
Department of Computer,
Control and Management
Engineering “A. Ruberti”,
Sapienza University of Rome

Advanced Operating Systems
and Virtualization

[4] System Calls

Gabriele Proietti Mattia

gpm.name · proiettimattia@diag.uniroma1.it A.Y. 2020/2021 · v3

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it

Outline

4. System Calls 2

1. Introduction
2. Handler / Dispatcher
3. Invoking Process

1. User Space Invoking process
2. Kernel Wrapper Routines
3. X86_64 Invoking Process

4. vDSO
5. Conclusions

Introduction

4.1

Advanced Operating Systems and Virtualization

4. System Calls

System Calls

4. System Calls ⇒ 4.1 Introduction

Operating Systems offer processes running in User Mode a set of interfaces to interact with
hardware devices. This extra layer between applications and hardware has several
advantages:

1. making programming easier by freeing programmers to study low-level programming
for hardware devices

2. increasing system security because the kernel can check the accuracy of the request at
the interface level before attempting to satisfy it

3. increasing the programs portability because they can be compiled and executed
correctly on every kernel that offers the same set of interfaces

Linux implements most interfaces between User Mode and Kernel mode by means of system
calls.

4

POSIX APIs
There is a difference between an API and a system call. Since the former is and function
definition and the latter is an explicit request to the kernel made via a software interrupt.

Most of the the system calls API that are provided to programmers are given by the libc and
they refer to wrapper routines whose purpose is the one of invoking a system call. Usually,
each system call has a corresponding wrapper routine but the converse is not true:

- the API could offer services directly in User Mode
- a single API function could make several system calls
- some API could wrap extra functions, for instance malloc(), calloc() and free() all

use the brk() system call to enlarge or reduce the process heap and they keep track of
the allocations

The POSIX standard only refers to API and not to system calls, a system that is POSIX
compliant offers the set of POSIX APIs.

54. System Calls ⇒ 4.1 Introduction

Handler / Dispatcher

4.2

Advanced Operating Systems and Virtualization

4. System Calls

System Calls Handler
When a User Mode process invokes a system call the CPU switches to Kernel Mode and starts
the execution of a kernel function. In the 8086 system calls can be invoked in two ways but
both end with a jump to an assembly language function that is called the system call handler.

Each system call is identified by a system call number which must be expressed by the user
mode process before starting the invoking process. This must usually be passed in the EAX
register. All the system calls return an integer value, in general a positive or 0 indicates
success, while negative values indicate error, in particular the negation of the error code -- the
kernel does not set errno, that is set by wrapper routines.

The system call handler is very similar to other exception handlers (that we will see later in the
course).

74. System Calls ⇒ 4.2 Handler / Dispatcher

The system call handler, when invoked:

1. saves the content of most registers in the Kernel Mode stack
2. handles the system call by invoking a corresponding C function called system call

service routine (via a call)
3. after completing the execution of the system call the registers are loaded with the values

saved in the Kernel Mode stack and the CPU is switched back to User Mode

System Call Handler

84. System Calls ⇒ 4.2 Handler / Dispatcher

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

System Call
Invoking
placeholder

System Call
Exiting
placeholder

v2.4

System Call Flow

94. System Calls ⇒ 4.2 Handler / Dispatcher

Process

User Space

Kernel Space

libc

Set syscall parameters
and exploit the GATE
(trap) time

Dispatcher

Syscall routine

Dispatcher

libc Process

syscall
table

Retrieve the system call
return value and sets

errno

System Call Dispatch Table
To associate each system call number with its corresponding to the corresponding service
routine the kernel uses a system call dispatch table, which is stored in a fixed size array called
sys_call_table array and has NR_syscall entries (289 in v2.6), the nth entry of the array
contains the address to the service routine for the syscall n.

Remind that NR_syscall is not the actual number of implemented system calls, is only the size
of the possible maximum number of system calls, therefore there are free slots. In general the
not-used entries points to sys_ni_syscall() which is the service routine for the
“Non-implemented” system calls that always returns -ENOSYS.

