
Department of Computer,
Control and Management
Engineering “A. Ruberti”,
Sapienza University of Rome

Advanced Operating Systems
and Virtualization

[5] Interrupts Management

Gabriele Proietti Mattia

gpm.name · proiettimattia@diag.uniroma1.it A.Y. 2020/2021 · v3

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it

Outline

5. Interrupts Management 2

1. Introduction
2. IRQs and Inter-Processor Interrupts
3. The IDT and the Activation Scheme
4. Exception Handling

1. Fixups and Page Fault Handler
5. Interrupts Handling

1. I/O Interrupts
2. Inter-Processor Interrupts (IPIs)

6. Software Interrupts (SoftIRQs)
7. Tasklets
8. Work Queues

Introduction

5.1

Advanced Operating Systems and Virtualization

5. Interrupts Management

Interrupts and Exceptions

45. Interrupts Management ⇒ 5.1 Introduction

An interrupt is usually defined as an event that alters the sequence of instructions executed by
a processor. These events are actually electrical signals generated by hardware circuits. There
are two kinds of interrupts:

- synchronous interrupts are produced by the CPU control unit while executing
instructions, they are generated after the execution of an instruction. They are usually
generated by

- programming errors, in this case the kernel delivers a signal to the program (e.g.
SIGKILL)

- unusual conditions in which the kernel must find a solution, e.g. the Page Fault
(when you request a page that is not allocated) or a system call via sysenter

- asynchronous interrupts are generated by other hardware devices at arbitrary times
with respect the CPU clock signals. They are usually generated by timers and I/O devices,
like the keystrokes for instance.

Intel usually calls the former exceptions and the latter interrupts. In the slides we will refer to
Interrupt Signals for referring to exceptions and interrupts.

The Role of the Interrupt Signals
When an interrupts signal arrives the CPU must necessarily stop what it’s currently doing and
switch to a new activity. This is done by saving the current value of the program counter (EIP +
CS) in the Kernel Mode stack and places the address of the interrupt type into the program
counter. This is called the context switch but differently to the switching to another process
the code to which we switch is not a process but kernel code that runs at expense of the same
process that was running when the interrupt occurred.

The Interrupt Handler is lighter than a process.

55. Interrupts Management ⇒ 5.1 Introduction

User Mode

Kernel Mode Int. Handler

Process#1/#2

time

Process #1

context switch

Returning from the
interrupt you could
also switch process,
depending on the
kernel scheduler

The Role of the Interrupt Signals

65. Interrupts Management ⇒ 5.1 Introduction

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.

The Role of the Interrupt Signals
Interrupt handling is one of the most sensitive tasks performed by the kernel because it must
satisfy the following constraints:

1. since the interrupts can come at any time when the kernel has even to go on with the
process it was executing so it must go out of the interrupt as soon as possible and defer
the demanding work to be executed later. Interrupts has always a critical part and a
deferrable part (top-half/bottom-half);

2. since the interrupts can come at any time the kernel might be handling one of them while
another one occurs (nesting), this should be allowed much as possible since keeps I/O
devices busy;

3. even if nesting is allowed (2) there should be present critical regions in which interrupts
must be temporarily disabled and these regions must be used only in case of strict
necessity.

75. Interrupts Management ⇒ 5.1 Introduction

Classification
The Intel Documentation classifies interrupts and exceptions as follows:

- Interrupts
- Maskable Interrupts. All interrupts requests (IRQs) issued by I/O devices are maskable. When an

interrupt is masked is temporarily ignored by the CPU.
- Non-maskable Interrupts. A few critical events are non-maskable, like hw failures

- Exceptions
- Processor-detected exceptions are generated when the CPU detects an anomalous condition,

according to the eip (Instruction Pointer) value they are divided in:
- Faults can generally be corrected, eip is the address that caused the fault so the instruction

will be re-executed returning from the Int. Handler
- Traps are reported immediately after the execution of trapping instruction, eip points to the

next instruction after the trapping one. Traps were essentially used for debugging purposes
- Aborts represents serious errors, the eip cannot be restored to a precise position returning

from the Int. Handler, process will be terminated
- Programmed Exceptions occurs at the request of the programmer, they are triggered by the

instructions int, int3, into and bound. These interrupts are treated like traps and they are often
called also software interrupts they are used for implementing syscall or debugging purposes.

85. Interrupts Management ⇒ 5.1 Introduction

IRQs and Inter-Processor
Interrupts

5.2

Advanced Operating Systems and Virtualization

5. Interrupts Management

IRQs and Interrupts
Each hardware device controller capable of issuing interrupts requests usually has a single
output line designated as the Interrupt Request line (IRQ). All of these lines are connected to
the input pins of a hardware circuit called the Programmable Interrupt Controller (PIC -
usually Intel 8259A with the 8086 processor) which performs the following actions:

1. monitors the IRQ lines and if two or more lines are enabled selects the one that has
lower pin number

2. If a raised signal occur on a IRQ line:
a. the signal is converted to a vector
b. stores the vector in an Interrupt Controller I/O port so the CPU can read it
c. sends a signal to the INTR pin of the processor
d. waits untils the CPU acknowledges the interrupt signal by writing into one of the

PIC ports, this clears the INTR line
3. Go to 1

105. Interrupts Management ⇒ 5.2 IRQs and Inter-Processor Interrupts

Intel 8259A

IRQs and Interrupts
The n-th IRQ line is associated with the vector n+32. Each IRQ line can be selectively disabled,
disabled interrupts are not lost, since the PIC send them to the CPU as soon as they will be
re-enabled. Enabling and disabling interrupts is not the same as masking and unmasking:

- enabling/disabling is done by communicating with the PIC
- masking/unmasking is done by clearing and setting the IF flag in the EFLAGS register,

that is done with cli and sti assembly instructions

115. Interrupts Management ⇒ 5.2 IRQs and Inter-Processor Interrupts

Multicore Processors
If we are on a single CPU the output line of
the PIC can be connected to the INTR line of
the CPU, directly. On multicore systems, Intel
introduced a new PIC controller, called the
APIC (Advanced Programmable Interrupt
Controller), each microprocessor has a
Local-APIC with:

- 32bit registers
- internal clock and local timer
- two additional lines LINT0 and LINT1

reserved for local APIC interrupts.

