
Department of Computer,
Control and Management
Engineering “A. Ruberti”,
Sapienza University of Rome

Advanced Operating Systems
and Virtualization

[6] Time Management

Gabriele Proietti Mattia

gpm.name · proiettimattia@diag.uniroma1.it A.Y. 2020/2021 · v1

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it

Outline

5. Interrupts Management 2

1. Introduction
2. Timekeeping Architecture

1. Low-resolution Timers
2. Generic Time Subsystem

3. Watchdogs

Introduction

6.1

Advanced Operating Systems and Virtualization

6. Time Management

Time keeping

6. Time Management ⇒ 6.1 Introduction

A computer would be useless if programs would not have the possibility to keep track of time
passing. This fundamental facility is handled by the kernel in two ways:

1. keeping the current time and date so they can be returned to user programs (e.g.
time(), gettimeofday(), ...)

2. maintaining timers, mechanisms that are able to notify the kernel or a user program
(e.g. setitimer() and alarm()) that a certain interval of time has elapsed.

Time measurements are performed by hardware circuits based on oscillators.

4

Clock and Timer Circuits
In the 8086 architecture the CPU interacts with clock circuits that keep track of the time of day
and timer circuits, programmed by the kernel so that they issue interrupts at a desired time.
We have:

- Real Time Clock (RTC), which is independent of all the other chips and keeps track of the
time of day, ticking even if the PC is off. The RTC is capable of issuing periodic interrupts
on IRQ8 and can be programmed and used as an alarm. Linux uses the RTC only for time
and date (/dev/rtc).

- Timestamp Counter (TSC), it is a counter incremented from an external oscillator
connected at the CLK pin of the CPU, it can be read with the asm instruction rdtsc.

- Programmable Interval Timer (PIT), its role is similar to an alarm clock of a microwave
oven, when timer ends it does not ring a bell but it issues an interrupt. The PIT can be
programmed also for ticking at periodic intervals, these ticks are as a beat time for all the
kernel activities, as a metronome.

- CPU Local Timer (in the LAPIC) is similar to PIT but local to the processor.
- High Precision Event Timer (HPET), provides a number of programmable timers .

56. Time Management ⇒ 6.1 Introduction

Timekeeping Architecture

6.2

Advanced Operating Systems and Virtualization

6. Time Management

Keeping time in the Linux kernel
Linux must carry on several time-related activities, for instance, the kernel periodically:

- updates the time elapsed since the startup
- updates time and date
- determines, for every cpu, how long the current process has been running and preempts

it if it exceeded its time slot
- update resource usage statistics
- checks whether the interval of time associated with each software timer has elapsed

The Linux timekeeping architecture is a set of data structures and functions related to the flow
of time. There are some differences in time keeping between a multi and a single processor
architecture:

- in a single-processor system all time-keeping activities are triggered by interrupts raised
by a global timer

- in a multi-processor system general activities (e.g. software timers) are triggered by the
global timer but CPU-specific activities (e.g. monitoring the execution time of the
current process) are triggered by the local APIC timer

76. Time Management ⇒ 6.2 Timekeeping Architecture

Kernel Timers
The entire kernel timing subsystem wraps around timers. Timers can be divided into:

- classic timers available since the first version of the kernel, their resolution is usually 4ms
and they are called low-resolution timers or timer wheel timers

- high-resolution timers, they have a precision of nanoseconds, useful especially for
media-oriented applications

Independently of the resolution, the kernel distinguishes between:

- Time-outs that represent events that are bound to happen after some time, e.g. expect
a packet within the next 10 seconds. In general, resolution is not important for this kind
of timers;

- Timers that are used for implementing temporal sequences, e.g. a sound card driver
could issue data in small and periodic time intervals. These timers usually requires high
resolution;

86. Time Management ⇒ 6.2 Timekeeping Architecture

Kernel Timers

96. Time Management ⇒ 6.2 Timekeeping Architecture

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.

Clock Events & Ticks
The Clock Events are the foundation of periodic events. High Resolution Timers are based on
the Clock Events abstraction, whereas the low-resolution mechanism can come or from a
low-resolution clock device or from the high resolution subsystem. Two important tasks for
which low-resolution timers assume the responsibility are:

- handling the global jiffies counter
- perform per-process accounting

106. Time Management ⇒ 6.2 Timekeeping Architecture

Configuration Options

In general a periodic tick is enable for the whole life of
the kernel but this would not allow the system to go in
sleep mode (e.g. laptop), for this reason the kernel
allows to configure a dynamic tick which does not
require a periodic signal (tickless system).