104. System Calls ⇒ 4.2 Handler / Dispatcher

Example of simple syscall service routine

v2.4

System Call Dispatcher

114. System Calls ⇒ 4.2 Handler / Dispatcher

v2.4

https://elixir.bootlin.com/linux/2.4.31/source/arch/i386/kernel/entry.S#L202

aka system_call()

https://elixir.bootlin.com/linux/2.4.31/source/arch/i386/kernel/entry.S#L202

Invoking Process

4.3

Advanced Operating Systems and Virtualization

4. System Calls

Entering and Exiting a System Call
Native applications can invoke a system call in two different ways:

1. by executing the int $0x80 assembly instruction, this was the only way in older versions
of the kernel

2. by executing the sysenter assembly instruction, introduced from Pentium II and
supported from kernel 2.6

Similarly, the kernel can exit from a system call in two ways:

1. by executing iret assembly instruction
2. by executing the sysexit assembly instruction

The handlers for the two methods are:

1. system_call()
2. sysenter_entry()

However maintaining the compatibility of both strategies int/iret and sysenter/sysexit is
not easy as it might look for different reasons, for example the kernel should allow to execute
the system call even if the sysenter instruction is not supported.

134. System Calls ⇒ 4.3 Invoking Process

int $0x80
The 0x80 is registered during the trap_init() function as a trap gate.

144. System Calls ⇒ 4.3 Invoking Process

https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/kernel/traps.c#L824

System call handler

v2.4

https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/kernel/traps.c#L824

sysenter/sysexit

154. System Calls ⇒ 4.3 Invoking Process

aka Fast System Call

The int assembly instruction is inherently slow, because it performs several consistency and
security checks. The sysenter instruction is called Fast System Call by Intel, since it provides a
faster way to switch from User to Kernel Mode, the instruction make use of three MSR
registers (remember they are loaded with wrmsr and read with rdmsr - see Lab#3):

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

https://wiki.osdev.org/SYSENTER

https://wiki.osdev.org/SYSENTER

The vsyscall page
Obviously a libc wrapper can use the systenter instruction only if both the CPU and the Linux
kernel supports it. This compatibility problem has a non-trivial solution.

During the kernel initialization phase the function sysenter_setup() builds a page frame
called vsyscall page, containing a tiny ELF dynamic library. When a process issues an execve()
system call to start executing an ELF program, the code in the vsyscall page is dynamically
linked to the process address space. The code in that page uses the best available instruction
to issue a system call, int $0x80 or sysenter.

Whenever a wrapper routine in the libc must invoke a system call it calls the function
__kernel_vsyscall(), in the vsyscall page.

The vsyscall page has been replaced with the vDSO (see end of this pack of slides).

164. System Calls ⇒ 4.3 Invoking Process

v2.6

sysenter/sysexit

174. System Calls ⇒ 4.3 Invoking Process

Procedure

sysenter

1. CS register set to the value of (SYSENTER_CS_MSR) (points to __KERNEL_CS)
2. EIP register set to the value of (SYSENTER_EIP_MSR) (points to sysenter_entry())
3. SS register set to the sum of (8 plus the value in SYSENTER_CS_MSR)
4. ESP register set to the value of (SYSENTER_ESP_MSR)

sysexit

1. CS register set to the sum of (16 + SYSENTER_CS_MSR)
2. EIP register set to the value contained in the EDX register
3. SS register set to the sum of (24 + SYSENTER_CS_MSR)
4. ESP register set to the value contained in the ECX register

https://wiki.osdev.org/SYSENTER

https://wiki.osdev.org/SYSENTER

Parameter Passing
Independently by int/ret or sysenter/sysexit the system call handler has always at least one
parameter: the system call number, always passed in the eax register.

The parameters of ordinary C functions are usually passed in the stack (CDECL standard) but
since system calls are special functions that cross user and kernel lands, neither the user mode
nor the kernel mode stacks can be used. For this reason the parameters are written in CPU
registers before issuing the system call. The syscall dispatcher then copies the parameters
stored in the CPU registers onto the Kernel Mode stack before invoking the system call service
routine because the latter is a standard C function.

Why the kernel does not copy the parameters from the User Mode stack directly into the
Kernel Mode one?

