Gabriele Proietti Mattia

Advanced Operating Systems
and Virtualization

NG

Department of Computer,

[8] Virtual File System Control and Management

Engineering “A. Ruberti”,
Sapienza University of Rome

gpm.name - proiettimattia@diag.uniroma1.it AY. 2020/2021 - v2

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it

Outline

Introduction

The Common File Model
1. Operations

Pathname Lookup

Files

The /proc filesystem

The /sys filesystem

Device Management

N B

NounFw

1. CharDevices

2. Block Devices

3. DevicesandVFS
4. Classes

5. udev

8. Virtual Filesystem 2

8. Virtual Filesystem

Introduction

Advanced Operating Systems and Virtualization ’ IAG

Introduction

The VFS is a software layer which abstracts the actual implementation of the devices and/or
the organization of files on a storage system. The VFS exposes a uniform interface to
userspace applications.

The main roles of the virtual filesytem are:

- keeping track of available filesystem types;

- associating (and de-associating) devices with instances of the appropriate filesystem.

- do any reasonable generic processing for operations involving files.

- when filesystem-specific operations become necessary, vector them to the filesystem in
charge of the file, directory, or inode in question.

8. Virtual Filesystem = 8.1 Introduction

Introduction

I n
E
|

/tmp/test

(a)

MS-D ‘

/floppy/TEST

inf = open("/floppy/TEST", O _RDONLY, 0);
outf = open("/tmp/test”,
0_WRONLY|O_CREAT|0_TRUNC, 0600);
do {
i = read(inf, buf, 4096);
write(outf, buf, i);
} while (i);
close(outf);
close(inf);

(b)

Figure 12-1. VES role in a simple file copy operation

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

8. Virtual Filesystem = 8.1 Introduction

Supported File Systems

The filesystems supported by the VFS can be grouped in:

- Disk-based Filesystems
They manage memory in a disk or in some other device which emulates a disk (e.g. USB
disk). Some of the well-known FS are:

- Linux EXT2/3/4, from Oracle also BTRFS

- Windows MS-DOS, VFAT, NTFS, ExFAT

- CD-ROMFS like UDF

- Other proprietary like Apple HFS, HFS+, APFS, IBM HPFS

- Network Filesystems
They allows easy access to file belonging to other networked PCs (e.g. NFS, CIFS)

- Special Filesystems
They do not manage a disk space (e.qg. /proc or /sys)

8. Virtual Filesystem = 8.1 Introduction

File System Representation

The VFS representation has a two fold nature, one in RAM and one on disk. In RAM we have a
partial or full representation of the current structure and the content of the FS. On the device
we have the full representation of of the current structure and the content of the FS but
possibly outdated.

The data access and manipulation comprehends:

- aFS-independent part, that is the interface towards other subsystems within the kernel
- aFS-dependent part, that is the code for managing data in that particular filesystem

Connecting the two parts: any filesystem object that can be a directory, a device or a file is
represented in RAM via specific data structures. Each data structure keeps a reference to the
functions that talks directly to the device, if any. That reference is reached by means of a
kernel API interface (like read(), write(), etc.). Function pointers are used to reference
actual drivers' functions.

8. Virtual Filesystem = 8.1 Introduction

Everything is a file.

(*with some exceptions)

8. Virtual Filesystem = 8.1 Introduction

8. Virtual Filesystem

The Common File Model

Advanced Operating Systems and Virtualization ’ IAG

The Common File Model

The key idea behind the VFS is to introduce a common file model capable of representing all
the possible filesystems. This means that each physical filesystem implementation must
translate its physical organization into the VFS’s common file model.

For example, in the Common File Model each directory is a file which contains a list of files and
other directories, however a FAT (File Allocation Table) filesystem stores the position of each
file in a tree and directories are not files. In order to adhere to the VFS model the FAT driver
must create on the fly a file object, but this exists only in memory.

8. Virtual Filesystem = 8.2 The Common File Model

The Common File Model

The Common File Model consists of the following “object” types:

superblock

Stores the information concerning a mounted filesystem, this object corresponds to a
filesystem control block stored on disk

inode

Stores general information about a specific file, this corresponds to to a file control block
stored on disk, each inode has a unique number associated to it

file

Stores the information about the interaction between an open file and a process, this
exists only in kernel memory when a process opens a file

dentry

Stores the information about the linking of a directory entry with the corresponding file,
each FS stores this information in its own particular way.

8. Virtual Filesystem = 8.2 The Common File Model 11

The Common File Model

These can belong to
different filesystems

Figure 12-2. Interaction between processes and VFS objects

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

8. Virtual Filesystem = 8.2 The Common File Model

12

The Common File Model

dentry
file system type super_block I Thode dentry
d:sb operations
d_ops file instances of the superblock Yy
—_— > >
s _type NAME >
: >
s_files
address_
space_ f_op f_op — f_op
operations f_dentry f_dentry f_dentry
inode [
address_space
vfsmount inode
ot i operations
i_op
EESEREREE i_dentry
i_fop :
=— \ file_ | =
mnt_sb isb operations [
= — i_mapping
a_ops task_struct
- files_
files struct
A -
_

‘{///’ [::] struct page

—3 Doubly chained
< |ist (schematically)

Figure 8-3: Interplay of the VFS components.

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.

8. Virtual Filesystem = 8.2 The Common File Model 13

Filesystem Types

The file_system_type structure describes a file system (it is defined in include/1linux/fs.h),
it keeps information related to:

- the file system name
- apointer to a function to be executed upon mounting the file system (superblock-read)

2226 struct file_system_type {

2227 const char *name;

2228 int fs_flags;

2236 int (*init_fs_context) (struct fs_context *);
2231 const struct fs_parameter_spec *parameters;
2238 struct dentry *(*mount) (struct file_system_type *, int,
2239 const char *, void *);

2240 void (*kill_sb) (struct super_block *);

2241 struct module *owner;

2242 struct file_system_type * next;

2243 struct hlist_head fs_supers;

N

8. Virtual Filesystem = 8.2 The Common File Model 14

Filesystem Types

ramfs

Ramfs is a very simple filesystem that exports Linux's disk caching mechanisms (the page
cache and dentry cache) as a dynamically resizable RAM-based filesystem.

With ramfs, there is no backing store. Files written into ramfs allocate dentries and page
cache as usual, but there's nowhere to write them to.

Ramfs can eat up all the available memory:

- tmpfsis a derivative, with size limits
- only root should be given access to ramfs

8. Virtual Filesystem = 8.2 The Common File Model

Filesystem Types

rootfs

Rootfs is a special instance of ramfs (or tmpfs, if that's enabled), which is always present in 2.6
systems.

It provides an empty root directory during kernel boot. Rootfs cannot be unmounted and this
has the same idea behind the fact that init process cannot be killed.

During kernel boot, another (actual) filesystem is mounted over rootfs (remember
initramfs/initrd).

8. Virtual Filesystem = 8.2 The Common File Model

File System Mounting

In most traditional Unix-like kernel, each filesystem can be mounted once, the command used
is for instance

mount -t ext4 /dev/sda1 /mnt

However in Linux it is possible to mount the same filesystem n times, this means that its root
directory can be accessed through n mount points. This means that each mount point
(represented by the struct vfsmount) will point to the same superblock.

Mounted filesystems form a hierarchy: the mount point of a filesystem might be the directory
of a second filesystem, which in turn is already mounted over a third filesystem and so on.

