
Department of Computer,
Control and Management
Engineering “A. Ruberti”,
Sapienza University of Rome

Advanced Operating Systems
and Virtualization

[8] Virtual File System

Gabriele Proietti Mattia

gpm.name · proiettimattia@diag.uniroma1.it A.Y. 2020/2021 · v2

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it

Outline

8. Virtual Filesystem 2

1. Introduction
2. The Common File Model

1. Operations
3. Pathname Lookup
4. Files
5. The /proc filesystem
6. The /sys filesystem
7. Device Management

1. Char Devices
2. Block Devices
3. Devices and VFS
4. Classes
5. udev

Introduction

8.1

Advanced Operating Systems and Virtualization

8. Virtual Filesystem

Introduction

8. Virtual Filesystem ⇒ 8.1 Introduction

The VFS is a software layer which abstracts the actual implementation of the devices and/or
the organization of files on a storage system. The VFS exposes a uniform interface to
userspace applications.

The main roles of the virtual filesytem are:

- keeping track of available filesystem types;
- associating (and de-associating) devices with instances of the appropriate filesystem.
- do any reasonable generic processing for operations involving files.
- when filesystem-specific operations become necessary, vector them to the filesystem in

charge of the file, directory, or inode in question.

4

Introduction

58. Virtual Filesystem ⇒ 8.1 Introduction

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

Supported File Systems

68. Virtual Filesystem ⇒ 8.1 Introduction

The filesystems supported by the VFS can be grouped in:

- Disk-based Filesystems

They manage memory in a disk or in some other device which emulates a disk (e.g. USB
disk). Some of the well-known FS are:

- Linux EXT2/3/4, from Oracle also BTRFS
- Windows MS-DOS, VFAT, NTFS, ExFAT
- CD-ROM FS like UDF
- Other proprietary like Apple HFS, HFS+, APFS, IBM HPFS

- Network Filesystems

They allows easy access to file belonging to other networked PCs (e.g. NFS, CIFS)

- Special Filesystems

They do not manage a disk space (e.g. /proc or /sys)

File System Representation
The VFS representation has a two fold nature, one in RAM and one on disk. In RAM we have a
partial or full representation of the current structure and the content of the FS. On the device
we have the full representation of of the current structure and the content of the FS but
possibly outdated.

The data access and manipulation comprehends:

- a FS-independent part, that is the interface towards other subsystems within the kernel
- a FS-dependent part, that is the code for managing data in that particular filesystem

Connecting the two parts: any filesystem object that can be a directory, a device or a file is
represented in RAM via specific data structures. Each data structure keeps a reference to the
functions that talks directly to the device, if any. That reference is reached by means of a
kernel API interface (like read(), write(), etc.). Function pointers are used to reference
actual drivers' functions.

78. Virtual Filesystem ⇒ 8.1 Introduction

88. Virtual Filesystem ⇒ 8.1 Introduction

Everything is a file.
(*with some exceptions)

The Common File Model

8.2

Advanced Operating Systems and Virtualization

8. Virtual Filesystem

The Common File Model
The key idea behind the VFS is to introduce a common file model capable of representing all
the possible filesystems. This means that each physical filesystem implementation must
translate its physical organization into the VFS’s common file model.

For example, in the Common File Model each directory is a file which contains a list of files and
other directories, however a FAT (File Allocation Table) filesystem stores the position of each
file in a tree and directories are not files. In order to adhere to the VFS model the FAT driver
must create on the fly a file object, but this exists only in memory.

108. Virtual Filesystem ⇒ 8.2 The Common File Model

The Common File Model
The Common File Model consists of the following “object” types:

- superblock

Stores the information concerning a mounted filesystem, this object corresponds to a
filesystem control block stored on disk

- inode

Stores general information about a specific file, this corresponds to to a file control block
stored on disk, each inode has a unique number associated to it

- file

Stores the information about the interaction between an open file and a process, this
exists only in kernel memory when a process opens a file

- dentry

Stores the information about the linking of a directory entry with the corresponding file,
each FS stores this information in its own particular way.

118. Virtual Filesystem ⇒ 8.2 The Common File Model

The Common File Model

128. Virtual Filesystem ⇒ 8.2 The Common File Model

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

These can belong to
different filesystems

The Common File Model

138. Virtual Filesystem ⇒ 8.2 The Common File Model

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.

dentry
file_system_type

vfsmount

s_type

mnt_sb

Filesystem Types

148. Virtual Filesystem ⇒ 8.2 The Common File Model

The file_system_type structure describes a file system (it is defined in include/linux/fs.h),
it keeps information related to:

- the file system name
- a pointer to a function to be executed upon mounting the file system (superblock-read)

v5.11

Filesystem Types

158. Virtual Filesystem ⇒ 8.2 The Common File Model

Ramfs is a very simple filesystem that exports Linux's disk caching mechanisms (the page
cache and dentry cache) as a dynamically resizable RAM-based filesystem.