All the LAPICs are connected to an external
I/O APIC.

125. Interrupts Management ⇒ 5.2 IRQs and Inter-Processor Interrupts

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

Multicore Processors
The I/O APIC has 24IRQ lines, a 24-entry Interrupt Redirection Table, programmable registers
and a message unit for sending and receiving APIC messages over the bus. The interrupt
priority is not given by the lowest number but it is written in the redirection table, that in the
end translates external interrupts into a message to one or more APIC units. External
interrupts can be distributed in two ways:

1. Static Distribution. The IRQ signal is delivered to the LAPICs listed in the proper entry of
the redirection table

2. Dynamic Distribution. The IRQ signal is delivered to the LAPIC of the processor that is
executing the process with lowest priority. This is done by programming the TPR register
inside the LAPIC.

A multi-APIC system also allows to generate inter-processor interrupts (IPI), by using the ICR
register. The IPIs are a critical part of a SMP system, in Linux they are used for exchanging
messages between the CPUs.

135. Interrupts Management ⇒ 5.2 IRQs and Inter-Processor Interrupts

The IDT and the Activation
Scheme

5.3

Advanced Operating Systems and Virtualization

5. Interrupts Management

Back to the beginning

5. Interrupts Management ⇒ 5.3 The IDT and the Activation Scheme 15

The IDT

165. Interrupts Management ⇒ 5.3 The IDT and the Activation Scheme

The Interrupt Descriptor Table associates each interrupt or exception vector with address of
the corresponding interrupt or exception handler. Similarly to the GDT, each entry of the table
corresponds to an interrupt or exception vector and consists of 8-byte descriptor (on x86 or
16-byte on x86_64). Thus we need 256*8=2048 bytes to store the table. The IDT is pointed by
the IDTR register so it can be anywhere in memory.

As we already discussed there are different types of entries:

- Interrupt Gate entries, includes the segment selector and the offset inside the segment
for the handler, while transferring the control the CPU clears the IF flag thus disabling
the maskable interrupts. These gates are used to handle interrupts.

- Trap Gate entries, same as Interrupt Gates but the IF flag is not cleared. These gates are
used to handle exceptions.

- Task Gate entries, includes the TSS selector of the process that must replace the current
when an interrupt occurs. These gates were intended to be used for process switch,
today they are no more used.

Traps
Differently from interrupts, trap management does not automatically reset the
interruptible-state of a CPU core (IF), therefore critical sections in the trap handler must
explicitly mask and then re-enable interrupts (cli and sti instructions).

For SMP/multi-core machines this might not be enough to guarantee correctness (atomicity)
while handling the trap. The kernel uses spinlocks, based on atomic test-and-set primitives:

- cmpxchg
- xchg
- use the prefix lock before the instruction (e.g. lock incl)

175. Interrupts Management ⇒ 5.3 The IDT and the Activation Scheme

Interrupt/Gate Descriptor

185. Interrupts Management ⇒ 5.3 The IDT and the Activation Scheme

On 64-bit architecture

v5.11

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/include/asm/desc_defs.h#L84

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/include/asm/desc_defs.h#L69

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/include/asm/desc_defs.h#L84
https://elixir.bootlin.com/linux/v5.11/source/arch/x86/include/asm/desc_defs.h#L69

IDT Entries

195. Interrupts Management ⇒ 5.3 The IDT and the Activation Scheme

Range Use

0-19 Nonmaskable interrupts and exception

20-31 Intel-reserved

32-127 External interrupts (IRQs)

128 (0x80) Programmed exception for system calls

129-238 External interrupts (IRQs)

239 Local APIC timer interrupt

240-250 Reserved by Linux for future use

251-255 Inter-processor interrupts

Hardware Handling of Interrupts/Exceptions

205. Interrupts Management ⇒ 5.3 The IDT and the Activation Scheme

The check if an interrupt arrived is done after the execution of every asm instruction. Then, if
the check is positive, the following steps are executed:

1. determining the vector i (o<= i <= 255) associated with the interrupt/exception
2. read the i entry in the IDT referred by IDTR
3. get the base address of the GDT from GDTR and read the segment descriptor for that
4. If CPL < segment DPL --> General Protection Error
5. If programmed exception and if gate DPL < CPL -> General Protection Error
6. If CPL is different from segment DPL (there is a context switch)

a. the TR register is read to access to the TSS segment of the running process
b. SS and ESP registers are loaded with proper values associated to the new privilege level

(remind the TSS structure)
c. In this new stack, the old SS and ESP are saved

7. If there was a fault CS and EIP are loaded with the logical address of the instruction that caused the
exception so that it can be executed again

8. EFLAGS, CS and EIP are saved in the stack
9. If the exception carries an error code it is saved in the stack

10. CS and EIP are loaded with the reference to the Interrupt Handler from the i entry of IDT

Process -> Interrupt Handler

Hardware Handling of Interrupts/Exceptions

215. Interrupts Management ⇒ 5.3 The IDT and the Activation Scheme

After the interrupt, the iret asm instruction is called. If you
pushed an error code in the stack you need to pop it before
executing iret. Then the iret instruction:

1. Loads the CS, EIP and EFLAGS registers with the values
saved in the stack

2. Checks if the interrupted process had the same privilege
of the Interrupt Handler (looking at the CPL of the handler
and the current CPL). If so, iret concludes the execution

3. Loads SS and ESP from the stack returning to the stack of
the old privilege level

4. Examines the content of DS, ES, FS and GS registers. If
any of these registers contains a DPL lower than the CPL
then the register is cleared, this is done for security
reasons.