8. Virtual Filesystem = 8.2 The Common File Model 17

vfsmount v2.6

55 struct vfsmount {

56 struct list_head mnt_hash;

517 struct vfsmount *mnt_parent; /* fs we are mounted on */

58 struct dentry *mnt_mountpoint; /* dentry of mountpoint */

59 struct dentry *mnt_root; /* root of the mounted tree */

60 struct super_block *mnt_sb; /* pointer to superblock */

61 #ifdef CONFIG_SMP

62 struct mnt_pcp _ percpu *mnt_pcp;

63 atomic_t mnt_longterm; /* how many of the refs are longterm */
64 #else

65 int mnt_count;

66 int mnt_writers;

67 #endif

68 struct list_head mnt_mounts; /* list of children, anchored here */
69 struct list_head mnt_child; /* and going through their mnt child */
70 int mnt_flags;

71 /* 4 bytes hole on 64bits arches without fsnotify */

72 #ifdef CONFIG_FSNOTIFY

7/E __u32 mnt_fsnotify mask;

74 struct hlist_head mnt_fsnotify_marks;

75 #endif

76 const char *mnt_devname; /* Name of device e.g. /dev/dsk/hdal */
77 struct list_head mnt_list;

78 struct list_head mnt_expire; /* link in fs-specific expiry list */
79 struct list_head mnt_share; /* circular list of shared mounts */

80 struct list_head mnt_slave_list;/* list of slave mounts */

81 struct list_head mnt_slave; /* slave list entry */

82 struct vfsmount *mnt_master; /* slave is on master->mnt_slave list */
83 struct mnt_namespace *mnt_ns; /* containing namespace */

84 int mnt_id; /* mount identifier */

85 int mnt_group_id; /* peer group identifier */

86 int mnt_expiry_mark; /* true if marked for expiry */

87 int mnt_pinned;

88 int mnt_ghosts;

89 ;

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/mount.h#L 55

8. Virtual Filesystem = 8.2 The Common File Model

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/mount.h#L55

superblock v2.6

1360 struct super_block {

1ot » struct list_head s_list; /* Keep this first */

1362 dev_t s_dev; /* search index; _not kdev_t */
1363 unsigned char s_dirt;

1364 unsigned char s_blocksize_bits;

1365 unsigned long s_blocksize;

1366 loff_t s_maxbytes; /* Max file size */

136 struct file_system_type *s_type;

1268 » const struct super_operations *s_op;

1369 const struct dquot_operations *dg_op;

1370 const struct quotactl_ops *s_qcop;

1371 const struct export_operations *s_export_op;

1372 unsigned long s_flags;

1373 unsigned long s_magic;

1374 > struct dentry *s_root;

1375 struct rw_semaphore S_umount;

1376 struct mutex s_lock;

1377 int s_count;

1378 atomic_t s_active;

1379 #ifdef CONFIG_SECURITY

1380 void *s_security;

1381 #endif

1382 const struct xattr_handler **s_xattr;

1383

1384 struct list_head s_inodes; /* all inodes */

1385 struct hlist_bl_head s_anon; /* anonymous dentries for (nfs) exporting */
1386 #ifdef CONFIG_SMP

1387 struct list_head __percpu *s_files;

1388 #else

1389 struct list_head s_files;

1390 #endif

1391 /* s dentry lru, s nr dentry unused protected by dcache.c lru locks */
1392 struct list_head s_dentry_lru; /* unused dentry lru */

1393 int s_nr_dentry_unused; /* # of dentry on lru */
1394

1395 struct block_device *s_bdev;

8. Virtual Filesystem = 8.2 The Common File Model 19

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/fs.h#L1360

dentry v2.6

116 struct dentry {

117 /* RCU lookup touched fields */ The kernel creates a dentry
118 unsigned int d_flags; /* protected by d lock */ .

119 seqcount_t d_seq; /* per dentry seqlock */ for every dlreCtOI’Y- When a
120 struct hlist_bl_node d_hash; /* lookup hash list */ ; ;

— struct dentry *d_parent; /* parent directory */ pathlllkcei /Eimp/tes.t 15 q
e struct gqstr d_name; resolved a dentry is create
123 > struct inode *d_inode; /* Where the name belongs to - NULL is N " Y " "

122 * negative */ for"/”, “tmp” and “test”.
52 unsigned char d_iname[DNAME_INLINE_LEN]; /* small names */ dentries have no

127 /* Ref lookup also touches following */ corresponding image on disk
——- unsigned int d_count; /* protected by d lock */ dh h . fieldi
129 spinlock_t d_lock; /* per dentry lock */ an ence thereisnoneld In
124 const struct dentry_operations *d_op; i i

131 » struct super_block *d_sb; /* The root of the dentry tree */ the StrUCtUre which SpeCIﬁeS
132 unsigned long d_time; /* used by d revalidate */ that the ObJeCt has been

133 void *d_fsdata; /* fs-specific data */ modified. The state of each
134 .

gg %ruct list_head d_1lru; /* LRU list */ dentry can be:

137 * d child and d rcu can share memory - Free, not used no inode
o . Unused, not used b
139 union { - nused, notuse y
140 struct list_head d_child; /* child of parent list */ inode

141 struct rcu_head d_rcu; InU d

142 } d_u; - n use, use

—— struct list_head d_subdirs; /* our children */ . .

144 struct list_head d_alias; /* inode alias list */ - Negatlve, the inode
145 }; does not exist

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/dcache.h#L 116

8. Virtual Filesystem = 8.2 The Common File Model 20

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/dcache.h#L116

The state can be:

inode

7215
736
737
738
739

40

struct inode {
/* RCU path lookup touches following: */

741
e

742
743
744
745
746

I_DIRTY_SYNC
I_DIRTY_DATASYNC
I_DIRTY_PAGES
I_LOCK

I_FREEING
I_CLEAR

I_NEW

748
749
750
751
7,52
753
754
755

#ifdef

#endif

umode_t i_mode;

uid_t i_uid; v2.6
gid_t i_gid;

const struct inode_operations *i_op;

struct super_block *i_sh;

spinlock_t i_lock; /* i blocks, i bytes, maybe i size */

unsigned int i_flags;

struct mutex i_mutex;

unsigned long i_state;

unsigned long

const struct file_operations
*i_flock;
*i_mapping;
struct address space i data;

struct file_lock
struct address_space

dirtied_when;

/* jiffies of first dirtying */

struct hlist_node i_hash;
struct list_head i_wb_list; /* backing dev IO list */
struct list_head i_lru; /* inode LRU list */
struct list_head i_sb_list;
union {
struct list_head i_dentry;
struct rcu_head i_rcu;
}
unsigned long i_ino;
atomic_t i_count;
unsigned int i_nlink;
dev_t i_rdev;
unsigned int i_blkbits;
u64 i_version;
loff_t i_size;
__NEED_I_SIZE_ORDERED
seqcount_t i_size_seqcount;
struct timespec i_atime;
struct timespec i_mtime;
struct timespec i_ctime;
blkent_t i_blocks;
unsigned short i_bytes;
struct rw_semaphore i_alloc_sem;

i_fop; / former ->i op->default file ops */

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/fs.h#L 735

8. Virtual Filesystem = 8.2 The Common File Model

https://elixir.bootlin.com/linux/v2.6.39.4/source/include/linux/fs.h#L735

Inode

Each inode can always appear in one of the following circular doubly linked lists:

- list of valid unused inodes, they are mirroring on disk but they are not used by any
process, they are not dirty and i_countis o

- list of in-use inodes, they are mirroring on disk and used by some process, they are not
dirty and i_count > o

- list of dirty inodes

Moreover, inodes objects are also included in a hash table that speeds up the search of the
inode object when the kernel knows both the inode number and the address of the superblock
corresponding to the FS that includes the file.

8. Virtual Filesystem = 8.2 The Common File Model 22

VFS and PCB

In the PCB, struct fs_struct *fs points to information related to the current directory and
the root directory for the associated process. fs_struct is defined in include/fs_struct.h

struct fs_struct {

int users;

spinlock_t lock; struct path {

seqcount_t seq; struct vfsmount *mnt;
int umask: struct dentry *dentry;

.) } __randomize layout;
int 1n_exec;

struct path root, pwd;

} __randomize_ layout;

8. Virtual Filesystem = 8.2 The Common File Model 23

8.2.1

8. Virtual Filesystem
2. The Common File Model

Operations

Advanced Operating Systems and Virtualization

NG

Superblock operations

Super block operations are described by the struct super_operations. They:

- manage statistic of the file system
- create and manage i-nodes
- flush to the device updated information on the state of the file system

Some File Systems might not use some operations (think of File Systems in RAM). Functions
to access statistics are invoked by system calls statfs() and fstatfs().