With ramfs, there is no backing store. Files written into ramfs allocate dentries and page
cache as usual, but there's nowhere to write them to.

Ramfs can eat up all the available memory:

- tmpfs is a derivative, with size limits
- only root should be given access to ramfs

ramfs

Filesystem Types

Rootfs is a special instance of ramfs (or tmpfs, if that's enabled), which is always present in 2.6
systems.

It provides an empty root directory during kernel boot. Rootfs cannot be unmounted and this
has the same idea behind the fact that init process cannot be killed.

During kernel boot, another (actual) filesystem is mounted over rootfs (remember
initramfs/initrd).

168. Virtual Filesystem ⇒ 8.2 The Common File Model

rootfs

File System Mounting
In most traditional Unix-like kernel, each filesystem can be mounted once, the command used
is for instance

mount -t ext4 /dev/sda1 /mnt

However in Linux it is possible to mount the same filesystem n times, this means that its root
directory can be accessed through n mount points. This means that each mount point
(represented by the struct vfsmount) will point to the same superblock.

Mounted filesystems form a hierarchy: the mount point of a filesystem might be the directory
of a second filesystem, which in turn is already mounted over a third filesystem and so on.

178. Virtual Filesystem ⇒ 8.2 The Common File Model

vfsmount

188. Virtual Filesystem ⇒ 8.2 The Common File Model

v2.6

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/mount.h#L55

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/mount.h#L55

superblock

198. Virtual Filesystem ⇒ 8.2 The Common File Model

v2.6

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/fs.h#L1360

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/fs.h#L1360

dentry

208. Virtual Filesystem ⇒ 8.2 The Common File Model

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/dcache.h#L116

v2.6

The kernel creates a dentry
for every directory. When a
path like /tmp/test is
resolved a dentry is created
for “/”, “tmp” and “test”.
dentries have no
corresponding image on disk
and hence there is no field in
the structure which specifies
that the object has been
modified. The state of each
dentry can be:

- Free, not used no inode
- Unused, not used by

inode
- In Use, used
- Negative, the inode

does not exist

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/dcache.h#L116

inode

218. Virtual Filesystem ⇒ 8.2 The Common File Model

The state can be:
- I_DIRTY_SYNC
- I_DIRTY_DATASYNC
- I_DIRTY_PAGES
- I_LOCK
- I_FREEING
- I_CLEAR
- I_NEW

v2.6

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/fs.h#L735

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/fs.h#L735

inode

228. Virtual Filesystem ⇒ 8.2 The Common File Model

Each inode can always appear in one of the following circular doubly linked lists:

- list of valid unused inodes, they are mirroring on disk but they are not used by any
process, they are not dirty and i_count is 0

- list of in-use inodes, they are mirroring on disk and used by some process, they are not
dirty and i_count > 0

- list of dirty inodes

Moreover, inodes objects are also included in a hash table that speeds up the search of the
inode object when the kernel knows both the inode number and the address of the superblock
corresponding to the FS that includes the file.

VFS and PCB
In the PCB, struct fs_struct *fs points to information related to the current directory and
the root directory for the associated process. fs_struct is defined in include/fs_struct.h

struct fs_struct {

int users;

spinlock_t lock;

seqcount_t seq;

int umask;

int in_exec;

struct path root, pwd;

} __randomize_layout;

238. Virtual Filesystem ⇒ 8.2 The Common File Model

struct path {
struct vfsmount *mnt;
struct dentry *dentry;

} __randomize_layout;

Operations

8.2.1

Advanced Operating Systems and Virtualization

8. Virtual Filesystem
2. The Common File Model

Superblock operations
Super block operations are described by the struct super_operations. They:

- manage statistic of the file system
- create and manage i-nodes
- flush to the device updated information on the state of the file system

Some File Systems might not use some operations (think of File Systems in RAM). Functions
to access statistics are invoked by system calls statfs() and fstatfs().

258. Virtual Filesystem ⇒ 8.2 The Common File Model ⇒ 8.2.1 Operations

super_operations

268. Virtual Filesystem ⇒ 8.2 The Common File Model ⇒ 8.2.1 Operations

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fs.h#L1933

v5.11

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fs.h#L1933

ramfs example

278. Virtual Filesystem ⇒ 8.2 The Common File Model ⇒ 8.2.1 Operations

The ramfs filesystem is implemented in fs/libfs.c.

https://elixir.bootlin.com/linux/v5.11/source/fs/libfs.c#L314

https://elixir.bootlin.com/linux/v5.11/source/fs/libfs.c#L314

v5.11

https://elixir.bootlin.com/linux/v5.11/source/fs/libfs.c#L314
https://elixir.bootlin.com/linux/v5.11/source/fs/libfs.c#L314

They specify non-default operations for manipulating d-entries. The table maintaining the
associated function pointers is defined in include/linux/dcache.h. For the file system in
RAM this structure is not used.