On right the possible configurations. Mauerer, Wolfgang. Professional Linux kernel
architecture. John Wiley & Sons, 2010.

Low-Resolution Timers

6.2.1

Advanced Operating Systems and Virtualization

6. Time Management
2. Timekeeping Architecture

Low-Resolution Timers

126. Time Management ⇒ 6.2 Timekeeping Architecture ⇒ 6.2.1 Low-resolution Timers

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.

PIT or HPET
periodic intervals HZ (=250) times per second

System-wide, global tasks:
update the jiffies value,
handle process accounting
(statistics), if
multiprocessor only one
CPU does this

Performed by every CPU,
besides process
accounting it activates
and expires all
low-resolution timers
(the TIMER_SOFTIRQ is
raised) and trigger the
process scheduler

Jiffies
The jiffies variable is a counter that stores the number of elapsed ticks since the system was
started. It is increased by one when a timer interrupts occurs.

In the 8086 the jiffies variable is of 32bit in size so it wraps in about 50 days, this because a long
long (64bit) could not allow an atomic increment. This is true even today, with kernel 5.11.

jiffies and jiffies_64 matches in their less significant bits and therefore the must point to
the same memory location or same register. For achieving this, the two variables are declared
separately but the linker merges them, in 64bit machine they are the same but in 32bit
jiffies is the upper (or lower depending on endianness) of jiffies_64.

136. Time Management ⇒ 6.2 Timekeeping Architecture ⇒ 6.2.1 Low-resolution Timers

v5.11

https://elixir.bootlin.com/linux/v5.11/source/include/linux/jiffies.h#L74

https://elixir.bootlin.com/linux/v5.11/source/include/linux/jiffies.h#L74

Dynamic Timers
Timers allow a generic function to be activated at a later time, they can be dynamically
created and destroyed and they can be assigned to the kernel itself or to a process. For this
reason, we need an efficient way for managing timers in the kernel. Timers are associated with
deferrable functions Linux does not guarantee that activation takes place at exact time

APIs
- void init_timer(struct timer_list *timer);
- void setup_timer(struct timer_list *timer, void (*function)(unsigned long),

unsigned long data);
- int mod_timer(struct timer_list *timer, unsigned long expires);
- void del_timer(struct timer_list *timer);
- int timer_pending(const struct timer_list *timer);

Timers are prone to race conditions (e.g., if resources are released). They should be deleted
before releasing the resources.

146. Time Management ⇒ 6.2 Timekeeping Architecture ⇒ 6.2.1 Low-resolution Timers

Dynamic Timers

A Timer is represented by the struct timer_list.

156. Time Management ⇒ 6.2 Timekeeping Architecture ⇒ 6.2.1 Low-resolution Timers

struct timer_list

https://elixir.bootlin.com/linux/v5.11/source/include/linux/timer.h#L11

In jiffies

https://elixir.bootlin.com/linux/v5.11/source/include/linux/timer.h#L11

Dynamic Timers

Earlier versions of the kernel used a single timer list sorted according to the expiration time.
This was significantly unreliable and inefficient. Newer versions of the kernel introduced the
so-called Timer Wheel a nested structure for efficiently retrieving timers. For understanding
the principle of operation we will consider simplified example.

166. Time Management ⇒ 6.2 Timekeeping Architecture ⇒ 6.2.1 Low-resolution Timers

The Timer Wheel

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.

Bucket #0 contains
timers that expires in

0~28 ticks

Bucket #1 contains
timer that expires in
28 ~ 28+6 ticks
Bucket #2 contains
timer that expires in
28+6 ~ 28+6x2 ticks

In the array timers are
sorted again (256

entries)
Timers which expire

in 0 ticks

Timers which expire
in 256 ticks

Dynamic Timers

Suppose that each bucket has a counter that stores the number of an array position.