8. Virtual Filesystem = 8.2 The Common File Model = 8.2.1 Operations

super_operations v5.11

1933 struct super_operations {

1934 » struct inode *(*alloc_inode)(struct super_block *sb);
1535 > void (*destroy_inode)(struct inode *);

1936 vold (*free_inode)(struct inode *);

1937

1938 void (*dirty_inode) (struct inode *, int flags);

1939 int (*write_inode) (struct inode *, struct writeback_control *wbc);
1940 int (*drop_inode) (struct inode *);

1941 void (*evict_inode) (struct inode *);

194> void (*put_super) (struct super_block *);

1943 int (*sync_fs)(struct super_block *sb, int wait);

1944 int (*freeze_super) (struct super_block *);

1945 int (*freeze_fs) (struct super_block *);

1946 int (*thaw_super) (struct super_block *);

1947 int (*unfreeze_fs) (struct super_block *);

— » int (*statfs) (struct dentry *, struct kstatfs *);

1949 int (*remount_fs) (struct super_block *, int *, char *);
1950 void (*umount_begin) (struct super_block *);

1951

1952 int (*show_options)(struct seq_file *, struct dentry *);
1953 int (*show_devname)(struct seq_file *, struct dentry *);
1954 int (*show_path)(struct seq_file *, struct dentry *);
1955 int (*show_stats)(struct seq_file *, struct dentry *);

https://elixir.bootlin.com/linux/vs.11/sourcefinclude/linux/fs.h#L1933

8. Virtual Filesystem = 8.2 The Common File Model = 8.2.1 Operations

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fs.h#L1933

ramfs example

The ramfs filesystem is implemented in fs/1ibfs.c.

314 static const struct super_operations simple_super_operations = {
315 .statfs = simple_statfs,
316 };

https://elixir.bootlin.com/linux/vs.11/source/fs/libfs.c#L314

40 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)

41 {

42 buf->f_type = dentry->d_sb->s_magic;
43 buf->f_bsize = PAGE_SIZE;

44 buf->f_namelen = NAME_MAX;

45 return 0;

46 }

47 EXPORT_SYMBOL (simple_statfs);
https://elixir.bootlin.com/linux/vs.11/source/fs/libfs.c#L 314

8. Virtual Filesystem = 8.2 The Common File Model = 8.2.1 Operations

https://elixir.bootlin.com/linux/v5.11/source/fs/libfs.c#L314
https://elixir.bootlin.com/linux/v5.11/source/fs/libfs.c#L314

dentry_operations

They specify non-default operations for manipulating d-entries. The table maintaining the
associated function pointers is defined in include/1linux/dcache.h. For the file system in
RAM this structure is not used.

136 struct dentry_operations {

137 int (*d_revalidate)(struct dentry *, unsigned int);

138 int (*d_weak_revalidate)(struct dentry *, unsigned int);

139 int (*d_bash)(const struct dentry *, struct qstr *);

140 int (*d_compare)(const struct dentry *,
Removes the Fiéinted inode unsigned int, const char *, const struct gqstr *);

142 int (*d_delete)(const struct dentry *);

143 int (*d_init)(struct dentry *);

144 void (*d_release)(struct dentry *);
Removesthedentr}%ﬁhend_countisoVOid (*d_prune)(struct dentry *);

— vold (*d_iput)(struct dentry *, struct inode *);

147 char *(*d_dname)(struct dentry *, char *, int);

148 struct vfsmount *(*d_automount)(struct path *);

149 int (*d_manage)(const struct path *, bool);

150 struct dentry *(*d_real)(struct dentry *, const struct inode *);

151 } ____cacheline_aligned;

https://elixir.bootlin.com/linux/vs.11/source/include/linux/dcache.h#1 136

8. Virtual Filesystem = 8.2 The Common File Model = 8.2.1 Operations

https://elixir.bootlin.com/linux/v5.11/source/include/linux/dcache.h#L136

inode_operations

1862 struct inode_operations {

1863 struct dentry * (*Llookup) (struct inode *,struct dentry *, unsigned int);
1864 const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *);
1865 int (*permission) (struct inode *, int);

1866 struct posix_acl * (*get_acl)(struct inode *, int);

1867

1868 int (*readlink) (struct dentry *, char __user *,int);

1869

S int (*create) (struct inode *,struct dentry *, umode_t, bool);

1871 int (*1ink) (struct dentry *,struct inode *,struct dentry *);

1972 int (*unlink) (struct inode *,struct dentry *);

— int (*symlink) (struct inode *,struct dentry *,const char *);

1874 int (*mkdir) (struct inode *,struct dentry *,umode_t);

1875 int (*rmdir) (struct inode *,struct dentry *);

SasRas int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);

1877 int (*rename) (struct inode *, struct dentry *,

1878 struct inode *, struct dentry *, unsigned int);

1879 int (*setattr) (struct dentry *, struct iattr *);

1880 int (*getattr) (const struct path *, struct kstat *, u32, unsigned int);
1881 ssize_t (*listxattr) (struct dentry *, char *, size_t);

1882 int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start,
1883 u64 len);

1884 int (*update_time)(struct inode *, struct timespec64 *, int);

1885 int (*atomic_open)(struct inode *, struct dentry *,

1886 struct file *, unsigned open_flag,

1887 umode_t create_mode);

1888 int (*tmpfile) (struct inode *, struct dentry *, umode_t);

1889 int (*set_acl)(struct inode *, struct posix_acl *, int);

1890 } ____cacheline_aligned;

https://elixir.bootlin.com/linux/vs.11/source/include/linux/fs.h#1 1862

8. Virtual Filesystem = 8.2 The Common File Model = 8.2.1 Operations

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fs.h#L1862

8. Virtual Filesystem

Pathname Lookup

Advanced Operating Systems and Virtualization ’ IAG

Pathname Lookup

When accessing VFS, the path to a file is used as the “key” to access a resource of interest.
Internally, VFS uses inodes to represent a resource of interest. The Pathname lookup is the
operation which derives an inode from the corresponding file pathname.

Pathname lookup tokenizes the string:

the passed string is broken into a sequence of filenames
everything must be a directory, except for the last component

During this procedure there are several aspects to take into account:

8. Virtual Filesystem = 8.3 Pathname Lookup

filesystem mount points

access rights

symbolic links (and circular references)

automount

namespaces (more on this later)

concurrency (while a process is navigating, other processes might make changes)

31

Functions

The main function for path name lookup are vfs_path_lookup(), filename_lookup() and
path_lookupat(). The path walking is based on the nameidata data structure that is filled
when the functions return.