Removes the pointed inode

dentry_operations

288. Virtual Filesystem ⇒ 8.2 The Common File Model ⇒ 8.2.1 Operations

v5.11

https://elixir.bootlin.com/linux/v5.11/source/include/linux/dcache.h#L136

Removes the dentry when d_count is 0

https://elixir.bootlin.com/linux/v5.11/source/include/linux/dcache.h#L136

inode_operations

298. Virtual Filesystem ⇒ 8.2 The Common File Model ⇒ 8.2.1 Operations

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fs.h#L1862

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fs.h#L1862

Pathname Lookup

8.3

Advanced Operating Systems and Virtualization

8. Virtual Filesystem

Pathname Lookup

8. Virtual Filesystem ⇒ 8.3 Pathname Lookup

When accessing VFS, the path to a file is used as the “key” to access a resource of interest.
Internally, VFS uses inodes to represent a resource of interest. The Pathname lookup is the
operation which derives an inode from the corresponding file pathname.

Pathname lookup tokenizes the string:

- the passed string is broken into a sequence of filenames
- everything must be a directory, except for the last component

During this procedure there are several aspects to take into account:

- filesystem mount points
- access rights
- symbolic links (and circular references)
- automount
- namespaces (more on this later)
- concurrency (while a process is navigating, other processes might make changes)

31

Functions
The main function for path name lookup are vfs_path_lookup(), filename_lookup() and
path_lookupat(). The path walking is based on the nameidata data structure that is filled
when the functions return.

328. Virtual Filesystem ⇒ 8.3 Pathname Lookup

https://elixir.bootlin.com/linux/v5.11/source/fs/namei.c#L502

The function increments the refcount of
dentry and inode

Flags are used for the lookup:
- LOOKUP_FOLLOW
- LOOKUP_DIRECTORY
- LOOKUP_CONTINUE
- LOOKUP_PARENT
- LOOKUP_NOALT
- LOOKUP_OPEN
- LOOKUP_CREATE
- LOOKUP_ACCESS

Current level of symlink navigation

https://elixir.bootlin.com/linux/v5.11/source/fs/namei.c#L502

Flags
Lookup flags drive the pathname resolution:

- LOOKUP_FOLLOW, if the last component is a symbolic link, interpret (follow) it
- LOOKUP_DIRECTORY, the last component must be a directory
- LOOKUP_CONTINUE, there are still filenames to be examined in the pathname
- LOOKUP_PARENT, look up the directory that includes the last component of the pathname
- LOOKUP_NOALT, do not consider the emulated root directory (useless in the 80x86 architecture)
- LOOKUP_OPEN, intent is to open a file
- LOOKUP_CREATE, intent is to create a file (if it doesn’t exist)
- LOOKUP_ACCESS, intent is to check user’s permission for a file

For further (and more comprehensive) description:
- Documentation/filesystems/path-lookup.rst
- Documentation/filesystems/path-lookup.txt

338. Virtual Filesystem ⇒ 8.3 Pathname Lookup

The mount() system call
int mount(const char *source, const char *target, const char *filesystemtype,

unsigned long mountflags, const void *data);

The mount() system call is used to mount a generic filesystem, its sys_mount() service
routine acts on: a pathname of a device containing a filesystem (source e.g. /dev/<...>), a
pathname of the directory on which the filesystem will be mounted (target), the filesystem
type, a set of flags and a pointer to system dependent data (usually NULL). Flags are:

- MS_NOEXEC: Do not allow programs to be executed from this file system.
- MS_NOSUID: Do not honour set-UID and set-GID bits when executing programs from this file

system.
- MS_RDONLY: Mount file system read-only.
- MS_REMOUNT: Remount an existing mount. This allows you to change the mountflags and data

of an existing mount without having to unmount and remount the file system. source and
target should be the same values specified in the initial mount() call; fs type is ignored.

- MS_SYNCHRONOUS: Make writes on this file system synchronous

348. Virtual Filesystem ⇒ 8.3 Pathname Lookup

Mount points
Directories selected as the target for the mount operation become a “mount point”. This is
reflected in struct dentry by setting in d_flags the flag DCACHE_MOUNTED.

Further information on https://lwn.net/Articles/649115/

358. Virtual Filesystem ⇒ 8.3 Pathname Lookup

https://lwn.net/Articles/649115/

Files

8.4

Advanced Operating Systems and Virtualization

8. Virtual Filesystem

File descriptor table

8. Virtual Filesystem ⇒ 8.4 Files

The PCB has a member struct files_struct *files which points to the descriptor table defined in
include/linux/fdtable.h.