Interrupt Stack Frame

Interrupt Handler -> Process

Nested Execution of Ex./Int. Handlers
Every interrupt or exception gives rise to a kernel control path or separate sequence of
instructions that execute in Kernel Mode on behalf of the current process. These paths may
arbitrarily nested by another interrupt handler, thus giving rise to a nested execution of kernel
control paths.

225. Interrupts Management ⇒ 5.3 The IDT and the Activation Scheme

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

The price to pay for allowing nested kernel control path is that an interrupt handler must
never block, i.e. no process switch can be done while an interrupt handler is running because
we have saved the context in the Kernel Stack of the previous process.

In general, most exceptions are raised when in User Mode, however the Page Fault exception
can occur in Kernel Mode, when a page is not in RAM (e.g. swapped). When there is a Page
Fault, the current process must be put in sleep therefore the Page Fault exception never gives
rises to further exceptions.

An interrupt handler may preempt both other interrupt handlers and exceptions but an
exception handler never preempts an interrupt handler, the only “exception” is the Page Fault,
but Interrupt Handlers never performs operations that gives rise to page faults.

In multiprocessor systems there are several parallel kernel control paths, so an exception may
start on a CPU and end on another due to the process switch.

Nested Execution of Ex./Int. Handlers

235. Interrupts Management ⇒ 5.3 The IDT and the Activation Scheme

Exception Handling

5.4

Advanced Operating Systems and Virtualization

5. Interrupts Management

Exceptions Handling

5. Interrupts Management ⇒ 5.4 Exception Handling

Most of the exceptions are interpreted by
Linux as error conditions. When one of them
occurs, the kernel sends a signal to the
process that caused the exception. But it is
not always the case.

In some cases Linux exploits exceptions to
manage hardware resources more
efficiently, for example the Page Fault.

25

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

Structure

265. Interrupts Management ⇒ 5.4 Exception Handling

v2.6

https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/kernel/traps.c#L824

The standard structure of an
exception is the following:

1. save the content of most
registers in the kernel mode
stack

2. handle the exception by mean
of a C function

3. exit with
ret_from_exception()
function

The C functions which handle the
exceptions are registered during
trap_init().

Remind the system_call handler.

https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/kernel/traps.c#L824

The “Modern” Initial IDT

275. Interrupts Management ⇒ 5.4 Exception Handling

v5.11

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/kernel/idt.c#L184

We have
- Interrupt Gate, has DPL0
- System Gate had DPL3 (<= v2.6)
- System Interrupt Gate, has DPL3
- Trap Gate had DPL0 (<= v2.6)
- Task Gate has DPL3

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/kernel/idt.c#L31

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/kernel/idt.c#L184
https://elixir.bootlin.com/linux/v5.11/source/arch/x86/kernel/idt.c#L31

The Double Fault Exception

285. Interrupts Management ⇒ 5.4 Exception Handling

The only task gate is referring to the Double Fault exception, because it denotes a serious
kernel misbehaviour. Therefore, exception handler does not trust the value in esp register.

A Double Fault occurs when an exception is unhandled or when an exception occurs while the
CPU is trying to call an exception handler. Normally, two exception at the same time are handled
one after another, but in some cases that is not possible. For example, if a page fault occurs, but
the exception handler is located in a not-present page, two page faults would occur and neither
can be handled. A double fault would occur.

A double fault will always generate an error code with a value of zero. The saved instruction
pointer is undefined. A double fault cannot be recovered. The faulting process must be
terminated.

https://wiki.osdev.org/Exceptions

https://wiki.osdev.org/Exceptions

Exception Handlers
The generic exception handler handler_name is composed by the following assembly
instructions:

Three operations:

1. push $0, the control unit does not put in the stack the hw error code
2. push $do_handler_name, that is the address of the exception handler
3. jump to error_code, that is the same for every exception, the block performs a set of

operations in order to prepare the call to do_handler_name. The invoked function
receives its arguments on registers rather than in the stack (as __switch_to() that we
will later).

295. Interrupts Management ⇒ 5.4 Exception Handling

The name of the functions which implements exception handling always starts with the prefix
do_. Most of these functions in the end call invoke do_trap() to store the hardware error code
and the exception vector in the process descriptor and then send a suitable signal (see Table
earlier).

The signal is handled in user mode, if the programmer defined a signal handler, otherwise in
Kernel Mode and the kernel usually kills the process.

The exception handler must determine if the error happened in User Mode or in Kernel Mode
and in this latter case if it was due to an invalid argument passed to a system call, because in
this particular case the kernel uses a Fix-Up code. In any other case the kernel call the function
die() which prints a dump in the screen and kills the process (remember the kernel oops).

do_handler_name()

305. Interrupts Management ⇒ 5.4 Exception Handling

Fixups and Page Fault Handler

5.4.1

Advanced Operating Systems and Virtualization

5. Interrupts Management
4. Exception Handling

Accessing Memory and System Calls
In general, there may be the case that when a user space process calls a system call it passes a
parameter to a memory area. When this pointer is passed to Kernel Space the kernel may
check it in on of the two ways:

- check if the address belongs to the process address space
- check if the address is lower than PAGE_OFFSET

The first, more time consuming, was used by the earlier versions of the kernel, from 2.2 the
second check is performed. Obviously this is a very coarse checking so the idea is to the defer
as later as possible the true check. The check is done by access_ok() macro.