The function increments the refcount of

502 struct nameidata { //>
503 struct path path; dentry and inode

504 struct gqstr last;

505 struct path root;

506 struct inode *inode; /* path.dentry.d_inode */

507 unsigned int flags; ~ Flags are used for the lookup:
508 unsigned seq, m_seq, r_seq;

509 int last_type; - LOOKUP_FOLLOW

510 unsigned depth; _

Sill int total_link_count; LOOKUP—DIRECTORY
512 struct saved { - LOOKUP_CONTINUE
513 struct path link; -

514 struct delayed_call doné - LOOKUP_PARENT

SilS const char *name;

516 unsigned seq; - LOOKUP—NOALT

517 } *stack, internal[EMBEDDED_LEVELS]; - LOOKUP OPEN

518 struct filename *name; -

519 struct nameidata *saved; - LOOKUP_CREATE

520 unsigned root_seq;

o i dfd: - LOOKUP_ACCESS

522 kuid_t dir_uid;

523 umode_t dir_mode;

524 } __randomize_layout;

Current level of symlink navigation
https://elixir.bootlin.com/linux/vs.11/source/fs/namei.c#L 502

8. Virtual Filesystem = 8.3 Pathname Lookup 32

https://elixir.bootlin.com/linux/v5.11/source/fs/namei.c#L502

Flags

Lookup flags drive the pathname resolution:

- LOOKUP_FOLLOW, if the last component is a symbolic link, interpret (follow) it

- LOOKUP_DIRECTORY, the last component must be a directory

- LOOKUP_CONTINUE, there are still filenames to be examined in the pathname

- LOOKUP_PARENT, look up the directory that includes the last component of the pathname

- LOOKUP_NOALT, do not consider the emulated root directory (useless in the 80x86 architecture)
- LOOKUP_OPEN, intent is to open a file

- LOOKUP_CREATE, intent is to create a file (if it doesn't exist)

- LOOKUP_ACCESS, intent is to check user’s permission for a file

For further (and more comprehensive) description:
- Documentation/filesystems/path-lookup.rst
- Documentation/filesystems/path-lookup.txt

8. Virtual Filesystem = 8.3 Pathname Lookup 33

The mount() system call

int mount(const char *source, const char *target, const char *filesystemtype,
unsigned long mountflags, const void *data);

The mount() system call is used to mount a generic filesystem, its sys_mount() service
routine acts on: a pathname of a device containing a filesystem (source e.qg. /dev/<...>), a
pathname of the directory on which the filesystem will be mounted (target), the filesystem
type, a set of flags and a pointer to system dependent data (usually NULL). Flags are:

- MS_NOEXEC: Do not allow programs to be executed from this file system.

- MS_NOSUID: Do not honour set-UID and set-GID bits when executing programs from this file
system.

- MS_RDONLY: Mount file system read-only.

- MS_REMOUNT: Remount an existing mount. This allows you to change the mountflags and data
of an existing mount without having to unmount and remount the file system. source and
target should be the same values specified in the initial mount() call; fs type is ignored.

- MS_SYNCHRONOUS: Make writes on this file system synchronous

8. Virtual Filesystem = 8.3 Pathname Lookup 34

Mount points

Directories selected as the target for the mount operation become a “"mount point”. This is
reflected in struct dentry by setting in d_flags the flag DCACHE_MOUNTED.

Further information on https://lwn.net/Articles/649115/

35

8. Virtual Filesystem = 8.3 Pathname Lookup

https://lwn.net/Articles/649115/

8. Virtual Filesystem

Files

Advanced Operating Systems and Virtualization ’ IAG

File descriptor table

The PCB has a member struct files_struct *files which points to the descriptor table defined in
include/linux/fdtable.h.

8. Virtual Filesystem = 8.4 Files

49 struct files_struct {

50 /*

51 * read mostly part

52 */

53 atomic_t count;

54 bool resize_in_progress;

55 wait_queue_head_t resize_wait;

56

—- struct fdtable __rcu *fdt;

£Q struct fdtable fdtab;

59 /*

60 * written part on a separate cache line in SMP

61 */

62 spinlock_t file_lock ____cacheline_aligned_in_smp;
63 unsigned int next_fd;

64 unsigned long close_on_exec_init[1];

65 unsigned long open_fds_init[1];

66 unsigned long full_fds_bits_init[1];

67 struct file __rcu * fd_array[NR_OPEN_DEFAULT];
68 };

https://elixir.bootlin.com/linux/vs.11/source/include/linux/fdtable.h#L 49

V5.11

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fdtable.h#L49

fdtable

27 struct fdtable {

28 unsigned int max_fds;

29 struct file __rcu **fd; /* current fd array */
30 unsigned long *close_on_exec;

31 unsigned long *open_fds;

32 unsigned long *full_fds_bits;

33 struct rcu_head rcu;

34 [

8. Virtual Filesystem = 8.4 Files 38

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fdtable.h#L27

file

8. Virtual Filesystem = 8.4 Files

915 struct file {

916 union {

917 struct 1list_node fu_llist;
918 struct rcu_head fu_rcuhead;
919 } f_u;

929 » struct path f_path;

921 struct inode *f_inode; /* cached value */
922 » const struct file_operations *f_op;
923

924 /*

925 * Protects f_ep, f _flags.

926 * Must not be taken from IRQ context.
927 */

928 spinlock_t f_lock;

929 enum rw_hint f_write_hint;

930 atomic_long_t f_count;

931 unsigned int f_flags;

532 fmode_t f_mode;

—— > struct mutex f_pos_lock;

— loff_t f_pos;

935 struct fown_struct f_owner;

— const struct cred *f_cred;

937 struct file_ra_state f_ra;

938

https://elixir.bootlin.com/linux/vs.11/source/include/linux/fs.h#Lg1ig

V5.11

39

https://elixir.bootlin.com/linux/v5.11/source/include/linux/fs.h#L915

Opening Files

A file struct is allocated when a file is opened. The system call that allows a process to open a
file is open() serviced by sys_open() that in the end calls do_sys_open(). The function is
logically divided into two parts:

1. afile descriptoris allocated, if available

2. invocation of the intermediate function struct file *do filp_open(int dfd,
struct filename *pathname, const struct open_flags *op) which returns the
address of the struct file associated with the opened file

On kernel 5.11 do_sys_open() callsdo sys openat2().

8. Virtual Filesystem = 8.4 Files 40

https://elixir.bootlin.com/linux/v5.11/source/fs/open.c#L1156

do_sys_openat2()

8. Virtual Filesystem = 8.4 Files

1156
14I57
1158
14559
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1kl
iLil7/
14573
1174
14575
1176
1177
1178
579
1180
1181
1182
1183

static long do_sys_openat2(int dfd, const char __user *filename,

{

struct open_flag
int fd = build_o
struct filename

if (fd)

return fi

tmp = getname(fi
if (IS_ERR(tmp))

struct open_how *how)
S op;
pen_flags(how, &op);
*tmp;
d;

lename);

return PTR_ERR(tmp);

fd = get_unused_

if (fd >= 0) {

fd_flags(how->flags);

struct file *f = do_filp_open(dfd, tmp, &op);

if (IS_E

} else {

}
}
putname(tmp);
return fd;

RR(F)) { .
put_unused_fd(fd);
fd = PTR_ERR(f);

fsnotify_open(f);
fd_install(fd, f); <«

V5.11

Finds and allocate
an empty slotin the
fdtable, if available

Deallocate the file
descriptor

“Install” the file
descriptor assigning
the file struct

41

(Pointers and Errors)

#define IS_ERR_VALUE(x) unlikely((unsigned long)(void *)(x) >= (unsigned long)-MAX_ERRNO)

static inline void * __must_check ERR_PTR(long error) {

return (void *) error;

static inline long _ must _check PTR_ERR(__force const void *ptr) {

return (long) ptr;

static inline bool __must_check IS_ERR(__force const void *ptr) {
return IS _ERR_VALUE((unsigned long)ptr);

8. Virtual Filesystem = 8.4 Files 42

Closing Files

The close() system call is defined in fs/open.c as:
SYSCALL_DEFINE1(close, unsigned int, fd)

This function basically calls (in fs/file.c):
int close fd(unsigned fd)

that:

retrieves the file struct associated with the file, and releases the file descriptor
calls filp_close(struct file *filp, fl_owner_t 1id), defined in fs/open.c, which
flushing the data structures associated with the file (struct file, dentry and i-node)

8. Virtual Filesystem = 8.4 Files 43

617
618
619
620
621
622
623
624
625
626
627

537
538
539
540
541
542
543

close_files() v5.11

int close_ fd(unsigned fd)
{
struct files_struct *files = current->files;
struct file *file; _ . _ _
//////ggé/,,static struct file *pick_file(struct files_struct *files, unsigned fd)
: : - . {
file = pick_file(files, fd); 599 struct file *file = NULL;
if ('file) 600 struct fdtable *fdt;
' 601
return -EBADF; 602 spin_lock(&files->file lock);
603 fdt = files_fdtable(files);
. . . 604 if (fd >= fdt->max_fds
return filp_close(file, files); ;q; (goto outiuﬁloc;)(;
} 606 file = fdt->fd[fd];
https://elixir.bootlin.com/linux/vs.11/source/fs/file.c#L 617 607 if (!file)
608 goto out _unlock;
609 rcu_assign_pointer(fdt->fd[fd], NULL);
610 __put_unused_fd(files, fd);

out unlock:
spin_unlock(&files->file_lock);

return file;
} https://elixir.bootlin.com/linux/vs.11/source/fs/file.c#L 597

static void _ put_unused_fd(struct files_struct *files, unsigned int fd)