37

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fdtable.h#L49

v5.11

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fdtable.h#L49

fdtable

388. Virtual Filesystem ⇒ 8.4 Files

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fdtable.h#L27

v5.11

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fdtable.h#L27

file

398. Virtual Filesystem ⇒ 8.4 Files

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fs.h#L915

v5.11

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fs.h#L915

Opening Files

408. Virtual Filesystem ⇒ 8.4 Files

A file struct is allocated when a file is opened. The system call that allows a process to open a
file is open() serviced by sys_open() that in the end calls do_sys_open(). The function is
logically divided into two parts:

1. a file descriptor is allocated, if available
2. invocation of the intermediate function struct file *do_filp_open(int dfd,

struct filename *pathname, const struct open_flags *op) which returns the
address of the struct file associated with the opened file

On kernel 5.11 do_sys_open() calls do_sys_openat2().

v5.11

https://elixir.bootlin.com/linux/v5.11/source/fs/open.c#L1156

do_sys_openat2()

418. Virtual Filesystem ⇒ 8.4 Files

Finds and allocate
an empty slot in the
fdtable, if available

Deallocate the file
descriptor

“Install” the file
descriptor assigning
the file struct

v5.11

(Pointers and Errors)

428. Virtual Filesystem ⇒ 8.4 Files

#define IS_ERR_VALUE(x) unlikely((unsigned long)(void *)(x) >= (unsigned long)-MAX_ERRNO)

static inline void * __must_check ERR_PTR(long error) {

return (void *) error;

}

static inline long __must_check PTR_ERR(__force const void *ptr) {

return (long) ptr;

}

static inline bool __must_check IS_ERR(__force const void *ptr) {

return IS_ERR_VALUE((unsigned long)ptr);

}

v5.11

Closing Files
The close() system call is defined in fs/open.c as:

SYSCALL_DEFINE1(close, unsigned int, fd)

This function basically calls (in fs/file.c):

int close_fd(unsigned fd)

that:

- retrieves the file struct associated with the file, and releases the file descriptor
- calls filp_close(struct file *filp, fl_owner_t id), defined in fs/open.c, which

flushing the data structures associated with the file (struct file, dentry and i-node)

438. Virtual Filesystem ⇒ 8.4 Files

v5.11

close_files()

448. Virtual Filesystem ⇒ 8.4 Files

https://elixir.bootlin.com/linux/v5.11/source/fs/file.c#L617

https://elixir.bootlin.com/linux/v5.11/source/fs/file.c#L537

https://elixir.bootlin.com/linux/v5.11/source/fs/file.c#L597

https://elixir.bootlin.com/linux/v5.11/source/fs/file.c#L250

v5.11

https://elixir.bootlin.com/linux/v5.11/source/fs/file.c#L617
https://elixir.bootlin.com/linux/v5.11/source/fs/file.c#L537
https://elixir.bootlin.com/linux/v5.11/source/fs/file.c#L597
https://elixir.bootlin.com/linux/v5.11/source/fs/file.c#L250

The read() system call

458. Virtual Filesystem ⇒ 8.4 Files

v5.11

https://elixir.bootlin.com/linux/v5.11/source/fs/read_write.c#L623

Release resources

https://elixir.bootlin.com/linux/v5.11/source/fs/read_write.c#L623

The write() system call

468. Virtual Filesystem ⇒ 8.4 Files

The read system call is actually the same of the write but uses vfs_write() instead of
vfs_read().

v5.11

https://elixir.bootlin.com/linux/v5.11/source/fs/read_write.c#L585

https://elixir.bootlin.com/linux/v5.11/source/fs/read_write.c#L585

The /proc filesystem

8.5

Advanced Operating Systems and Virtualization

8. Virtual Filesystem

Overview

8. Virtual Filesystem ⇒ 8.5 The /proc filesystem

The /proc filesystem is an in-memory file system which provides information on:

- active programs (processes)
- the whole memory content
- kernel-level settings (e.g. the currently mounted modules)

Common files on proc are:

- cpuinfo contains the information established by the kernel about the processor at boot
time, e.g., the type of processor, including variant and features.

- kcore contains the entire RAM contents as seen by the kernel.
- meminfo contains information about the memory usage, how much of the available

RAM and swap space are in use and how the kernel is using them.
- version contains the kernel version information that lists the version number, when it

was compiled and who compiled it.

48

https://www.kernel.org/doc/html/latest/filesystems/proc.html

https://www.kernel.org/doc/html/latest/filesystems/proc.html

Overview
Then we have:

- net/ is a directory containing network information.
- net/dev contains a list of the network devices that are compiled into the kernel. For each

device there are statistics on the number of packets that have been transmitted and received.
- net/route contains the routing table that is used for routing packets on the network.
- net/snmp contains statistics on the higher levels of the network protocol.

- self/ contains information about the current process. The contents are the same as those in the
per-process information described later.

- pid/ contains information about process number pid. The kernel maintains a directory containing
process information for each process.

- pid/cmdline contains the command that was used to start the process (using null characters
to separate arguments).