325. Interrupts Management ⇒ 5.4 Exception Handling ⇒ 5.4.1 Fixups and Page Fault Handler

The Page Fault
access_ok() only performs a coarse check but if it passes then the address can be still not be
valid for that process, therefor a Page Fault can be raised when:

1. the kernel attempts to address a page belonging to the process address space but the
frame does not exist or it is read-only;

2. the kernel addresses a page belonging to its address space but the corresponding entry
in the Page Table has not been yet initialized;

3. there is bug in the kernel or an hardware error;
4. a system call service routine attempts to read or write into a memory area whose

address has been passed as a system call parameter by it does not belong to the process
address space.

In the first case the kernel checks if the linear address belongs to the process, in the second
case it is again easy to recognize by looking at the Master Kernel Page Table entry. But how
the other two cases?

335. Interrupts Management ⇒ 5.4 Exception Handling ⇒ 5.4.1 Fixups and Page Fault Handler

The Exception Tables
Only a small group of functions and macros are used to access the process address space
within the kernel (e.g. get_user(), ...), thus if the exception is caused by an invalid parameter
the instruction that caused it must be included in one of the functions.

For this reason, the addresses of these functions are put in a exception table and the
do_page_fault() handler will look at the table: if it includes the address of instruction that
triggered the exception the error is caused by a system call parameter, otherwise by a more
serious bug.

The kernel exception table is stored in the __ex_table section of the kernel and each entry
contains:

- insn that is the address of an instruction that accesses the process address space
- fixup that is the address of the assembly code which solves the problem. These

instructions in general are put in the .fixup section of the kernel code segment

345. Interrupts Management ⇒ 5.4 Exception Handling ⇒ 5.4.1 Fixups and Page Fault Handler

v2.6

The Exception Tables
The do_page_fault() executes the following statements:

Generating the Exception Table

The GNU Assembler allows to specify the content of a section with the label “.section” and “a”
stands for add to the kernel binary image.

355. Interrupts Management ⇒ 5.4 Exception Handling ⇒ 5.4.1 Fixups and Page Fault Handler

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

v2.6

In the section
.fixup

The Kernel Exception Table

365. Interrupts Management ⇒ 5.4 Exception Handling ⇒ 5.4.1 Fixups and Page Fault Handler

Example

This is the example of the exception table for the get_user
functions, obviously the exceptions table are also defined for other
functions, like for example strlen_user(string).

In general, fixup instructions
are expanded by macros like
the one on the right.

The “x” in the “ax” attribute
of .section tells the Assembler
that the code contains execu-
table code.

v2.6

https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/in
clude/asm/uaccess.h#L354

https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/include/asm/uaccess.h#L354
https://elixir.bootlin.com/linux/v2.6.39.4/source/arch/x86/include/asm/uaccess.h#L354

Fixup activation steps

1. access to invalid address e.g. from get_user()
2. MMU generates exception
3. CPU calls do_page_fault
4. do page fault calls search_exception_table()
5. search_exception_table looks up the address of current->eip in the exception table

and returns the address of the associated fault handle code, the fixup.
6. do_page_fault modifies its own return address to point to the fault handle code and

returns.
7. execution continues in the fault handling code:

a. EAX becomes -EFAULT (== -14)
b. DL becomes zero (the value we "read" from user space)
c. execution continues at local label 2 (address of the instruction immediately after

the faulting user access).

375. Interrupts Management ⇒ 5.4 Exception Handling ⇒ 5.4.1 Fixups and Page Fault Handler

Recap

Interrupts Handling

5.5

Advanced Operating Systems and Virtualization

5. Interrupts Management

Interrupts Classification

395. Interrupts Management ⇒ 5.5 Interrupts Handling

As we discussed, most exceptions are handled simply by sending a unix signal to the process
that caused the exception. So the action to be taken will be executed as soon as the process
receives the signal, this does not hold for interrupts since they can also arrive long after the
process to which they are related so a signal does not make sense.

The interrupt handling changes according to the type of the interrupt raised:

- I/O Interrupts are received every time that an I/O device requests attention to the
kernel. The interrupt handler must query the device to setup proper actions;

- Timer Interrupts. The LAPIC timer has issued an interrupt, this notifies the kernel that
some time has passed

- Inter-processor Interrupts (IPI). A CPU issued an interrupt to another CPU. On multicore
systems, we must ensure, for instance, that different cores synchronize with each other
in some circumstances

I/O Interrupts

5.5.1

Advanced Operating Systems and Virtualization

5. Interrupts Management
5. Interrupts Handling

I/O Interrupts Handling
An I/O Interrupt Handler must be enough flexible to service several devices at the same time,
but the IRQ lines are in general shared by multiple devices, so reading only the IRQ line
number it will be not sufficient to understand which device issued it.

There are two different situations:

1. IRQ Sharing. The interrupt handler executes several interrupt service routines (ISRs),
each routine is related to each device that shares the IRQ line. Every ISRs is always
executed.

2. IRQ Dynamic Allocation. An IRQ line is associated with a device at the last possible
moment, for instance only when device is in use. In this way two devices cannot
obviously use the same line at the same time.