{
struct fdtable *fdt = files_fdtable(files); static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
_ clear_open_fd(fd, fdt); 251 {
if (fd < files->next_fd) 252 __clear_bit(fd, fdt->open_fds);
files->next_fd = fd; 258 _ clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
} o) . 254 }
https://elixir.bootlin.com/linux/vs.11/source/fs/file.c#L 537 P55 https://elixir.bootlin.com/linux/vs.1a/source/fs/file.c#L 250

8. Virtual Filesystem = 8.4 Files L4

https://elixir.bootlin.com/linux/v5.11/source/fs/file.c#L617
https://elixir.bootlin.com/linux/v5.11/source/fs/file.c#L537
https://elixir.bootlin.com/linux/v5.11/source/fs/file.c#L597
https://elixir.bootlin.com/linux/v5.11/source/fs/file.c#L250

The read() system call v5.11

623 ssize_t ksys_read(unsigned int fd, char __user *buf, size_t count)

624 { . e .
ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
625 struct fd f = fdget_pos(fd); { _
626 ssize_t ret = -EBADF; ssize t ret;
627) if (!(file->f_mode & FMODE_READ))
- 2 (fflle) { (i ('(f'{Etu;n -EBAgFI‘;MODE CAN_READ))
. . if (!(file->f_mode
629 loff_t pos, *ppos = file_ppos(f.file); return -EINVAL:
630 if (ppos) { if (unlikely('access_ok(buf, count)))
631 pOS = *ppOS; return -EFAULT;
632 ppos = &pos; ret = rw_verify_area(READ, file, pos, count);
633 } if (ret)
. 489 return ret;
634 ret = vfs_read(f.file, buf, count, ppos); 490 if (count > MAX_RW_COUNT)
635 1T (ret >= 0 && ppos) 491 count = MAX_RW_COUNT;
. . 492
636 f.file->f_pos = pos; 493 if (file->f_op->read)
637 fdput pos(f); 494 ret = file->f_op->read(file, buf, count, pos); «———
638 - 495 else if (file->f_op->read_iter)
} 496 ret = new_sync_read(file, buf, count, pos);
639 return ret; 497 else
498 ret = -EINVAL;
640 } 499 if (ret > 0) {
https://elixir.bootlin.com/linux/vs.11/sources/read write.c#L623 500 fsnotify_access(file);
501 add_rchar (current, ret);
502 }
503 inc_syscr(current);
504 return ret;
505 }

Release resources

8. Virtual Filesystem = 8.4 Files 45

https://elixir.bootlin.com/linux/v5.11/source/fs/read_write.c#L623

The write() system call v5.11

The read system call is actually the same of the write but uses vfs_write() instead of
vfs_read().

585 ssize_t vfs_write(struct file *file, const char __user *buf, size_t count, loff_t *pos)

586 {

587 ssize_t ret;

588

589 if (!(file->f_mode & FMODE_WRITE))

590 return -EBADF;

591 if (!(file->f_mode & FMODE_CAN_WRITE))

592 return -EINVAL;

593 if (unlikely('access_ok(buf, count)))

594 return -EFAULT;

595

596 ret = rw_verify area(WRITE, file, pos, count);
597 if (ret)

598 return ret;

599 if (count > MAX_RW_COUNT)

600 count = MAX_RW_COUNT;

601 file_start_write(file);

602 if (file->f_op->write)

603 ret = file->f_op->write(file, buf, count, pos);
604 else if (file->f_op->write_iter)

605 ret = new_sync_write(file, buf, count, pos);
606 else

607 ret = -EINVAL;

608 if (ret > 0) {

609 fsnotify_modify(file);

610 add_wchar (current, ret);

611 }

612 inc_syscw(current);

613 file_end_write(file);

614 return ret;

615 }

https://elixir.bootlin.com/linux/vs.11/source/fs/read write.c#L 585

8. Virtual Filesystem = 8.4 Files JAS)

https://elixir.bootlin.com/linux/v5.11/source/fs/read_write.c#L585

8. Virtual Filesystem

The /proc filesystem

Advanced Operating Systems and Virtualization ’ IAG

Overview

The /proc filesystem is an in-memory file system which provides information on:

- active programs (processes)
- the whole memory content
- kernel-level settings (e.g. the currently mounted modules)

Common files on proc are:

- cpuinfo contains the information established by the kernel about the processor at boot
time, e.g., the type of processor, including variant and features.

- kcore contains the entire RAM contents as seen by the kernel.

- meminfo contains information about the memory usage, how much of the available
RAM and swap space are in use and how the kernel is using them.

- version contains the kernel version information that lists the version number, when it
was compiled and who compiled it.

https://www.kernel.org/doc/html/latest/filesystems/proc.html

8. Virtual Filesystem = 8.5 The /proc filesystem 48

https://www.kernel.org/doc/html/latest/filesystems/proc.html

Overview

Then we have:

- net/is adirectory containing network information.
- net/dev contains a list of the network devices that are compiled into the kernel. For each
device there are statistics on the number of packets that have been transmitted and received.
- net/route contains the routing table that is used for routing packets on the network.
- net/snmp contains statistics on the higher levels of the network protocol.
- self/ contains information about the current process. The contents are the same as those in the
per-process information described later.
- pid/ contains information about process number pid. The kernel maintains a directory containing
process information for each process.
— - pid/cmdline contains the command that was used to start the process (using null characters
to separate arguments).
- pid/cwd contains a link to the current working directory of the process.
- pid/environ contains a list of the environment variables that the process has available.
- pid/exe contains a link to the program that is running in the process.
- pid/fd/is adirectory containing a link to each of the files that the process has open.
- pid/mem contains the memory contents of the process.
- pid/stat contains process status information.
L - pild/statmcontains process memory usage information. R

tgid_base
_stuff

8. Virtual Filesystem = 8.5 The /proc filesystem 49

https://www.kernel.org/doc/html/latest/filesystems/proc.html

Core Data Structures

proc/pid is represented using the data ! g

* number of callers into module in progress;

. . 33 * negative -> it's going away RSN

structure defined in fs/proc/internal.h - o OSSR
35 atomic_t in_use;
36 refcount_t refcnt;
37 struct list_head pde_openers; /* who did ->open, but not ->release */
38 /* protects ->pde openers and all struct pde opener instances */
39 spinlock_t pde_unload_lock;
40 struct completion *pde_unload_completion;

—~+—— const struct inode_operations *proc_iops;
—42 ——» union {

43 const struct proc_ops *proc_ops;

44 const struct file_operations *proc_dir_ops;
s I

46 const struct dentry_operations *proc_dops;

47 union {

48 const struct seq_operations *seq_ops;
49 int (*single_show) (struct seq_file *, void *);
50 |

51 proc_write_t write;

52 void *data;

53 unsigned int state_size;

54 unsigned int low_ino;

55 nlink_t nlink;

56 kuid_t uid;

57 kgid_t gid;

58 loff_t size;

59 struct proc_dir_entry *parent;

60 struct rb_root subdir;

61 struct rb_node subdir_node;

62 char *name;

63 umode_t mode;

64 u8 flags;

——+&5—— u8 namelen;
— 66 5 char inline_namel[];
67 } __randomize_layout;

8. Virtual Filesystem = 8.5 The /proc filesystem 50

APls

To create afilein /proc you can use the function (source):

struct proc_dir_entry *proc_create(const char *name, umode_t mode,
struct proc_dir_entry *parent,
const struct proc_ops *proc_ops)

It is essential to define the proc_ops in order to use the file.