- pid/cwd contains a link to the current working directory of the process.
- pid/environ contains a list of the environment variables that the process has available.
- pid/exe contains a link to the program that is running in the process.
- pid/fd/ is a directory containing a link to each of the files that the process has open.
- pid/mem contains the memory contents of the process.
- pid/stat contains process status information.
- pid/statm contains process memory usage information.

498. Virtual Filesystem ⇒ 8.5 The /proc filesystem

tgid_base
_stuff

https://www.kernel.org/doc/html/latest/filesystems/proc.html

https://www.kernel.org/doc/html/latest/filesystems/proc.html

Core Data Structures
proc/pid is represented using the data
structure defined in fs/proc/internal.h

508. Virtual Filesystem ⇒ 8.5 The /proc filesystem

APIs
To create a file in /proc you can use the function (source):

struct proc_dir_entry *proc_create(const char *name, umode_t mode,
 struct proc_dir_entry *parent,
 const struct proc_ops *proc_ops)

It is essential to define the proc_ops in order to use the file.

518. Virtual Filesystem ⇒ 8.5 The /proc filesystem

https://elixir.bootlin.com/linux/v5.11/source/include/linux/proc_fs.h#L29

https://elixir.bootlin.com/linux/v5.11/source/fs/proc/generic.c#L584
https://elixir.bootlin.com/linux/v5.11/source/include/linux/proc_fs.h#L29

The /sys filesystem

8.6

Advanced Operating Systems and Virtualization

8. Virtual Filesystem

Overview

8. Virtual Filesystem ⇒ 8.6 The /sys filesystem

Similar in spirit to proc, mounted to /sys, it is an alternative way to make the kernel export
information (or set it) via common I/O operations.

Very simple API, more clear structuring. The VFS objects are mapped using the following
scheme:

53

Internal External

Kernel Objects Directories

Object Attributes Regular Files

Object Relationship Symbolic Links

Core APIs
static inline int __must_check sysfs_create_file(struct kobject *kobj, const struct attribute *attr)

static inline void sysfs_remove_file(struct kobject *kobj, const struct attribute *attr)

static inline int sysfs_rename_link(struct kobject *kobj, struct kobject *target, const char *old_name, const
char *new_name)

The functions uses the struct attribute declared as follows.

struct attribute {

const char *name;

umode_t mode;

}

Instead, the struct kobject represents the kernel object (next slide). /sysfs is tight inherently
with the kobjects architecture.

548. Virtual Filesystem ⇒ 8.6 The /sys filesystem

v5.11

https://elixir.bootlin.com/linux/v5.11/source/include/linux/sysfs.h

https://elixir.bootlin.com/linux/v5.11/source/include/linux/kobject.h

https://elixir.bootlin.com/linux/v5.11/source/include/linux/sysfs.h
https://elixir.bootlin.com/linux/v5.11/source/include/linux/kobject.h

Kobjects architecture
A kobject is an object of type struct kobject. Kobjects have a name and a reference count
(kref). A kobject also has a parent pointer (allowing objects to be arranged into hierarchies), a
specific type, and, usually, a representation in the sysfs virtual filesystem.

Kobjects are generally not interesting on their own; instead, they are usually embedded
within some other structure which contains the stuff the code is really interested in
(remember container_of).

No structure should EVER have more than one kobject embedded within it. If it does, the
reference counting for the object is sure to be messed up and incorrect, and your code will be
buggy. So do not do this.

558. Virtual Filesystem ⇒ 8.6 The /sys filesystem

https://www.kernel.org/doc/html/latest/core-api/kobject.html

https://www.kernel.org/doc/html/latest/core-api/kobject.html

Kobjects architecture
A ktype is the type of object that embeds a kobject. Every structure that embeds a kobject
needs a corresponding ktype. The ktype controls what happens to the kobject when it is
created and destroyed.

A kset is a group of kobjects. These kobjects can be of the same ktype (classic kset) or belong
to different ktypes (i.e. a subsystem). The kset is the basic container type for collections of
kobjects. Ksets contain their own kobjects, but you can safely ignore that implementation
detail as the kset core code handles this kobject automatically.

When you see a sysfs directory full of other directories, generally each of those directories
corresponds to a kobject in the same kset.

568. Virtual Filesystem ⇒ 8.6 The /sys filesystem

https://www.kernel.org/doc/html/latest/core-api/kobject.html

https://www.kernel.org/doc/html/latest/core-api/kobject.html

Data Structures

578. Virtual Filesystem ⇒ 8.6 The /sys filesystem

https://elixir.bootlin.com/linux/v5.11/source/include/linux/kobject.h#L64

https://lwn.net/Articles/51437/

https://elixir.bootlin.com/linux/v5.11/source/include/linux/sysfs.h#L230

https://elixir.bootlin.com/linux/v5.11/source/include/linux/kobject.h#L138

https://lwn.net/Articles/51437/

Kobjects are arranged as in the figure on the right. The kernel offers APIs
for initializing objects and for adding/removing them from ksets.

