-trivial solution.

During the kernel initialization phase the function sysenter_setup() builds a page frame
called vsyscall page, containing a tiny ELF dynamic library. When a process issues an execve()
system call to start executing an ELF program, the code in the vsyscall page is dynamically
linked to the process address space. The code in that page uses the best available instruction
to issue a system call, int $0x80 or sysenter.

Whenever a wrapper routine in the libc must invoke a system call it calls the function
__kernel_vsyscall(), in the vsyscall page.

The vsyscall page has been replaced with the vDSO (see end of this pack of slides).

4. System Calls = 4.3 Invoking Process 16

sysenter/sysexit
Procedure

sysenter

1. CSregister set to the value of (SYSENTER_CS_MSR) (points to __KERNEL_CS)

2. EIP register set to the value of (SYSENTER_EIP_MSR) (points to sysenter_entry())
3. SSregister set to the sum of (8 plus the value in SYSENTER_CS_MSR)

4. ESPregister set to the value of (SYSENTER_ESP_MSR)

sysexit

1. CSregister set to the sum of (16 + SYSENTER_CS_MSR)
2. EIPregister set to the value contained in the EDX register
3. SSregister set to the sum of (24 + SYSENTER_CS_MSR)
4. ESPregister set to the value contained in the ECX register

https://wiki.osdev.org/SYSENTER

4. System Calls = 4.3 Invoking Process 17

https://wiki.osdev.org/SYSENTER

Parameter Passing

Independently by int/ret or sysenter/sysexit the system call handler has always at least one
parameter: the system call number, always passed in the eax register.

The parameters of ordinary C functions are usually passed in the stack (CDECL standard) but
since system calls are special functions that cross user and kernel lands, neither the user mode
nor the kernel mode stacks can be used. For this reason the parameters are written in CPU
registers before issuing the system call. The syscall dispatcher then copies the parameters
stored in the CPU registers onto the Kernel Mode stack before invoking the system call service
routine because the latter is a standard C function.

Why the kernel does not copy the parameters from the User Mode stack directly into the
Kernel Mode one?

4. System Calls = 4.3 Invoking Process 18

Parameter Passing

RSP

RBP =

: I RSP B I

arg5 arg5
argé6 arg6
_NR X _NR X
€ ~ | interrupt € x | interrupt interrupt
% g f o 3 frame frame
RBP ——— . RBP
DISPATCHER PARAMETERS COPY SYSCALL

4. System Calls = 4.3 Invoking Process

Parameter Passing

However, passing parameters in registers requires two conditions:
- thelength is maximum the length of a register (32bit)
- the number of parameters cannot exceed six

In any case we can use pointers to memory areas. The registers used are in order eax, ebx, ecx,
edx, esi, edi and ebp. The register copy in the stack is done by the SAVE_ALL macro and the
return code of the syscall is always put in eax.

In some cases, even if the system call does not use parameters, we need to know the content
of CPU registers (e.g. do_fork()), in these cases a single parameter of type pt_regs allows
the service routine to access the values saved in the kernel mode stack by SAVE_ALL.

4. System Calls = 4.3 Invoking Process 20

pt_regs

pt_regs

4. System Calls = 4.3 Invoking Process

~
* % % % % ok %k ok kX X X X X * F

*
~

0 (%esp)
4 (%Sesp)
8 (%$esp)
C (%esp)
10 (%esp)
14 (%esp)
18 (%$esp)
1C (%esp)
20 (%esp)
24 (%esp)
28 (%esp)
2C (%esp)
30 (%esp)
34 (%esp)
38 (%esp)

$ebx
$ecx
$edx
%esi
$edi
%ebp
$eax
%ds
ses
orig eax
%eip

%cs
%eflags
%oldesp
%oldss

<

V2.4

— arguments

Syscall number

— Interrupt frame

21

4.3.1

4. System Calls
3. Invoking Process

User Space Invoking process

Advanced Operating Systems and Virtualization ’ IAG

Compile Time Syscall interface V2.4

The mapping to system call numbers for using in a user space program are defined in the
header include/asm-xxx/unistd.h.