29 struct proc_ops {

30 unsigned int proc_flags;

31 int (*proc_open) (struct inode *, struct file *);

32 ssize_t (*proc_read) (struct file *, char __user *, size t, loff_t *);

33 ssize_t (*proc_read_iter) (struct kiocb *, struct iov_iter *);

34 ssize_t (*proc_write)(struct file *, const char __user *, size_t, loff_t *);
35 loff_t (*proc_lseek) (struct file *, loff_t, int);

36 int (*proc_release) (struct inode *, struct file *);

37 __poll_t (*proc_poll) (struct file *, struct poll_table_struct *);

38 long (*proc_ioctl) (struct file *, unsigned int, unsigned long);

https://elixir.bootlin.com/linux/vs.11/source/include/linux/proc fs.h#L 29

8. Virtual Filesystem = 8.5 The /proc filesystem 51

https://elixir.bootlin.com/linux/v5.11/source/fs/proc/generic.c#L584
https://elixir.bootlin.com/linux/v5.11/source/include/linux/proc_fs.h#L29

8. Virtual Filesystem

The /sys filesystem

Advanced Operating Systems and Virtualization ’ IAG

Overview

Similar in spirit to proc, mounted to /sys, it is an alternative way to make the kernel export
information (or set it) via common I/O operations.

Very simple API, more clear structuring. The VFS objects are mapped using the following
scheme:

Internal External
Kernel Objects Directories
Object Attributes Regular Files
Object Relationship Symbolic Links

8. Virtual Filesystem = 8.6 The /sys filesystem 53

Core APlIs

static inline int __must_check sysfs_create_file(struct kobject *kobj, const struct attribute *attr)
static inline void sysfs_remove_file(struct kobject *kobj, const struct attribute *attr)

static inline 1int sysfs_rename_link(struct kobject *kobj, struct kobject *target, const char *old_name, const

char *new_name)

https://elixir.bootlin.com/linux/vs.11/source/include/linux/sysfs.h

The functions uses the struct attribute declared as follows.

struct attribute {
const char *name;
umode _t mode;

https://elixir.bootlin.com/linux/vs.11/source/include/linux/kobject.h

Instead, the struct kobject represents the kernel object (next slide). /sysfs is tight inherently
with the kobjects architecture.

8. Virtual Filesystem = 8.6 The /sys filesystem 54

https://elixir.bootlin.com/linux/v5.11/source/include/linux/sysfs.h
https://elixir.bootlin.com/linux/v5.11/source/include/linux/kobject.h

Kobjects architecture

A kobject is an object of type struct kobject. Kobjects have a name and a reference count
(kref). A kobject also has a parent pointer (allowing objects to be arranged into hierarchies), a
specific type, and, usually, a representation in the sysfs virtual filesystem.

Kobjects are generally not interesting on their own; instead, they are usually embedded
within some other structure which contains the stuff the code is really interested in
(remember container_of).

No structure should EVER have more than one kobject embedded within it. If it does, the
reference counting for the object is sure to be messed up and incorrect, and your code will be
buggy. So do not do this.

https://www.kernel.org/doc/html/latest/core-api/kobject.html

8. Virtual Filesystem = 8.6 The /sys filesystem 55

https://www.kernel.org/doc/html/latest/core-api/kobject.html

Kobjects architecture

A ktype is the type of object that embeds a kobject. Every structure that embeds a kobject
needs a corresponding ktype. The ktype controls what happens to the kobject when it is
created and destroyed.

A kset is a group of kobjects. These kobjects can be of the same ktype (classic kset) or belong
to different ktypes (i.e. a subsystem). The kset is the basic container type for collections of
kobjects. Ksets contain their own kobjects, but you can safely ignore that implementation
detail as the kset core code handles this kobject automatically.

When you see a sysfs directory full of other directories, generally each of those directories
corresponds to a kobject in the same kset.

https://www.kernel.org/doc/html/latest/core-api/kobject.html

8. Virtual Filesystem = 8.6 The /sys filesystem 56

https://www.kernel.org/doc/html/latest/core-api/kobject.html

64
65
66
67
68
69
70
7/l
72
s
74
75
76
7/
78
7/
80

Kobjects are arranged as in the figure on the right. The kernel offers APls
for initializing objects and for adding/removing them from ksets.

struct kobject {

Data Structures

struct kobj_type {

void (*release)(struct kobject *kobj); «——

—const struct sysfs_ops *sysfs_ops; «—
struct attribute **default_attrs; /* use default groups instead */
const struct attribute_group **default_groups;
const struct kobj_ns_type_operations *(*child_ns_type) (struct kobject *kobj);
const void *(*namespace) (struct kobject *kobj);
void (*get_ownership) (struct kobject *kobj, kuid_t *uid, kgid_t *gid);

https://elixir.bootlin.com/linux/vs.11/source/include/linux/kobject.h#1 138

entry */

struct sysfs_ops {

const char *name; };
struct list_head entry;
struct kobject *parent;
struct kset *kset;
struct kobj_type *ktype;
struct kernfs_node *sd; /* sysfs directory
struct kref kref;
#ifdef CONFIG_DEBUG_KOBJECT_ RELEASE 230
struct delayed_work release; 231
#endif e g
unsigned int state_initialized:1; '
unsigned int state_in_sysfs:1;
unsigned int state_add_uevent_sent:1;
unsigned int state_remove_uevent_sent:1;
unsigned int uevent_suppress:1;
b

https://elixir.bootlin.com/linux/vs.11/source/include/linux/kobject. h#L6

8. Virtual Filesystem = 8.6 The /sys filesystem

ssize_t (*show) (struct kobject *, struct attribute *, char *);
ssize_t (*store)(struct kobject *, struct attribute *, const char *, size_t);

https://elixir.bootlin.com/linux/vs.11/source/include/linux/sysfs.h#l 230

kset

— kset child list
- kobjecl->parent
— kobject->kset

https://elixir.bootlin.com/linux/v5.11/source/include/linux/kobject.h#L64
https://lwn.net/Articles/51437/
https://lwn.net/Articles/51437/

Example

/sys i
o . subsystem
bus
! . subsystem
pci
. !- kset
drivers
! 5 7k kobject
serial
! ..
new-id ' attribute

Figure 13-3. An example of device driver model hierarchy
Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

8. Virtual Filesystem = 8.6 The /sys filesystem 58

APls

voild kobject_init(struct kobject *kobj);

int kobject _set name(struct kobject *kobj, const char *format, ...);
struct kobject *kobject get(struct kobject *kobj);

voild kobject put(struct kobject *kobj);

vold kset_init(struct kset *kset);

int kset_add(struct kset *kset);

int kset_register(struct kset *kset);

vold kset unregister(struct kset *kset);
struct kset *kset_get(struct kset *kset);
vold kset put(struct kset *kset);

kobject _set name(my_set->kobj, "The name");

8. Virtual Filesystem = 8.6 The /sys filesystem 59

Hooking into sysfs

An initialized kobject will perform reference counting without trouble, but it will not appear in
sysfs. To create sysfs entries, kernel code must pass the object to kobject_add():

int kobject_add(struct kobject *kobj);

As always, this operation can fail. The function:

void kobject_del(struct kobject *kobj);

will remove the kobject from sysfs.

There is a kobject_register() function, which is really just the combination of the calls to
kobject_init() and kobject_add(). Similarly, kobject_unregister() will call
kobject_del(), then call kobject_put() to release the initial reference created with
kobject_register() (orreally kobject_init())

8. Virtual Filesystem = 8.6 The /sys filesystem 60

8. Virtual Filesystem

Device Management

Advanced Operating Systems and Virtualization ’ IAG

The 1/O Architecture

The essential part of a computer is the internal Srpnics b
communication structure which allows all the e N
essential components to communicate. The internal sraphice b oo .
communication is built upon data path which are e o —
called buses. Any computer has a system bus that CHOTErRe
connects most of the internal hardware devices (e.g. o
PCl, SCSI, USB). Since several buses may exists they o
are linked together by hardware devices called . outhbridge
Bus
PCI Slots
bus per 1/0
R0 5

https://en.wikipedia.org/wiki/Southbridge (computing)

SOUTHBRIDGE NORTHERIDGE

8. Virtual Filesystem = 8.7 Device Management 62

https://en.wikipedia.org/wiki/Southbridge_(computing)

The 1/O architecture

Any 1/O device is hosted by one and only one bus. The data path that connects a CPU to an I/O
device is generally called a 1/O bus.