https://elixir.bootlin.com/linux/v5.11/source/include/linux/kobject.h#L64
https://lwn.net/Articles/51437/
https://lwn.net/Articles/51437/

Example

588. Virtual Filesystem ⇒ 8.6 The /sys filesystem

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

APIs
void kobject_init(struct kobject *kobj);

int kobject_set_name(struct kobject *kobj, const char *format, ...);

struct kobject *kobject_get(struct kobject *kobj);

void kobject_put(struct kobject *kobj);

void kset_init(struct kset *kset);

int kset_add(struct kset *kset);

int kset_register(struct kset *kset);

void kset_unregister(struct kset *kset);

struct kset *kset_get(struct kset *kset);

void kset_put(struct kset *kset);

kobject_set_name(my_set->kobj, "The name");

598. Virtual Filesystem ⇒ 8.6 The /sys filesystem

Hooking into sysfs
An initialized kobject will perform reference counting without trouble, but it will not appear in
sysfs. To create sysfs entries, kernel code must pass the object to kobject_add():

int kobject_add(struct kobject *kobj);

As always, this operation can fail. The function:

void kobject_del(struct kobject *kobj);

will remove the kobject from sysfs.

There is a kobject_register() function, which is really just the combination of the calls to
kobject_init() and kobject_add(). Similarly, kobject_unregister() will call
kobject_del(), then call kobject_put() to release the initial reference created with
kobject_register() (or really kobject_init())

608. Virtual Filesystem ⇒ 8.6 The /sys filesystem

Device Management

8.7

Advanced Operating Systems and Virtualization

8. Virtual Filesystem

The I/O Architecture

8. Virtual Filesystem ⇒ 8.7 Device Management

The essential part of a computer is the internal
communication structure which allows all the
essential components to communicate. The internal
communication is built upon data path which are
called buses. Any computer has a system bus that
connects most of the internal hardware devices (e.g.
PCI, SCSI, USB). Since several buses may exists they
are linked together by hardware devices called
bridges (northbridge and southbridge).

62

https://en.wikipedia.org/wiki/Southbridge_(computing)

https://en.wikipedia.org/wiki/Southbridge_(computing)

Any I/O device is hosted by one and only one bus. The data path that connects a CPU to an I/O
device is generally called a I/O bus.

The essential components of the I/O architecture are:

- I/O Ports - Each device has its own set of I/O addresses which are called I/O ports
accessible through special assembly instructions (e.g. in, out)

- I/O Interfaces - That are hardware circuits between a group of I/O ports and the
corresponding device controller, they acts as interpreter translating data and also issuing
interrupts (examples: keyboard int., graphic int., disk int., network int., serial/parallel
port, SCSI and USB)

- Device Controllers - They have two important roles:
- interpreting high level commands from I/O ports to electrical signals to the device
- converts electrical signals from the device and updates status registers

The I/O architecture

638. Virtual Filesystem ⇒ 8.7 Device Management

The Device Driver Model
In the early days devices were very different to each other, and offering a unified view made
no sense. With years and standards the need of a unified model of devices arose. Different
devices have more or less the same set of functionalities that regards:

- power management
- plug and play
- hot-plugging

To implement these kind of operations Linux offers a set of data structures and functions that
unify view of all buses, devices and devices drivers. This framework is called the Device Driver
Model. Its main components are:

- Devices
- Drivers
- Buses
- Classes

648. Virtual Filesystem ⇒ 8.7 Device Management

Devices

8. Virtual Filesystem ⇒ 8.7 Device Management

Device are representation is stored in the device object, but in the Linux kernel they are also
represented by special files called device files (in the folder /dev), thus the same system calls
used to interact with regular files can be used.

According to the characteristics of the underlying drivers, device files can be of two types:

- block devices, they allow data to be accessed randomly, in blocks and in relative small
time (e.g. hdd, dvd)

- character devices, they cannot allow data to be accessed randomly and character by
character (i.e. bit by bit) (e.g. sound card)

Network cards are not associated with device files and some device may be not associated
with a real hardware (as /dev/null).

65

Devices

668. Virtual Filesystem ⇒ 8.7 Device Management

device object

https://elixir.bootlin.com/linux/v5.11/source/include/linux/device.h#L455

v5.11

https://elixir.bootlin.com/linux/v5.11/source/include/linux/device.h#L455

Numbers
Each device is associated with a couple of numbers: MAJOR and MINOR:

- MAJOR is the key to access the device driver as registered within a driver database
- MINOR identifies the actual instance of the device driven by that driver (this can be

specified by the driver programmer)

There are different tables to register devices, depending on whether the device is a char
device or a block device:

- fs/char_dev.c for char devices
- fs/block_dev.c for block devices

In the above source files we can also find device-independent functions for accessing the
actual driver.