184. System Calls ⇒ 4.3 Invoking Process

Parameter Passing

194. System Calls ⇒ 4.3 Invoking Process

Parameter Passing

204. System Calls ⇒ 4.3 Invoking Process

However, passing parameters in registers requires two conditions:

- the length is maximum the length of a register (32bit)
- the number of parameters cannot exceed six

In any case we can use pointers to memory areas. The registers used are in order eax, ebx, ecx,
edx, esi, edi and ebp. The register copy in the stack is done by the SAVE_ALL macro and the
return code of the syscall is always put in eax.

In some cases, even if the system call does not use parameters, we need to know the content
of CPU registers (e.g. do_fork()), in these cases a single parameter of type pt_regs allows
the service routine to access the values saved in the kernel mode stack by SAVE_ALL.

pt_regs

214. System Calls ⇒ 4.3 Invoking Process

v2.4

User Space Invoking process

4.3.1

Advanced Operating Systems and Virtualization

4. System Calls
3. Invoking Process

Compile Time Syscall interface
The mapping to system call numbers for using in a user space program are defined in the
header include/asm-xxx/unistd.h.

In that header we will find:

- system call numerical codes, that are numbers used to invoke a syscall for userspace
and also a displacement in the syscall table for kernel space

- the Kernel Wrapper Routines, namely standard macros to let userspace access the gate
to the Kernel, there is a macro for each range of parameters, from 0 to 6

234. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.1 User Space Invoking Process

v2.4

System Call Codes

244. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.1 User Space Invoking Process

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L8

v2.4

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L8

syscall()

4. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.1 User Space Invoking Process

syscall() is a construct that has been added in kernel 2.6 for the Pentium 3 chip, it is
implemented through glibc (stdlib.h) and its role is to trigger a trap to execute a generic
system call.

The first argument is the system call number, the other parameters are the input for the
system call code. The function is based on new x86 instructions: sysenter / sysexit or
syscall/sysret (initially for AMD chips). See man syscall (L).

25

SYSCALL(2) Linux Programmer's Manual SYSCALL(2)

NAME
 syscall - indirect system call

SYNOPSIS
 #include <unistd.h>
 #include <sys/syscall.h> /* For SYS_xxx definitions */

 long syscall(long number, ...);

https://linux.die.net/man/2/syscall

Complete path
If the kernel supports the vsyscall this is the complete path for calling a system call, suppose
that you called syscall() from User Space, the function calls __kernel_vsyscall(), then

1. If the CPU does not support sysenter the function is

2. If the CPU supports sysenter the function is:

264. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.1 User Space Invoking Process

These registers are going
to be used by the system
call handler so they are
saved

Complete path

1. int raises the interrupt at 0x80 index, that is a Trap Gate associated to the handler
system_call() routine, namely the System Call Dispatcher

2. The dispatcher saves the CPU registers in the stack with SAVE_ALL macro
3. The validity of the system call number is checked against the NR_syscalls number

a. If not valid the function stores -ENOSYS in the eax position in the stack and then
jumps to resume_userspace()

b. Otherwise the the system call service routine is called with the number passed in
eax

4. When the system call service routines terminates system_calls gets its return code from
eax and stores it the eax position in the stack

5. The kernel checks if there is some other work to do before returning in user mode (e.g.
other interrupts, this will be clearer in next lectures)

6. RESTORE_ALL restores the contents of registers

274. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.1 User Space Invoking Process

(1) int $0x80

Complete path

1. ebp, edx and ecx content are saved in the stack and esp is copied in ebp
2. the sysenter assembly instruction switches the CPU in kernel mode directly at the

function sysenter_entry(), the System Call Handler
3. Sets up the kernel stack pointer
4. Enable local interrupts with sti command
5. Performs some operations that emulates the int assembly instruction
6. Invokes the System Call Service Routine is invoked exactly like int $0x80 at the start of

system_call()
7. The sysexit assembly instruction is used for returning in User Mode

284. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.1 User Space Invoking Process

(2) sysenter

Kernel Wrapper Routines

4.3.2

Advanced Operating Systems and Virtualization

4. System Calls
3. Invoking Process

Kernel Wrapper Routines

304. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.2 Kernel Wrapper Routines

Although system calls are used mainly by User Mode processes, they can also be invoked by
kernel threads, which cannot use library functions. To simplify the declarations of the
corresponding wrapper routines, Linux defines a set of seven macros called _syscall0
through _syscall6, where the number in the name is the number of the pass-able
parameters (excluding the system call number).