In that header we will find:

- system call numerical codes, that are numbers used to invoke a syscall for userspace
and also a displacement in the syscall table for kernel space

- the Kernel Wrapper Routines, namely standard macros to let userspace access the gate
to the Kernel, there is a macro for each range of parameters, fromoto 6

4. System Calls = 4.3 Invoking Process = 4.3.1 User Space Invoking Process 23

System Call Codes V2.4

4 /*

5 * This file contains the system call numbers.

6 */

7

8 #define __NR_exit 1

9 #define __NR_fork 2
10 #define __NR_read 3
11 #define _ NR write 4
12 #define __ NR_open 5
13 #define _ NR_close 6
14 #define _ NR waitpid 7
15 #define __NR_creat 8
16 #define __NR_link 9
17 #define __NR_unlink 10
18 #define __NR_execve 11
19 #define __NR_chdir 12
20 #define __NR_time 13
255 #define _ NR io submit 248
256 #define __NR_io_cancel 249
251 #define _ NR_alloc_hugepages 250
258 #define __ NR_free_hugepages 251
259 #define __ NR exit_group 252

4. System Calls = 4.3 Invoking Process = 4.3.1 User Space Invoking Process 24

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L8

syscall()

syscall() is a construct that has been added in kernel 2.6 for the Pentium 3 chip, it is
implemented through glibc (stdlib.h) and its role is to trigger a trap to execute a generic
system call.

SYSCALL(2) Linux Programmer's Manual SYSCALL(2)

NAME
syscall - indirect system call

SYNOPSIS
#include <unistd.h>
#include <sys/syscall.h> /* For SYS_xxx definitions */

long syscall(long number, ...);

The first argument is the system call number, the other parameters are the input for the
system call code. The function is based on new x86 instructions: sysenter |/ sysexit or
syscall/sysret (initially for AMD chips). See man syscall (L).

4. System Calls = 4.3 Invoking Process = 4.3.1 User Space Invoking Process 25

https://linux.die.net/man/2/syscall

Complete path

If the kernel supports the vsyscall this is the complete path for calling a system call, suppose
that you called syscall() from User Space, the function calls __kernel_vsyscall(), then

1. If the CPU does not support sysenter the function is

__kernel vsyscall:
int $0x80
ret

2. Ifthe CPU supports sysenter the function is:

__kernel vsyscall:
pushl %ecx
pushl %edx

PUShlo %ebp . These registers are going

movl %esp, %ebp to be used by the system

sysenter call handler so they are
saved

4. System Calls = 4.3 Invoking Process = 4.3.1 User Space Invoking Process 26

Complete path

(1) int $0x80

1.

int raises the interrupt at 0x80 index, that is a Trap Gate associated to the handler
system_call() routine, namely the System Call Dispatcher
The dispatcher saves the CPU registers in the stack with SAVE_ALL macro
The validity of the system call number is checked against the NR_syscalls number
a. If not valid the function stores -ENOSYS in the eax position in the stack and then
jumps to resume_userspace()
b. Otherwise the the system call service routine is called with the number passed in
eax
When the system call service routines terminates system_calls gets its return code from
eax and stores it the eax position in the stack
The kernel checks if there is some other work to do before returning in user mode (e.g.
other interrupts, this will be clearer in next lectures)
RESTORE_ALL restores the contents of registers

4. System Calls = 4.3 Invoking Process = 4.3.1 User Space Invoking Process 27

Complete path
(2) sysenter

ebp, edx and ecx content are saved in the stack and esp is copied in ebp

the sysenter assembly instruction switches the CPU in kernel mode directly at the
function sysenter_entry(), the System Call Handler

Sets up the kernel stack pointer

Enable local interrupts with sti command

Performs some operations that emulates the int assembly instruction

Invokes the System Call Service Routine is invoked exactly like int $0x80 at the start of
system_call()

7. The sysexit assembly instruction is used for returning in User Mode

Sov W

4. System Calls = 4.3 Invoking Process = 4.3.1 User Space Invoking Process 28

4.3.2

4. System Calls
3. Invoking Process

Kernel Wrapper Routines

Advanced Operating Systems and Virtualization ’ IAG

Kernel Wrapper Routines V2.4

Although system calls are used mainly by User Mode processes, they can also be invoked by
kernel threads, which cannot use library functions. To simplify the declarations of the
corresponding wrapper routines, Linux defines a set of seven macros called _syscall®
through _syscallé, where the number in the name is the number of the pass-able
parameters (excluding the system call number).