The essential components of the I/O architecture are:

- 1/O Ports - Each device has its own set of 1/O addresses which are called I/O ports
accessible through special assembly instructions (e.g. in, out)

- 1/O Interfaces - That are hardware circuits between a group of 1/O ports and the
corresponding device controller, they acts as interpreter translating data and also issuing
interrupts (examples: keyboard int., graphic int., disk int., network int., serial/parallel
port, SCSI and USB)

- Device Controllers - They have two important roles:
- interpreting high level commands from I/O ports to electrical signals to the device
- converts electrical signals from the device and updates status registers

8. Virtual Filesystem = 8.7 Device Management 63

The Device Driver Model

In the early days devices were very different to each other, and offering a unified view made
no sense. With years and standards the need of a unified model of devices arose. Different
devices have more or less the same set of functionalities that regards:

- power management

- plug and play
- hot-plugging

To implement these kind of operations Linux offers a set of data structures and functions that
unify view of all buses, devices and devices drivers. This framework is called the Device Driver
Model. Its main components are:

- Devices
- Drivers

- Buses

- Classes

8. Virtual Filesystem = 8.7 Device Management

Devices

Device are representation is stored in the device object, but in the Linux kernel they are also
represented by special files called device files (in the folder /dev), thus the same system calls
used to interact with reqgular files can be used.

According to the characteristics of the underlying drivers, device files can be of two types:

- block devices, they allow data to be accessed randomly, in blocks and in relative small

time (e.g. hdd, dvd)
- character devices, they cannot allow data to be accessed randomly and character by
character (i.e. bit by bit) (e.g. sound card)

Network cards are not associated with device files and some device may be not associated
with a real hardware (as /dev/null).

8. Virtual Filesystem = 8.7 Device Management

Devices v5.11

device object

447 * At the lowest level, every device in a Linux system is represented by an
448 * instance of struct device. The device structure contains the information
449 * that the device model core needs to model the system. Most subsystems,
450 * however, track additional information about the devices they host. As a
451 * result, it is rare for devices to be represented by bare device structures;
459 * instead, that structure, like kobject structures, is usually embedded within
453 * a higher-level representation of the device.

454 */

455 struct device {

— struct kobject kobj;

A5 struct device *parent;

458

459 struct device_private *p;

460

461 const char *init_name; /* initial name of the device */
462 const struct device_type *type;

463

464 struct bus_type *bus; /* type of bus device is on */

465 struct device_driver *driver; /* which driver has allocated this
466 device */

467 void *platform_data; /* Platform specific data, device
468 core doesn't touch it */

469 void *driver_data; /* Driver data, set and get with

470 dev_set drvdata/dev _get drvdata */
471 #ifdef CONFIG_PROVE_LOCKING

472 struct mutex lockdep_mutex;

473 #endif

474 struct mutex mutex; /* mutex to synchronize calls to

475 * its driver

476 */

477

478 struct dev_links_info links;

479 struct dev_pm_info power;

480 struct dev_pm_domain *pm_domain;

https://elixir.bootlin.com/linux/vs.11/source/include/linux/device.h#L 455

8. Virtual Filesystem = 8.7 Device Management 66

https://elixir.bootlin.com/linux/v5.11/source/include/linux/device.h#L455

Numbers

Each device is associated with a couple of numbers: MAJOR and MINOR:

- MAJOR is the key to access the device driver as registered within a driver database
- MINOR identifies the actual instance of the device driven by that driver (this can be
specified by the driver programmer)

There are different tables to register devices, depending on whether the device is a char
device or a block device:

- fs/char_dev.c for char devices
- fs/block_dev.c for block devices

In the above source files we can also find device-independent functions for accessing the
actual driver.

8. Virtual Filesystem = 8.7 Device Management

Device numbers

[gpm@fedora-works ~]$ 1ls -1 /dev/sda /dev/ttyS0O

brw-rw----. 1 root disk 8, O Apr 20 08:37 /dev/sda
crw-rw----. 1 root dialout 4, 64 Apr 20 08:37 /dev/ttySoO

Device Major Minor
Type

8. Virtual Filesystem = 8.7 Device Management 68

Device numbers

In general, the same major can be given to both a character and a block device! Numbers are
"assigned" by the Linux Assigned Names and Numbers Authority (http://lanana.org/) and kept
in Documentation/devices.txt. Defines are in include/uapi/linux/major.h

[gpm@fedora-works ~]$ ls -1 /dev/sd*

brw-rw----. 1 root dlSk 8,| O Apr 20 : /dev/sda
brw-rw----. root dlSk|8 I 1 Apr 20 08:37 /dev/sdal
brw-rw----. root diski8,' 2 Apr 20 08: /dev/sda2

brw-rw----. root d'LSk 8, I 3 Apr 20 : /dev/sda3

brw-rw----. root d'LSk 8,| 16 Apr 20 : /dev/sdb

brw-rw----. root d'LSkl 8,117 Apr 20 : /dev/sdb1
—4

All of these devices have the same major number, so
they are probably linked to the same driver

8. Virtual Filesystem = 8.7 Device Management 69

http://lanana.org/

The Device Database

Char and Block devices behave differently, but they are organized in identical databases which
are handled as hashmaps. They are referenced as cdev_map and bdev_map.

= 32bit unsigned integer storing major and minor

) 7 | #define MINORBITS 20
19 struct kobj_map { 8 #define MINORMASK ((1U << MINORBITS) - 1)
20 struct probe { 9
21 » struct probe *next 10 #define MAJOR (dev) ((unsigned int) ((dev) >> MINORBITS))
27 dev t dev: 11 #def;ne MINOR(dev). ((unsigned int) ((dev) & INORMASK))
- 1072 #define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi)
23 un51gned long range;
24 ——— struct module *owner;
25 kobj _probe_t *get;
26 int (*lock) (dev_t, void *);
227 — +»void *data;
28 } *probes[255];
29 struct mutex *lock;
30 ¥i

https://elixir.bootlin.com/linux/vs.11/source/drivers/base/map.c#L1g
hasing is done as:

major % 255

8. Virtual Filesystem = 8.7 Device Management

https://elixir.bootlin.com/linux/v5.11/source/drivers/base/map.c#L19

The Device Database

/

[b,c]dev_map

8. Virtual Filesystem = 8.7 Device Management

data

\

Device-specific
structure

data

\

Device-specific
structure

data

\

Device-specific
structure

71

8.7.1

8. Virtual Filesystem
7. Device Management

Char Devices

Advanced Operating Systems and Virtualization ’ IAG

struct cdev

14 struct cdev {

15 struct kobject kobj;

16 struct module *owner;

17 const struct file_operations *ops;
18 struct list head list;

19 dev_t dev;

20 unsigned int count;

21 } __randomize_layout;

https://elixir.bootlin.com/linux/vs.11/source/include/linux/cdev.h#L 14

8.Virtual Filesystem = 8.7 Device Management = 8.7.1 Char Devices

https://elixir.bootlin.com/linux/v5.11/source/include/linux/cdev.h#L14

Range Database

The struct char_device_struct is used to manage device number allocation to drivers.