176. Time Management ⇒ 6.2 Timekeeping Architecture ⇒ 6.2.1 Low-resolution Timers

The Timer Wheel

The tv1 counter initially
points to 0, then it is
incremented at each tick
and every timer executed

When 255 is reached the
tv1 counter is reset to 0
and the timer of the first
position of tv2 bucket
replenish the bucket tv1,
the counter of tv2 is
increased by 1

256 entries 64 entries 64 entries

When 63 is reached the tv2
counter is reset to 0 and
the timer of the first
position of tv3 bucket
replenish the bucket tv2,
the counter of tv3 is
increased by 1

To determine which timers have expired, the kernel need not scan through an enormous list of timers but can limit itself to checking a single array position in the first group

Generic Time Subsystem

6.2.2

Advanced Operating Systems and Virtualization

6. Time Management
2. Timekeeping Architecture

Components

6. Time Management ⇒ 6.2 Timekeeping Architecture ⇒ 6.2.2 Generic Time Subsystem

There are three main abstractions for providing time in the kernel:

- Clock Sources (struct clocksource) that are the backbox of time management.
Essentially each clock provides a monotonically increasing counter with read only access;

- Clock event devices (struct clock_event_device) add the possibility of equipping
clocks with events that occurs in the future.

- Tick Devices (struct tick_device) extend the clock event sources to provide a
continuous stream of tick events that happen periodically. A dynamic tick may stop a tick
device if requested.

There are then two kinds of clocks:

- a global clock that is responsible for providing the periodic tick for updating jiffies (old
PIT)

- one local clock for each CPU for performing process accounting, profiling and
high-resolution timers

19

Overview

6. Time Management ⇒ 6.2 Timekeeping Architecture ⇒ 6.2.2 Generic Time Subsystem 20

The clocksource struct represents an abstraction of a source of time. The assigned function
read allows to retrieve the current cycle value from the source.

Clocksource

216. Time Management ⇒ 6.2 Timekeeping Architecture ⇒ 6.2.2 Generic Time Subsystem

v5.11

Jiffies as Clocksource

226. Time Management ⇒ 6.2 Timekeeping Architecture ⇒ 6.2.2 Generic Time Subsystem

v5.11

https://elixir.bootlin.com/linux/v5.11/source/kernel/time/jiffies.c#L40

https://elixir.bootlin.com/linux/v5.11/source/kernel/time/jiffies.c#L40

Timer Interrupt Management
The handling of timer interrupts are handled according to the top/bottom half paradigm
(using Task Queues, which have now been removed from the Kernel).

The top half executes the following actions:

- registers the bottom half
- increments jiffies
- checks whether the CPU scheduler needs to be activated, and in the positive case flags

need_resched (more on this later)

236. Time Management ⇒ 6.2 Timekeeping Architecture ⇒ 6.2.2 Generic Time Subsystem

High Resolution Timers
High resolution timers are based
on the ktime_t type (nanosecond
scalar representation) rather than
jiffies.

High resolution timers heavily
depends on the architecture wrt
the low-resolution ones. They:

- are arranged in a red-black
tree

- they are independent of
periodic ticks, they are not
based on jiffies

Low-resolution timers are based
on high-resolution ones.

246. Time Management ⇒ 6.2 Timekeeping Architecture ⇒ 6.2.2 Generic Time Subsystem

Watchdogs

6.3

Advanced Operating Systems and Virtualization

6. Time Management

Watchdogs

6. Time Management ⇒ 6.3 Watchdogs

A watchdog is a component that monitors a system for “normal” behaviour and if it fails, it
performs a system reset to hopefully recover normal operation.

This is a last resort to maintain system availability or to allow sysadmins to remotely log after
a restart and check what happened. In Linux, this is implemented in two parts:

- a kernel-level module which is able to perform a hard reset
- a user-space background daemon that refreshes the timer

At kernel level, this is implemented using a Non-Maskable Interrupt (NMI). The userspace
daemon will notify the kernel watchdog module via the /dev/watchdog special device file that
user space is still alive.

26

while (1) {
ioctl(fd, WDIOC_KEEPALIVE, 0);
sleep(10);

}

Advanced Operating Systems and
Virtualization

L E C T U R E R

Gabriele Proietti Mattia

B A S E D O N W O R K B Y

http://www.ce.uniroma2.it/~pellegrini/

27

[6] Time Management

gpm.name · proiettimattia@diag.uniroma1.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