_syscallX(type, name, typel, argl,)

Examples
The wrapper routine to the fork() system call could be
_syscallo(int, fork)

The wrapper routine towrite() could be:
_syscall3(int, write, int, fd, const char*, buf, unsigned int, count)

4. System Calls = 4.3 Invoking Process = 4.3.2 Kernel Wrapper Routines 30

o-parameters call V2.4

273 #define _syscallO(type,name) \
274 type name(void) \

275 {\

276 long _res; \

277 _asm__ volatile ("int $0x80" \
278 p "=a" _(__res) \

279 : "0" (__NR ##name)); \
280 __syscall_return(type, res); \

281 }

4. System Calls = 4.3 Invoking Process = 4.3.2 Kernel Wrapper Routines 31

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L8

__syscall_return V2.4

261 /* user-visible error numbers are in the range -1 - -124: see <asm-1386/errno.h> */
262

263 #define _ syscall_return(type, res) \

264 do { \

265 if ((unsigned long)(res) >= (unsigned long)(-125)) { \

266 errno = -(res); \

267 res = -1; \

268 X

269 return (type) (res); \

270 } while (0)

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#1 263

?

4. System Calls = 4.3 Invoking Process = 4.3.2 Kernel Wrapper Routines

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L263

1-parameter call V2.4

283 #define _syscalll(type,name,typel,argl) \
284 type name(typel argl) \

285 {\

286 long __res; \

287 _asm__ volatile ("int $6x80" \

288 : "=a" (__res) \

289 : "0" (__NR ##name),"b" ((long)(argl))); \
290 __syscall _return(type, res); \

291 s

4. System Calls = 4.3 Invoking Process = 4.3.2 Kernel Wrapper Routines 33

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L283

6-parameters call V2.4

337 #define _syscallé6(type,name,typel,argl, type2,arg2,type3,arg3, typed,args, \

338 type5,arg5, type6,arg6) \

339 type name (typel argl,type2 arg2,type3 arg3,typed arg4,type5 arg5,type6 arg6) \
340 {\

341 long __res; \

342 __asm__ volatlle ("push %%ebp ; movl %%eax,%%ebp ; movl %1,%%eax ; int $0x80 ; pop %%ebp" \
343 : "=a" (__res) \

344 s uge € NR _##name) ,"b" ((long) (argl)),"c" ((long)(arg2)), \

345 "d" ((long)(arg3)), "S" ((long) (arg4)), "D" ((long) (arg5)), \

346 "0" ((long)(arg6)));

347 __syscall_return(type,__res); \

348 }

4. System Calls = 4.3 Invoking Process = 4.3.2 Kernel Wrapper Routines 34

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L337

Newer kernel versions

On latest version of the kernel, the Kernel Wrapper Routines are defined in
tools/include/nolibc/nolibc.h, again they are specifically available for minimal programs
which does not use the libc wrappers. They consists of three levels:

1. the macro assembly routines from my_syscall® to my_syscall6, architecture

dependent (as the previous ones)
2. functions called sys_<name_of_the_syscall> which maps to the macros of the first

level
3. call definition as libc does, also sets the errno

Further information are in the file include/nolibc/nolibc.h

4. System Calls = 4.3 Invoking Process = 4.3.2 Kernel Wrapper Routines 35

https://elixir.bootlin.com/linux/v5.11/source/tools/include/nolibc/nolibc.h

Do not call system calls from kernel.

System calls are, as stated above, interaction points between userspace and the kernel.
Therefore, system call functions such as sys_xyzzy() or compat_sys_xyzzy() should only be
called from userspace via the syscall table, but not from elsewhere in the kernel. If the syscall
functionality is useful to be used within the kernel, needs to be shared between an old and a new
syscall, or needs to be shared between a syscall and its compatibility variant, it should be
implemented by means of a “helper” function (such as ksys_xyzzy()). This kernel function may
then be called within the syscall stub (sys_xyzzy()), the compatibility syscall stub
(compat_sys_xyzzy()), and/or other kernel code.