678. Virtual Filesystem ⇒ 8.7 Device Management

Device numbers

688. Virtual Filesystem ⇒ 8.7 Device Management

[gpm@fedora-works ~]$ ls -l /dev/sda /dev/ttyS0
brw-rw----. 1 root disk 8, 0 Apr 20 08:37 /dev/sda
crw-rw----. 1 root dialout 4, 64 Apr 20 08:37 /dev/ttyS0

Major MinorDevice
Type

In general, the same major can be given to both a character and a block device! Numbers are
"assigned" by the Linux Assigned Names and Numbers Authority (http://lanana.org/) and kept
in Documentation/devices.txt. Defines are in include/uapi/linux/major.h

Device numbers

698. Virtual Filesystem ⇒ 8.7 Device Management

[gpm@fedora-works ~]$ ls -l /dev/sd*
brw-rw----. 1 root disk 8, 0 Apr 20 08:37 /dev/sda
brw-rw----. 1 root disk 8, 1 Apr 20 08:37 /dev/sda1
brw-rw----. 1 root disk 8, 2 Apr 20 08:37 /dev/sda2
brw-rw----. 1 root disk 8, 3 Apr 20 08:37 /dev/sda3
brw-rw----. 1 root disk 8, 16 Apr 20 08:37 /dev/sdb
brw-rw----. 1 root disk 8, 17 Apr 20 08:37 /dev/sdb1

All of these devices have the same major number, so
they are probably linked to the same driver

http://lanana.org/

The Device Database
Char and Block devices behave differently, but they are organized in identical databases which
are handled as hashmaps. They are referenced as cdev_map and bdev_map.

708. Virtual Filesystem ⇒ 8.7 Device Management

https://elixir.bootlin.com/linux/v5.11/source/drivers/base/map.c#L19

hasing is done as:
major % 255

32bit unsigned integer storing major and minor

v5.11

https://elixir.bootlin.com/linux/v5.11/source/drivers/base/map.c#L19

The Device Database

718. Virtual Filesystem ⇒ 8.7 Device Management

...

[b,c]dev_map

data data data

Device-specific
structure

Device-specific
structure

Device-specific
structure

Char Devices

8.7.1

Advanced Operating Systems and Virtualization

8. Virtual Filesystem
7. Device Management

struct cdev

738. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.1 Char Devices

https://elixir.bootlin.com/linux/v5.11/source/include/linux/cdev.h#L14

v5.11

https://elixir.bootlin.com/linux/v5.11/source/include/linux/cdev.h#L14

Range Database

748. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.1 Char Devices

https://elixir.bootlin.com/linux/v5.11/source/fs/char_dev.c#L34

The struct char_device_struct is used to manage device number allocation to drivers.

v5.11

https://elixir.bootlin.com/linux/v5.11/source/fs/char_dev.c#L34

Registering Char Device
linux/fs.h provides the following wappers to register/deregister a driver:

- int register_chrdev(unsigned int major, const char *name, struct
file_operations *fops): registration takes place onto the entry at displacement
MAJOR (0 means the choice is up the kernel). The actual MAJOR number is returned.

- int unregister_chrdev(unsigned int major, const char *name): releases the
entry at displacement MAJOR

They map to actual operations in fs/char_dev.c:

- int __register_chrdev(unsigned int major, unsigned int baseminor,
unsigned int count, const char *name, const struct file_operations
*fops)

- void __unregister_chrdev(unsigned int major, unsigned int baseminor,
unsigned int count, const char *name)

758. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.1 Char Devices

v5.11

File Operations

768. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.1 Char Devices

v5.11

Registering Device Numbers

778. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.1 Char Devices

A driver might require to register or allocate a range of device numbers.

APIs are in fs/char_dev.c and exposed in include/linux/fs.h:

- int register_chrdev_region(dev_t from, unsigned count, const char *name) -
Major is specified in from

- int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const

char *name) - Major and first minor are returned in dev

Block Devices

8.7.2

Advanced Operating Systems and Virtualization

8. Virtual Filesystem
7. Device Management

struct gendisk

8. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.2 Block Devices

The structure corresponding to cdev for a block device is struct gendisk in
include/linux/genhd.h.

79

https://elixir.bootlin.com/linux/v5.11/source/include/linux/genhd.h#L137

https://elixir.bootlin.com/linux/v5.11/source/include/linux/genhd.h#L137

APIs
In block/genhd.c we find the following functions to register/deregister the driver:

- int register_blkdev(unsigned int major, const char * name, struct
block_device_operations *bdops)

- int unregister_blkdev(unsigned int major, const char * name)

As far as regard the block device operations we have neither read nor write!

808. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.2 Block Devices

https://elixir.bootlin.com/linux/v5.11/source/include/linux/blkdev.h#L1852

https://elixir.bootlin.com/linux/v5.11/source/include/linux/blkdev.h#L1852

Block Devices Handling
For char devices the management of read/write operations is in charge of the device driver.
This is not the same for block devices read/write operations on block devices are handled via a
single API related to buffer cache operations.