In any case, when handling an interrupt not every action that you need to perform has the
same priority, this because when you handle an interrupt on a line all the other signals are
ignored. Therefore the handling must be as quick as possible.

5. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.1 I/O Interrupts 41

I/O Interrupts Handling
Linux differentiates in three categories the actions that should be carried out in a interrupt
handler:

1. Critical. Actions like acknowledging the IRQ to the PIC, updating the data structure
shared by the device and the CPU. These action are critical and quick, they must be
executed immediately with maskable interrupts disabled (you cannot be interrupted).

2. Non-Critical. Actions like updated the data structure accessed only by the CPU (e.g.
understanding which key has been pressed on the keyboard). These action can finish
quickly and they are executed immediately but with the interrupts enabled (you can be
interrupted).

3. Non-Critical Deferrable. Actions like copying a buffer content into the process address
space (e.g. sending the keyboard line buffer to the terminal handler process). These
actions may be delayed for a long time interval, the user process will wait (e.g. sleep) for
the data. These actions are executed by means of separate functions (SoftIRQs and
Tasklets).

425. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.1 I/O Interrupts

Flow of operation
In any case, the Interrupt Handler performs the
following operations:

1. save the IRQ value and the register in the
kernel mode stack

2. send the ack to the PIC, thus allowing further
interrupts on that line

3. execute the ISRs for all the devices that shares
that IRQ line

4. terminate with ret_from_intr()

435. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.1 I/O Interrupts

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O
ports to process management. " O'Reilly Media, Inc.", 2005.

Interrupt Handling

445. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.1 I/O Interrupts

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

v2.6

IRQ Data Structures

455. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.1 I/O Interrupts

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

v2.6

Every interrupt vector
has associated a
irq_desc_t

PIC object

Identifies the set of
ISRs for that IRQ line

ISRs

Multiple Kernel Mode stacks

465. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.1 I/O Interrupts

The struct that represents a process (that we will later) is couple with a data structure which
represents the Kernel Mode stack. If it is declared (at compile time) as 8KB size, the stack will
be used for any kind of kernel activity, otherwise if we declare it as 4KB size three types of
stacks will be used (a C union):

- the exception stack, used for handling exceptions (including system calls). One for each
process;

- the hard IRQ stack, used for handling interrupts. One for each CPU;
- the soft IRQ stack, used for handling deferrable activities (SoftIRQs and Tasklets). One

for each CPU.

Interrupt Handler Activation
As in the exceptions, when the
CPU receives the interrupts it
starts executing the code found in
the corresponding gate of the
IDT. For doing this, there is a
context switch and registers must
be saved and restored.

Saving the registers is the first
task of the interrupt handler, as in
the exceptions there is a stub
code that is executed before the
true interrupt handler, that is
do_IRQ.

475. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.1 I/O Interrupts

v2.6

Interrupt

Modern Handler Activation
In modern Linux kernel versions the do_IRQ has been removed in favour of a more efficient
implementation of handlers. The execution path is optimized for different types of interrupts,
that are:

- Level type - the signal voltage is above a certain threshold (e.g. > 5V)
- Edge type - the signal is positive or negative
- Simple type - simple interrupt handling with no chip interaction
- Fast EOI type - the signal allows a fast End-of-Interrupt interaction
- Per CPU type - interrupt is per cpu

The rest of the rationale behind the interrupts remains more or less the same.

485. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.1 I/O Interrupts

https://www.kernel.org/doc/html/latest/core-api/genericirq.html
http://ww2.cs.fsu.edu/~rosentha/linux/2.6.26.5/docs/DocBook/genericirq/ch04s03.html

https://www.kernel.org/doc/html/latest/core-api/genericirq.html
http://ww2.cs.fsu.edu/~rosentha/linux/2.6.26.5/docs/DocBook/genericirq/ch04s03.html

Inter-Processor Interrupts (IPIs)

5.5.2

Advanced Operating Systems and Virtualization

5. Interrupts Management
5. Interrupts Handling

Interrupts in multi-core machines

5. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.2 Inter-processor Interrupts (IPIs)

On single core machines, interrupt/trap events are managed by running operating system
code on the single core in the system. This is sufficient to ensure consistency also in
multithreaded applications. In multi-core systems, an interrupt/trap event is delivered to only
one core:

- other cores might be running other threads of the same application, though. This can
lead to race conditions or inconsistent state, due to the replication of hardware

- the hardware is time-shared across threads

We need a way to propagate an interrupt/trap event to other cores, if needed. The same
problem holds for synchronous requests from userspace implemented without using traps
(e.g., via the vDSO).

50

Memory Unmapping

515. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.2 Inter-processor Interrupts (IPIs)

Example

Userspace
Application

time

munmap()

Kernel
Code

The hardware (TLB)
is in a certain state

The hardware (TLB) is
in a different state

From now on every time shared process on that CPU/Core will see a
consistent state of the hardware as determined by the Kernel Code

But what about another
thread in another

CPU/Core?

IPIs
IPIs are interrupts also used to trigger the execution of specific operating system functions on
other cores. IPI are used to enforce cross-core activities (e.g. request/reply protocols) allowing
a specific core to trigger a change in the state of another. IPIs are generated at firmware level,
but are processed at software level:

- synchronous at the sender
- asynchronous at the receiver

At least two priority levels are available:

- High priority leads to immediate processing of the IPI at the recipient (a single IPI is
accepted and stands out at any point in time)

- Low priority generally lead to queueing the requests and process them in a serialized
way

525. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.2 Inter-processor Interrupts (IPIs)

IPIs Vectors
We have already seen the registers to trigger IPIs and the underlying (L)APIC architecture.