_syscallX(type, name, type1, arg1,)

Examples

The wrapper routine to the fork() system call could be

_syscall0(int, fork)

The wrapper routine to write() could be:

_syscall3(int, write, int, fd, const char*, buf, unsigned int, count)

v2.4

0-parameters call

314. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.2 Kernel Wrapper Routines

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L8

v2.4

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L8

__syscall_return

324. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.2 Kernel Wrapper Routines

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L263

?

v2.4

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L263

1-parameter call

334. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.2 Kernel Wrapper Routines

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L283

v2.4

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L283

6-parameters call

344. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.2 Kernel Wrapper Routines

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L337

v2.4

https://elixir.bootlin.com/linux/2.4.31/source/include/asm-i386/unistd.h#L337

Newer kernel versions

354. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.2 Kernel Wrapper Routines

On latest version of the kernel, the Kernel Wrapper Routines are defined in
tools/include/nolibc/nolibc.h, again they are specifically available for minimal programs
which does not use the libc wrappers. They consists of three levels:

1. the macro assembly routines from my_syscall0 to my_syscall6, architecture
dependent (as the previous ones)

2. functions called sys_<name_of_the_syscall> which maps to the macros of the first
level

3. call definition as libc does, also sets the errno

Further information are in the file include/nolibc/nolibc.h

v5.11

https://elixir.bootlin.com/linux/v5.11/source/tools/include/nolibc/nolibc.h

Do not call system calls from kernel.

364. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.2 Kernel Wrapper Routines

System calls are, as stated above, interaction points between userspace and the kernel.
Therefore, system call functions such as sys_xyzzy() or compat_sys_xyzzy() should only be
called from userspace via the syscall table, but not from elsewhere in the kernel. If the syscall
functionality is useful to be used within the kernel, needs to be shared between an old and a new
syscall, or needs to be shared between a syscall and its compatibility variant, it should be
implemented by means of a “helper” function (such as ksys_xyzzy()). This kernel function may
then be called within the syscall stub (sys_xyzzy()), the compatibility syscall stub
(compat_sys_xyzzy()), and/or other kernel code.

-- https://www.kernel.org/doc/html/latest/process/adding-syscalls.html

v5.11

https://www.kernel.org/doc/html/latest/process/adding-syscalls.html

Syscall Table

4. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.2 Kernel Wrapper Routines

The kernel level system call table is defined in specific files:

- for Kernel 2.4.20 on i386 it is defined in arch/i386/kernel/entry.S
- for Kernel 2.6 is in arch/x86/kernel/syscall_table32.S
- more recent versions: arch/x86/entry/syscalls/syscall_32.tbl

The entries in the table keep a reference to the kernel-level system call implementation and
typically, the kernel-level name of the system call service routine resembles the one used at
application level but starts with the “sys_” prefix.

37

v5.11

Syscall Table

384. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.2 Kernel Wrapper Routines

v5.11

For x86 architecture

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/entry/syscalls/syscall_32.tbl

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/entry/syscalls/syscall_32.tbl

Defining a syscall service routine

394. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.2 Kernel Wrapper Routines

v5.11

https://elixir.bootlin.com/linux/v5.11/source/fs/read_write.c#L642

https://elixir.bootlin.com/linux/v5.11/source/include/linux/syscalls.h#L215

System call actual implementation

The __se_sys_* stub is created for further
protection and in the end calls __do_sys_*
which calls the original ksys_read

https://elixir.bootlin.com/linux/v5.11/source/fs/read_write.c#L642
https://elixir.bootlin.com/linux/v5.11/source/include/linux/syscalls.h#L215

x86_64 Invoking process

4.3.3

Advanced Operating Systems and Virtualization

4. System Calls
3. Invoking Process

syscall/sysret

414. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.3 x86_64 Invoking Process

On x86_64 by AMD, there is a similar Fast System Call strategy that is based on the syscall and
sysret assembly instructions. Again:

- it is based on MSR registers
- it is involved in the vsyscall page, now improved and called vDSO