-- https://www.kernel.orag/doc/html/latest/process/adding-syscalls.html

4. System Calls = 4.3 Invoking Process = 4.3.2 Kernel Wrapper Routines 36

https://www.kernel.org/doc/html/latest/process/adding-syscalls.html

Syscall Table

The kernel level system call table is defined in specific files:

- forKernel 2.4.200ni386 it is defined in arch/1386/kernel/entry.S

- forKernel 2.6isin arch/x86/kernel/syscall_table32.S

- more recent versions: arch/x86/entry/syscalls/syscall_32.tbl
The entries in the table keep a reference to the kernel-level system call implementation and
typically, the kernel-level name of the system call service routine resembles the one used at
application level but starts with the “sys_" prefix.

4. System Calls = 4.3 Invoking Process = 4.3.2 Kernel Wrapper Routines 37

Syscall Table 5

For x86 architecture

1 #
2 # 32-bit system call numbers and entry vectors
3 #
4 # The format is:
5 # <number> <abi> <name> <entry point> <compat entry point>
6 #
7 # The ia32 sys and _ ia32 compat sys stubs are created on-the-fly for
8 # sys *() system calls and compat _sys *() compat system calls if
9 # IA32 EMULATION is defined, and expect struct pt regs *regs as their only
10 # parameter.
11 #
12 # The abi is always "i386" for this file.
1! #
14 0 1386 restart syscall sys_restart syscall
15 1 1386 exit sys exit
16 2 1386 fork sys fork
— 17 3 1386 read sys_read
18 4 1386 write sys write
19 5 1386 open sys_open compat sys op
20 6 1386 close sys_close
21 7 1386 waitpid sys waitpid
443 436 1386 close range sys_close_range
444 437 1386 openat2 sys_openat2
445 438 1386 pidfd getfd sys _pidfd _getfd
446 439 1386 faccessat2 sys faccessat2
447 440 1386 process madvise sys _process_madvise
448 441 1386 epoll pwait2 sys_epoll pwait2 compat_sys

https://elixir.bootlin.com/linux/vs.11/source/arch/x86/entry/syscalls/syscall 32.tbl

4. System Calls = 4.3 Invoking Process = 4.3.2 Kernel Wrapper Routines 38

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/entry/syscalls/syscall_32.tbl

Defining a syscall service routine v5.11

642 SYSCALL_DEFINE3(read, unsigned int, fd, char __user *, buf, size_t, count)

643 {
244 . return ksys_read(fd, buf, count); < System call actual implementation
45

https://elixir.bootlin.com/linux/vs.11/source/fs/read write.c#L 642

213 #define SYSCALL_DEFINE1(name,
214 #define SYSCALL_DEFINE2 (name,

(SYSCALL_DEFINEx
(
215 #define SYSCALL_DEFINE3(name,
(
(
(

(1, ##name, VA ARGS)

SYSCALL_DEFINEx(2, ##name, _ VA ARGS)

SYSCALL_DEFINEx(3, ##name, VA ARGS)

216 #define SYSCALL_DEFINE4(name, SYSCALL_DEFINEx (4, ##name, _ VA ARGS 1
217 #define SYSCALL_DEFINES (name, (5;
(6,

218 #define SYSCALL_DEFINEG6 (name,

228 /*
SYSCALL_DEFINEXx _##name, VA : ; p p :
SYSCALL_DEFINEx — 229 *| The asmlinkage stub is aliased to a function named _ se sys *() which

—_—— — — — —

_##name, 7VA:

230 *| sign-extends 32-bit ints to longs whenever needed. The actual work is
219 . *ldone within _ do sys *().
220 #define SYSCALL_DEFINE_MAXARGS 6 *
2211 ~ #ifndef __ SYSCALL_DEFINEXx
222 #define SYSCALL_DEFINEx(x,“sname, ...) . #define _ SYSCALL_DEFINEx(x, name, ...) \
223 SYSCALL_METADATA(sname, x, VA ARGS) _d::.ag_rljush(); . . \
224 __SYSCALL_DEFINEx(x, sname, _ VA ARGS) __diag_ignore(GCC, 8, "-Wattribute-alias", \
225 T T "Type aliasing is used to sanitize syscall arguments");\
- 238 asmlinkage long sys##name(__ MAP(x,__ SC_DECL, VA ARGS_)) \
https://elixir.bootlin.com/linux/vs.11/source/include/linux/syscalls.h#L 215 239 " attribute_ ((alias(_ stringify(se sys##name)))): A
240 ALLOW_ERROR_INJECTION (sys##name, ERRNO); \
241 static inline long _ do_sys##name(__MAP(x,__SC_DECL, VA ARGS_));\
242 asmlinkage long se sys##name(__MAP(x,__SC_LONG, VA ARGS)); \
243 asmlinkage long se sys##name(__MAP(x,__SC_LONG, VA ARGS)) \
* H 244 { \
The __S€_Sys_ StUb IS Created forfurther 245 long ret = do sys##name(__MAP(x,__SC_CAST, VA ARGS));\
H H * 246 _ MAP(x,__SC_TEST, VA ARGS); \
prOteCtlon and In the end Ca”S __dO_SyS_ 247 _ PROTECT(x, ret,_ MAP(x,__SC_ARGS, VA ARGS)); \
. . . 24 .
which calls the original ksys_read g ; kU (e .
256 __diag_pop(); \
251 static inline long do sys##name(__MAP(x,__SC_DECL, VA ARGS))

252 #endif /* SYSCALL DEFINEx */

4. System Calls = 4.3 Invoking Process = 4.3.2 Kernel Wrapper Routines 39

https://elixir.bootlin.com/linux/v5.11/source/fs/read_write.c#L642
https://elixir.bootlin.com/linux/v5.11/source/include/linux/syscalls.h#L215

4.3.3

4. System Calls
3. Invoking Process

x86_64 Invoking process

Advanced Operating Systems and Virtualization ’ IAG

syscall/sysret

On x86_64 by AMD, there is a similar Fast System Call strategy that is based on the syscall and
sysret assembly instructions. Again:

- itis based on MSR registers
- itisinvolved in the vsyscall page, now improved and called vDSO

During the initialization phase of the kernel the function syscall_init() initializes the

registers
1749 void syscall_init(void)
1750 {
1751 wrmsr (MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1752 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1767 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1768 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1769 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, OULL);
1770 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, OULL);

https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/vdso/vdso32-setup.c#L 283

https://wiki.osdev.org/SYSENTER

4. System Calls = 4.3 Invoking Process = 4.3.3 x86_64 Invoking Process 41

https://wiki.osdev.org/SYSENTER
https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/vdso/vdso32-setup.c#L283

Syscall Calling Conventions

/*
* Register setup:
* rax system call number
* rdi argo
* rcx ret.address for syscall/sysret, userspace arg3
* rsi argl
* rdx arg2
* r10 arg3 (--> to rcx for userspace)
* r8 arg4
* r9 arg5s
* r11 eflags for syscall/sysret, temporary for C
* r12-r15,rbp,rbx saved by C code, not touched.
*
* Interrupts are off on entry.
* Only called from user space.
*
/

https://elixir.bootlin.com/linux/vs.11/source/arch/x86/entry/entry 64.S

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/entry/entry_64.S

Compatibility

Intel x86_64 ISA and AMD are similar but they are not the same. In particular
- In 64-bit Long Mode - only SYSCALL works on both ISAs. (SYSENTER doesn't work on
AMD.)

- In Legacy Mode - only SYSENTER works on both ISAs. (SYSCALL doesn't work on Intel.)

- There's no single instruction that works on both Intel and AMD in Compatibility Mode
(SYSENTER doesn't work on AMD and SYSCALL doesn't work on Intel), but there's no need
for one. A 32-bit kernel W/ll stay in Legacy Mode after boot.