The actual implementation of the buffer cache policy will determine the real execution
activities for block device read/write operations.

Request Queues

Request queues (strategies in UNIX) are the way to operate on block devices. Requests
encapsulate optimizations to manage each specific device (e.g. via the elevator algorithm).
The Request Interface is associated with a queue of pending requests towards the block device

818. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.2 Block Devices

Block Devices Handling

828. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.2 Block Devices

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

Devices and VFS

8.7.3

Advanced Operating Systems and Virtualization

8. Virtual Filesystem
7. Device Management

Linking Devices and the VFS

848. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.3 Devices and VFS

The member umode_t i_mode in struct inode tells the type of the inode:

- directory
- file
- char device
- block device
- (named) pipe

The kernel function sys_mknod() creates a generic inode. If the iinode represents a device, the
operations to manage the device are retrieved via the device driver database.

In particular, the inode has the dev_t i_rdev member

The mknod() system call
int mknod(const char *pathname, mode_t mode, dev_t dev)

Where

- mode specifies permissions and type of node to be created, permissions are filtered via
the umask of the calling process (mode & umask)

- different macros can be used to define the node type: S_IFREG, S_IFCHR, S_IFBLK,
S_IFIFO.

- When using S_IFCHR or S_IFBLK, the parameter dev specifies Major and Minor numbers
of the device file to create, otherwise it is a don’t care

858. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.3 Devices and VFS

Opening Device Files
In fs/devices.c there is the generic chrdev_open() function. This function needs to find the
dev-specific file operations. Given the device, number, kobject_lookup() is called to find a
corresponding kobject. From the kobject we can navigate to the corresponding cdev. The
device-dependent file operations are then in cdev->ops. This information is then cached in
the i-node

868. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.3 Devices and VFS

inode

i_devices

i_cdev

cdev

list

ops

file_operations

struct inode

f_op

Classes

8.7.4

Advanced Operating Systems and Virtualization

8. Virtual Filesystem
7. Device Management

Overview
Devices are organized into "classes", and a device can belong to multiple classes.

The device class membership is shown in /sys/class/. Block devices for example are
automatically placed under the "block" class, this is done automatically when the gendisk
structure is registered in the kernel. To each class is associated a class object.

Most devices don't require the creation of new classes.

888. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.4 Classes

struct class

898. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.4 Classes

https://elixir.bootlin.com/linux/v5.11/source/include/linux/device/class.h#L54

https://elixir.bootlin.com/linux/v5.11/source/include/linux/device/class.h#L54

APIs

908. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.4 Classes

static struct class sbd_class = {

.name = "class_name",

.class_release = release_fn

};

int class_register(struct class *cls);

void class_destroy(struct class *cls);

struct class *class_create(struct module *owner, const

char *name, struct lock_class_key *key)

APIs
Devices can be added to classes with the following function:

struct device *device_create(struct class *class, struct device *parent,
dev_t devt, void *drvdata, const char *fmt, ...)

And removed with:

void device_destroy(struct class *class, dev_t devt)

918. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.4 Classes

Specify here the class Specify here the device name string
like “/dev/sda1”

Device Class Attributes
Specify attributes for the classes, and functions to "read" and "write" the specific class
attributes.

CLASS_DEVICE_ATTR(name, mode, show, store);

This is expanded to a structure called dev_attr_name where we have (as kobjects):

- ssize_t (*show)(struct class_device *cd, char *buf);

- ssize_t (*store)(struct class_device *, const char *buf, size_t count);

928. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.4 Classes

udev

8.7.5

Advanced Operating Systems and Virtualization

8. Virtual Filesystem
7. Device Management

Overview

8. Virtual Filesystem ⇒ 8.7 Device Management ⇒ 8.7.5 udev

udev is the userspace Linux device manager, it manages device nodes in /dev. It also handles
userspace events raised when devices are added/removed to/from the system. The
introduction of udev has been due to the degree of complexity associated with device
management. It is highly configurable and rule-based.

Rules

Udev in userspace looks at /sys to detect changes and see whether new (virtual) devices are
plugged. Special rule files (in /etc/udev/rules.d) match changes and create files in /dev
accordingly. Syntax tokens in syntax files:

- KERNEL: match against the kernel name for the device
- SUBSYSTEM: match against the subsystem of the device
- DRIVER: match against the name of the driver backing the device
- NAME: the name that shall be used for the device node
- SYMLINK: a list of symbolic links which act as alternative names for the device node

KERNEL=="hdb", DRIVER=="ide-disk", NAME="my_spare_disk", SYMLINK+="sparedisk", MODE="0644"

94

Advanced Operating Systems and
Virtualization

L E C T U R E R

Gabriele Proietti Mattia

B A S E D O N W O R K B Y

http://www.ce.uniroma2.it/~pellegrini/

95

[8] Virtual File System

gpm.name · proiettimattia@diag.uniroma1.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