Usages of IPIs are:

- waking up additional cores
- execution of the same function across all the CPU cores (cross-core kernel

synchronization)
- change of the hardware state across multiple cores in the system (e.g. TLB)

The immediate handling of the IPI is allowed when there’s no need to share data across cores,
as for example the system halt due to a kernel panic.

The kernel provides a set of macros and functions to easily trigger IPIs, the different IPI kinds
of interrupt are referred as IPIs Vectors.

535. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.2 Inter-processor Interrupts (IPIs)

IPIs Vectors
The Linux kernel makes use of three kinds if inter-processor interrupts:

- CALL_FUNCTION_VECTOR (0xfb) - it is sent to all CPUs but the sender forcing that CPU
to run a function passed by the sender. The handler is called
call_function_interrupt(). This is used for example for halting the system. This is
interrupt is usually triggered by the function smp_call_function();

- RESCHEDULE_VECTOR (0xfc) - when a CPU receives this type of interrupt, the
corresponding handler named reschedule_interrupt() limits itself to acknowledging
the interrupt, the rescheduling is done when returning from the interrupt;

- INVALIDATE_TLB_VECTOR (0xfd)- it is sent to all the CPU but the sender forcing them
to invalidate the TLB, the handler is invalidate_interrupt().

These vectors are issued by wrapper C functions that in the end call
default_send_IPI_all(), default_send_IPI_allbutself(), default_send_IPI_self(),
default_send_IPI_mask().

545. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.2 Inter-processor Interrupts (IPIs)

v5.11

IPIs are used to scheduled multiple cross-core tasks, but a single vector exists
(CALL_FUNCTION_VECTOR). There is the need to register a specific action associated with the
firing of an IPI. Older version of the kernel were relying on a global data structure protected by
a lock, but this solution hampers scalability and performance.

From Kernel 5.0, there is a per-CPU linked list of registered functions and associated data to
process. Concurrent access relies on the lock-free list.

Registering IPI Functions

555. Interrupts Management ⇒ 5.5 Interrupts Handling ⇒ 5.5.2 Inter-processor Interrupts (IPIs)

Core 0

Core 1

Core n

Get per-CPU0 list

Set the function and args Set the function and args Set the function and args

Get per-CPU1 list Get per-CPUn list
...

...

Trigger IPI

Handle IPI

Handle IPI

time

v5.11

Software Interrupts (SoftIRQs)

5.6

Advanced Operating Systems and Virtualization

5. Interrupts Management

5. Interrupts Management ⇒ 5.6 Software Interrupts (SoftIRQs)

Deferred Work
We already introduced the necessity of deferring the non-critical work when handling an
interrupt. The basic idea behind this strategy takes the name of top-half/bottom-half:

- the top-half executes a minimal amount of work which is mandatory to later finalize the
whole interrupt management. The top-half code is managed according to a
non-interruptible scheme and it is in charge of scheduling the bottom-half task by
queuing a record into a proper data structure;

- the bottom-half finalizes the work to be done for completing the interrupt handling. The
bottom-half executes the deferred work with interrupts enabled.

57

Top/Bottom Halves

585. Interrupts Management ⇒ 5.6 Software Interrupts (SoftIRQs)

top
half

bottom
half

execution flow

interrupt iret trigger of
different

nature

data structures

Per-task information
(parameters and reference to the code)

SoftIRQs and Tasklets

595. Interrupts Management ⇒ 5.6 Software Interrupts (SoftIRQs)

Linux uses two kinds of non-urgent and interruptible kernel functions:

- the deferrable functions, that are softIRQs and tasklets;
- those executed by means of some work queues.

Tasklets are built on top the SoftIRQs and the term softirq which often appears in the kernel
source refers to both of them. The main differences between these two kinds of deferrable
functions are:

- SoftIRQs are statically allocated, they can run concurrently on several CPUs (even if
they are of the different type, they are reentrant functions and must explicitly protect
their data structures with spinlocks;

- Tasklets are initialized at runtime (for instance when mounting a kernel module), they do
not need to worry about race conditions on data structures since they are strictly
controlled by the kernel. Tasklets of the same type are always serialized, they cannot run
concurrently, they do not need to be reentrant.

Main Steps
The main steps carried out on a deferrable function are the following.

1. Initialization. Define a new deferrable function, this is done when the kernel boots or
when a module is loaded.

2. Activation. Marks the function as “pending” to be run the next time the kernel schedules
a round of executions of deferrable functions.

3. Masking. Selectively disable a function so that it will be not executed even if activated.

4. Execution. Executes a pending deferrable function with other functions of the same
type.

SoftIRQs are also called software interrupts but keep in mind that they are different from the
programmed exceptions.

605. Interrupts Management ⇒ 5.6 Software Interrupts (SoftIRQs)

Linux uses a limited number of softirqs. In general, Tasklets are used because are easier to
write and they do not need to be reentrant.

SoftIRQs

615. Interrupts Management ⇒ 5.6 Software Interrupts (SoftIRQs)

v5.11

High priority tasklets

Transmit/Receive packets
to/from NICs

Normal tasklets

https://elixir.bootlin.com/linux/latest/source/include/linux/interrupt.h#L531

https://elixir.bootlin.com/linux/latest/source/include/linux/interrupt.h#L531

/proc/softirqs

625. Interrupts Management ⇒ 5.6 Software Interrupts (SoftIRQs)

~$ cat /proc/softirqs
 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
 HI: 5 0 0 0 0 0 0 0
 TIMER: 332519 310498 289555 272913 282535 279467 282895 270979
 NET_TX: 2320 0 0 2 1 1 0 0
 NET_RX: 270221 225 338 281 311 262 430 265
 BLOCK: 134282 32 40 10 12 7 8 8
BLOCK_IOPOLL: 0 0 0 0 0 0 0 0
 TASKLET: 196835 2 3 0 0 0 0 0
 SCHED: 161852 146745 129539 126064 127998 128014 120243 117391
 HRTIMER: 0 0 0 0 0 0 0 0

 RCU: 337707 289397 251874 239796 254377 254898 267497 256624

SoftIRQs

The vector softirq contains the description of each available SoftIRQ

The softirq_action data structure contains the pointer to the softirq function (void*).