4. System Calls = 4.3 Invoking Process = 4.3.3 x86_64 Invoking Process 43

https://reverseengineering.stackexchange.com/questions/16454/struggling-between-syscall-or-sysenter-windows

4. System Calls

vDSO

Advanced Operating Systems and Virtualization ’ IAG

From vsyscall to vDSO

The vsyscall page had several limitations:

- it was fixed in size
- it was allocated always at the same address in processes

The vDSO that stands for Virtual Dynamic Shared Object has been introduced for solving the
security issues of the vsyscall architecture. The vDSO is dynamically allocated which solves
security concerns. The vDSO links are provided via the glibc library. The linker will link in the glibc
vDSO functionality, provided that such a routine has an accompanying vDSO version, such as
gettimeofday system call. When your program executes, if your kernel does not have vDSO
support, a traditional syscall will be made.

https://lwn.net/Articles/446528/

4. System Calls = 4.4 vDSO

45

https://lwn.net/Articles/446528/

Exposing vDSO

#include <sys/auxv.h>
void *vdso = (uintptr_t) getauxval(AT_SYSINFO_EHDR);

The vDSO is a small shared library that the kernel automatically maps into the address space
of all user-space applications. Applications usually do not need to concern themselves with
these details as the vDSO is most commonly called by the C library. This way you can code in
the normal way using standard functions and the C library will take care of using any
functionality that is available via the vDSO.

https://linux.die.net/man/3/getauxval

4. System Calls = 4.4 vDSO JAS)

https://linux.die.net/man/3/getauxval

vDSO Entry Point

__kernel _vsyscall:
push %ecx
push %edx
push %ebp
movl %esp,%ebp
sysenter
nop
[/* 14: System call restart point is here! */
int $0x80
/* 16: System call normal return point is here! */
pop %ebp
pop %edx
pop %ecx
ret

vDSO Content

16 /* The ELF entry point can be used to set the AT SYSINFO value. */
17 ENTRY (__kernel_vsyscall);

18

19 i/ *

20 * This controls what userland symbols we export from the vDSO.
21 */

22 VERSION

23 {

24 LINUX 2.6 {

25 global:

26 __vdso_clock_gettime;
27 __vdso_gettimeofday;
28 __vdso_time;

29 __vdso_clock_getres;
30 __vdso_clock_gettime64;
31 b

82

33 LINUX 2.5 {

34 global:

35 __kernel_vsyscall,;

36 __kernel_sigreturn;

37 __kernel_rt_sigreturn;
38 local: *;

39 };

40 }

https://elixir.bootlin.com/linux/vs.11/source/arch/x86/entry/vdso/vdso32/vdso32.1ds.S#L17

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/entry/vdso/vdso32/vdso32.lds.S#L17

Remarks

The vDSO Kernel entry point exploits flat addressing to bypass segmentation and the related

operations, it therefore reduces the number of accesses to memory in order to support the
change to kernel mode.

Studies show that the reduction of clock cycles for system calls can be in the order of 75%

4. System Calls = 4.4 vDSO

49

4. System Calls

Conclusions

Advanced Operating Systems and Virtualization ’ IAG

Epilogue

32-bit userspace 64-bit userspace
EAX=3; EAX=3; RAX=0;
| INT Ox80 SYSENTER [SYSCALL
Z Y T
Via trap gate for Q/la trap gate for j Via MSR for Via MSR for /«la MSR for
SYSCALL_VECTOR \IA32_SYSCALL_VECTOR /MSR_IA32_SYSENTER_EIP MSR_IA32 SYSENTER_EIP MSR_LSTAR
‘Kernel x86_32 Assembly / X Kernel.x 6_64 Assembly l
system_call() ia32_sysenter_target() ia32_syscall() ia32_sysenter_target() system_call()
kernelfentry_32.5 kernel/entry_32.5 ia32/ia32entry.S ia32fia32entry.S kernel/entry_64.5
ST ~ T 7i 7
sys_call_table sys_call_table [ia32_sys_call_table /ia32_sys_call_table sys_call_table
(3] 3] 3] (31 [0]

sys_read()
fsfread write.c

SYSC_read()

4. System Calls = 4.5 Conclusions 51

Advanced Operating Systems and

Virtualization
[4] System Calls

LECTURER
Gabriele Proietti Mattia

BASED ON WORK BY

http://www.ce.uniroma?2.it/~pellegrini/

gpm.name - proiettimattia@diag.uniromaz.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