During the initialization phase of the kernel the function syscall_init() initializes the
registers

https://wiki.osdev.org/SYSENTER

https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/vdso/vdso32-setup.c#L283

https://wiki.osdev.org/SYSENTER
https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/vdso/vdso32-setup.c#L283

Syscall Calling Conventions

42

/*
* Register setup:
* rax system call number
* rdi arg0
* rcx ret.address for syscall/sysret, userspace arg3
* rsi arg1
* rdx arg2
* r10 arg3 (--> to rcx for userspace)
* r8 arg4
* r9 arg5
* r11 eflags for syscall/sysret, temporary for C
* r12-r15,rbp,rbx saved by C code, not touched.
*
* Interrupts are off on entry.
* Only called from user space.
*/

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/entry/entry_64.S

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/entry/entry_64.S

Compatibility
Intel x86_64 ISA and AMD are similar but they are not the same. In particular

- In 64-bit Long Mode - only SYSCALL works on both ISAs. (SYSENTER doesn't work on
AMD.)

- In Legacy Mode - only SYSENTER works on both ISAs. (SYSCALL doesn't work on Intel.)
- There's no single instruction that works on both Intel and AMD in Compatibility Mode

(SYSENTER doesn't work on AMD and SYSCALL doesn't work on Intel), but there's no need
for one. A 32-bit kernel will stay in Legacy Mode after boot.

434. System Calls ⇒ 4.3 Invoking Process ⇒ 4.3.3 x86_64 Invoking Process

https://reverseengineering.stackexchange.com/questions/16454/struggling-between-syscall-or-sysenter-windows

https://reverseengineering.stackexchange.com/questions/16454/struggling-between-syscall-or-sysenter-windows

vDSO

4.4

Advanced Operating Systems and Virtualization

4. System Calls

From vsyscall to vDSO

4. System Calls ⇒ 4.4 vDSO

The vsyscall page had several limitations:

- it was fixed in size
- it was allocated always at the same address in processes

The vDSO that stands for Virtual Dynamic Shared Object has been introduced for solving the
security issues of the vsyscall architecture. The vDSO is dynamically allocated which solves
security concerns. The vDSO links are provided via the glibc library. The linker will link in the glibc
vDSO functionality, provided that such a routine has an accompanying vDSO version, such as
gettimeofday system call. When your program executes, if your kernel does not have vDSO
support, a traditional syscall will be made.

45

https://lwn.net/Articles/446528/

https://lwn.net/Articles/446528/

Exposing vDSO

The vDSO is a small shared library that the kernel automatically maps into the address space
of all user-space applications. Applications usually do not need to concern themselves with
these details as the vDSO is most commonly called by the C library. This way you can code in
the normal way using standard functions and the C library will take care of using any
functionality that is available via the vDSO.

464. System Calls ⇒ 4.4 vDSO

https://linux.die.net/man/3/getauxval

#include <sys/auxv.h>
void *vdso = (uintptr_t) getauxval(AT_SYSINFO_EHDR);

https://linux.die.net/man/3/getauxval

vDSO Entry Point

47

__kernel_vsyscall:
push %ecx
push %edx
push %ebp
movl %esp,%ebp
sysenter
nop
/* 14: System call restart point is here! */
int $0x80
/* 16: System call normal return point is here! */
pop %ebp
pop %edx
pop %ecx
ret

vDSO Content

48

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/entry/vdso/vdso32/vdso32.lds.S#L17

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/entry/vdso/vdso32/vdso32.lds.S#L17

Remarks
The vDSO Kernel entry point exploits flat addressing to bypass segmentation and the related
operations, it therefore reduces the number of accesses to memory in order to support the
change to kernel mode.

Studies show that the reduction of clock cycles for system calls can be in the order of 75%

494. System Calls ⇒ 4.4 vDSO

Conclusions

4.5

Advanced Operating Systems and Virtualization

4. System Calls

Epilogue

4. System Calls ⇒ 4.5 Conclusions 51

Advanced Operating Systems and
Virtualization

L E C T U R E R

Gabriele Proietti Mattia

B A S E D O N W O R K B Y

http://www.ce.uniroma2.it/~pellegrini/

52

[4] System Calls

gpm.name · proiettimattia@diag.uniroma1.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