Initialization

The initialization of softirqs is done at boot time with the function open_softirq()

635. Interrupts Management ⇒ 5.6 Software Interrupts (SoftIRQs)

Data Structures

https://0xax.gitbooks.io/linux-insides/content/Interrupts/linux-interrupts-9.html

v5.11

https://0xax.gitbooks.io/linux-insides/content/Interrupts/linux-interrupts-9.html

https://elixir.bootlin.com/linux/latest/source/kernel/softirq.c#L470

SoftIRQs

The SoftIRQs are activated by means of the function raise_softirq()

645. Interrupts Management ⇒ 5.6 Software Interrupts (SoftIRQs)

Activation

Save the state of IF flag of EFLAGS register and disable
interrupts on local CPU

Mark the interrupt as pending (in the local cpu bitmap)
and wake softirqd if not in interrupt context

Restore the saved state of IF flag of
EFLAGS register and re-enable
interrupts on local CPU

https://elixir.bootlin.com/linux/latest/source/kernel/softirq.c#L453

v5.11

https://elixir.bootlin.com/linux/latest/source/kernel/softirq.c#L470
https://elixir.bootlin.com/linux/latest/source/kernel/softirq.c#L453

SoftIRQs

The checks for pending softirq should be performed periodically but without too much
overhead. Here’s a list of significant points in the kernel in which the check is done:

- when softirqs are enabled on local CPU;
- when do_IRQ() finished processing;
- after a timer interrupt on LAPIC;
- after a CALL_FUNCTION_VECTOR;
- when a ksoftirqd/n kernel thread is wakened.

655. Interrupts Management ⇒ 5.6 Software Interrupts (SoftIRQs)

Activation

SoftIRQs

If there is a pending softirq then the function do_softirq() is invoked. The function:

1. checks if invoked in a interrupt context or softirqs are disabled, if yes returns
2. executes local_irq_save()
3. checks if there are pending softirq
4. calls do_softirq_own_stack() if needed,

this function switches to the softirq stack if
needed and calls __do_softirq()

5. calls local_irq_restore()

665. Interrupts Management ⇒ 5.6 Software Interrupts (SoftIRQs)

Execution - do_softirq()

https://elixir.bootlin.com/linux/latest/source/kernel/softirq.c#L233

v5.11

https://elixir.bootlin.com/linux/latest/source/kernel/softirq.c#L233

SoftIRQs

The __do_softirq() reads the bit mask of the local CPU and executes the deferrable
functions corresponding to every set bit. While executing a softirq, another softirq may pop up
and in order to avoid that __do_softirq() never regain control to user processes it only
executes a fixed number of iterations, the remaining softirqs will be handled by ksoftirqd
daemon.

The function __do_softirq():

1. initializes the iteration counter to 10
2. copies the bitmap of the local cpu
3. disable softirqs in the local cpu, since softirq are executed serially
4. clears the bitmap of local cpu
5. executes local_irq_enable()
6. executes the action for every set bit
7. executes local_irq_disable()
8. copies the bitmap of the local cpu

and decrease the iteration counter
675. Interrupts Management ⇒ 5.6 Software Interrupts (SoftIRQs)

Execution - __do_softirq()

v5.11

9. if another softirq has been activated and iterations >
0 jump to 4.

10. if there are more softirq invokes wakeup_softirqd()
11. Re-enable softirqs in the local cpu

ksoftirqd
In modern kernel versions, each CPU has its own ksoftirqd/n kernel thread (where n is the
logical number of the CPU). Each ksoftirqd runs the ksoftirq() function which essentially
executes the following loop:

685. Interrupts Management ⇒ 5.6 Software Interrupts (SoftIRQs)

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

ksoftirqd

695. Interrupts Management ⇒ 5.6 Software Interrupts (SoftIRQs)

[gpm@fedora-xps ~]$ ps -aux | grep ksoft
root 13 0.0 0.0 0 0 ? S Apr05 0:00 [ksoftirqd/0]
root 19 0.0 0.0 0 0 ? S Apr05 0:00 [ksoftirqd/1]
root 24 0.0 0.0 0 0 ? S Apr05 0:00 [ksoftirqd/2]
root 29 0.0 0.0 0 0 ? S Apr05 0:00 [ksoftirqd/3]
root 34 0.0 0.0 0 0 ? S Apr05 0:00 [ksoftirqd/4]
root 39 0.0 0.0 0 0 ? S Apr05 0:00 [ksoftirqd/5]
root 44 0.0 0.0 0 0 ? S Apr05 0:00 [ksoftirqd/6]
root 49 0.0 0.0 0 0 ? S Apr05 0:00 [ksoftirqd/7]

Tasklets

5.7

Advanced Operating Systems and Virtualization

5. Interrupts Management

Tasklets are the preferred way to implement deferrable functions in I/O drivers or in kernel
modules. As already introduced, tasklets are built on top of two softirqs named HI_SOFTIRQ
and TASKLET_SOFTIRQ, they differ only in priority since several tasklets may be associated
with the same softirq, each carrying its own function.

For using a tasklet you need to allocate the tasklet_struct by means of the macro
DECLARE_TASKLET and then call one of the following functions to enable/disable it:

- tasklet_enable(struct tasklet_struct *tasklet)

- tasklet_hi_enable(struct tasklet_struct *);

- tasklet_disable(struct tasklet_struct *tasklet)

- void tasklet_schedule(struct tasklet_struct *tasklet)

Unless a tasklet reactivates itself, every tasklet activation triggers at most one execution of
the tasklet function. Management of tasklets is such that a tasklet of the same kind cannot be
run concurrently on two different cores

Tasklets

5. Interrupts Management ⇒ 5.7 Tasklets 71

How Tasklets are run
Tasklets are run using Soft IRQs. Enable functions are mapped to Soft IRQs lines:

- tasklet_enable() mapped to TASKLET_SOFTIRQ
- tasklet_hi_enable() mapped to HI_SOFTIRQ

No real difference between the two, except that do_softirq() processes HI_SOFTIRQ before
TASKLET_SOFTIRQ. All non-disabled Tasklets are executed, before the corresponding SoftIRQ
action completes.

Remember that they are run with HardIRQs enabled.

725. Interrupts Management ⇒ 5.7 Tasklets

Modern API
In the latest version of the kernel the Tasklets API is deprecated in favour of Threaded IRQs.

The Tasklet API (but also the SoftIRQ) will be removed because the top-half of an IRQ is
executed in a kernel thread by using the function request_threaded_irq() for allocating a
IRQ line.

For further information see https://lwn.net/Articles/302043/.

735. Interrupts Management ⇒ 5.7 Tasklets

https://elixir.bootlin.com/linux/latest/source/include/linux/interrupt.h#L595

https://lwn.net/Articles/302043/
https://elixir.bootlin.com/linux/latest/source/include/linux/interrupt.h#L595

Work Queues

5.8

Advanced Operating Systems and Virtualization

5. Interrupts Management

Work Queues

5. Interrupts Management ⇒ 5.8 Work Queues

The worker queues have been introduced in Linux 2.6. They are similar to the deferrable
functions, but they are run by ad-hoc kernel-level worker threads.

Worker Queues always run in process context and they can perform blocking operations but
this does not mean that they can access user address space (as the deferrable functions).
Executing in process context is the only way for performing blocking operations (e.g.
accessing data to disk), remind that no process switch can occur in interrupt context.

A work queue is defined by the workqueue_struct whose field worklist points to a doubly
linked list of pending functions.

75

v2.6

APIs

765. Interrupts Management ⇒ 5.8 Work Queues

Creating a queue

The function create_workqueue(“foo”) allows to create a new work queue and also creates
n worker threads (where n is the number of CPUs). You can use the function
create_singlethread_workqueue() for creating a work queue with only one thread. You can
destroy the queue with the function destroy_workqueue().

After creating a queue you can use:

- queue_work() for inserting a function (packaged in a work_struct) to the queue
- queue_delayed_work() for inserting a function that will be executed when after the

passed time delay

A worker thread continuously loop inside the function worker_thread() that most of the time
is sleeping if there is no function to be executed.

Sometimes it may be necessary to wait until all pending functions are executed, in that case,
the function flush_workqueue() can be used.

v2.6

APIs

In most cases, creating a whole set of worker threads in order to run a function is overkill.
Therefore, the kernel offers a predefined work queue called events, which can be freely used
by every kernel developer.

To use the predefined queue you can use the following functions:

775. Interrupts Management ⇒ 5.8 Work Queues

The predefined work queue

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process
management. " O'Reilly Media, Inc.", 2005.

v2.6

kworkers

785. Interrupts Management ⇒ 5.8 Work Queues

[gpm@fedora-xps ~]$ ps -aux | grep kworker
root 6 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/0:0H-events_highpri]
root 21 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/1:0H-events_highpri]
root 26 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/2:0H-events_highpri]
root 31 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/3:0H-events_highpri]
root 36 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/4:0H-events_highpri]
root 41 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/5:0H-events_highpri]
root 46 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/6:0H-events_highpri]
root 51 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/7:0H-events_highpri]
root 137 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/6:1H-events_highpri]
root 152 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/3:1H-events_highpri]
root 233 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/4:1H-events_highpri]
root 310 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/5:1H-kblockd]
root 328 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/7:1H-events_highpri]
root 376 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/0:1H-kblockd]
root 467 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/2:1H-events_highpri]
root 556 0.0 0.0 0 0 ? I< Apr05 0:00 [kworker/1:1H-events_highpri]
root 70810 0.0 0.0 0 0 ? I Apr05 0:00 [kworker/5:0-events_power_efficient]
root 72123 0.0 0.0 0 0 ? I Apr05 0:00 [kworker/1:2-cgroup_destroy]
root 73440 0.0 0.0 0 0 ? I Apr05 0:00 [kworker/6:1-events]
root 73920 0.0 0.0 0 0 ? I< Apr05 0:01 [kworker/u17:0-rb_allocator]
root 75463 0.0 0.0 0 0 ? I Apr05 0:00 [kworker/u16:4-i915]
root 75552 0.0 0.0 0 0 ? I< Apr05 0:02 [kworker/u17:1-i915_flip]
...

Advanced Operating Systems and
Virtualization

L E C T U R E R

Gabriele Proietti Mattia

B A S E D O N W O R K B Y

http://www.ce.uniroma2.it/~pellegrini/

79

[5] Interrupts Management

gpm.name · proiettimattia@diag.uniroma1.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