32 #define CHRDEV_MAJOR_HASH_SIZE 255

33

34 static struct char_device_struct {

35 struct char device struct *next;

36 unsigned int major;

317 unsigned int baseminor;

38 int minorct;

39 char name[64];

40 struct cdev *cdev; /* will die */

41 } *chrdevs[CHRDEV_MAJOR_HASH_SIZE] ;

https://elixir.bootlin.com/linux/vs.11/source/fs/char dev.c#L34

8.Virtual Filesystem = 8.7 Device Management = 8.7.1 Char Devices

https://elixir.bootlin.com/linux/v5.11/source/fs/char_dev.c#L34

Registering Char Device

linux/fs.h provides the following wappers to register/deregister a driver:

int register_chrdev(unsigned 1int major, const char *name, struct
file_operations *fops): registration takes place onto the entry at displacement
MAJOR (o means the choice is up the kernel). The actual MAJOR number is returned.

int unregister_chrdev(unsigned int major, const char *name): releases the
entry at displacement MAJOR

They map to actual operations in fs/char_dev.c:

int _ register_chrdev(unsigned 1int major, unsigned int baseminor,
unsigned int count, const char #*name, const struct file_operations
*fops)

vold _ unregister_chrdev(unsigned int major, unsigned int baseminor,
unsigned int count, const char *name)

8.Virtual Filesystem = 8.7 Device Management = 8.7.1 Char Devices

File Operations

1820 struct file_operations {

1821 struct module *owner;

1822 loff_t (*llseek) (struct file *, loff_t, int);

1823 —— ssize t (*read) (struct file *, char __user *, size_t, loff_t *);

1824 —— ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);

1825 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);

1826 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);

1827 int (*iopoll) (struct kiocb *kioch, bool spin);

1828 int (*iterate) (struct file *, struct dir_context *);

1829 int (*iterate_shared) (struct file *, struct dir_context *);

1830 __poll_t (*poll) (struct file *, struct poll_table_struct *);

1831 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);

1832 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);

1833 int (*mmap) (struct file *, struct vm_area_struct *);

1834 unsigned long mmap_supported_flags;

1835 int (*open) (struct inode *, struct file *);

1836 int (*flush) (struct file *, fl_owner_t id);

1837 int (*release) (struct inode *, struct file *);

1838 int (*fsync) (struct file *, loff_t, loff_t, int datasync);

1839 int (*fasync) (int, struct file *, int);

1840 int (*lock) (struct file *, int, struct file_lock *);

1841 ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
1842 unsigned long (*get_unmapped_area) (struct file *, unsigned long, unsigned long, unsigned long, uns
1843 int (*check_flags) (int);

1844 int (*flock) (struct file *, int, struct file lock *);

8.Virtual Filesystem = 8.7 Device Management = 8.7.1 Char Devices

Registering Device Numbers

A driver might require to register or allocate a range of device numbers.
APIs are in fs/char_dev.c and exposed in include/linux/fs.h:
- 1int register_chrdev_region(dev_t from, unsigned count, const char *name) -
Major is specified in from

- int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const
char *name) - Major and first minor are returned in dev

8.Virtual Filesystem = 8.7 Device Management = 8.7.1 Char Devices

8.7.2

8. Virtual Filesystem
7. Device Management

Block Devices

Advanced Operating Systems and Virtualization ’ IAG

struct gendisk

The structure corresponding to cdev for a block device is struct gendisk
include/1linux/genhd.h.

1157/
138
1189
140
141
142
143
144
145
146
147
148
149
150
151
1152
153
154
155
156
157
158
1159
160
161

1R9D

disks that can't be partitioned. */

flags related to event processing */

struct gendisk {

/* major, first minor and minors are input parameters only,
* don't use directly. Use disk devt() and disk max parts().
*)

int major; /* major number of driver */

int first_minor;

int minors; /* maximum number of minors, =1 for

'3

char disk_name[DISK_NAME_LEN]; /* name of major driver */

unsigned short events; /* supported events */

unsigned short event_flags; Vi

/* Array of pointers to partitions indexed by partno.
* Protected with matching bdev lock but stat and other
* non-critical accesses use RCU. Always access through
* helpers.
*/

struct disk_part_tbl _ rcu *part_tbl;

struct block_device *parto;

—— const struct block_device_operations *fops;
struct request_queue *queue;
void *private_data;

https://elixir.bootlin.com/linux/vs.11/source/include/linux/genhd.h#L137

8.Virtual Filesystem = 8.7 Device Management = 8.7.2 Block Devices

https://elixir.bootlin.com/linux/v5.11/source/include/linux/genhd.h#L137

APls

In block/genhd. c we find the following functions to register/deregister the driver:

- int register_blkdev(unsigned 1int major, «const char * name, struct
block_device operations *bdops)
- int unregister_blkdev(unsigned int major, const char * name)

As far as regard the block device operations we have neither read nor write!

struct block_device_operations {

1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872

blk_qc_t (*submit_bio) (struct bio *bio);

———int (*open) (struct block_device *, fmode_t);

void (*release) (struct gendisk *, fmode_t);
int (*rw_page) (struct block_device *, sector_t, struct page *, unsigned int);

— int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);

int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
unsigned int (*check_events) (struct gendisk *disk,
unsigned int clearing);

void (*unlock_native_capacity) (struct gendisk *);
int (*revalidate_disk) (struct gendisk *);
int (*getgeo) (struct block_device *, struct hd_geometry *);
int (*set_read_only) (struct block_device *bdev, bool ro);
/* this callback is with swap lock and sometimes page table lock held */
void (*swap_slot_free_notify) (struct block_device *, unsigned long);
int (*report_zones) (struct gendisk *, sector_t sector,

unsigned int nr_zones, report_zones_cb cb, void *data);
char *(*devnode) (struct gendisk *disk, umode_t *mode);
struct module *owner;
const struct pr_ops *pr_ops;

https://elixir.bootlin.com/linux/vs.11/sourcef/include/linux/blkdev.h#1 1852

8.Virtual Filesystem = 8.7 Device Management = 8.7.2 Block Devices

https://elixir.bootlin.com/linux/v5.11/source/include/linux/blkdev.h#L1852

Block Devices Handling

For char devices the management of read/write operations is in charge of the device driver.
This is not the same for block devices read/write operations on block devices are handled via a
single APl related to buffer cache operations.

The actual implementation of the buffer cache policy will determine the real execution
activities for block device read/write operations.

Request Queues

Request queues (strategies in UNIX) are the way to operate on block devices. Requests
encapsulate optimizations to manage each specific device (e.g. via the elevator algorithm).
The Request Interface is associated with a queue of pending requests towards the block device

8.Virtual Filesystem = 8.7 Device Management = 8.7.2 Block Devices

Block Devices Handling

Disk Caches

DISk DISk Block

Fllesystem Fllesystem Device F|Ie]

Mappmgtaver
Generic Block Layer

1/0 scheduler layer

Block Device Block Device
Driver Driver
Il
Har ‘11
Diskm

Figure 14-1. Kernel components affected by a block device operation

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from /O ports to process management." O'Reilly Media, Inc.", 2005.

Hard‘
Disk

8.Virtual Filesystem = 8.7 Device Management = 8.7.2 Block Devices

8.7.3

8. Virtual Filesystem
7. Device Management

Devices and VFS

Advanced Operating Systems and Virtualization ’ IAG

Linking Devices and the VFS

The member umode_t i_mode in struct inode tells the type of the inode:

- directory

- file

- chardevice

- block device
- (named) pipe

The kernel function sys_mknod() creates a generic inode. If the iinode represents a device, the
operations to manage the device are retrieved via the device driver database.

In particular, the inode has the dev_t i_rdev member

8.Virtual Filesystem = 8.7 Device Management = 8.7.3 Devices and VFS

The mknod() system call

int mknod(const char *pathname, mode_t mode, dev_t dev)

Where

- mode specifies permissions and type of node to be created, permissions are filtered via
the umask of the calling process (mode & umask)

- different macros can be used to define the node type: S_IFREG, S_IFCHR, S_IFBLK,
S_IFIFO.

- When using S_IFCHR or S_IFBLK, the parameter dev specifies Major and Minor numbers
of the device file to create, otherwise it is a don't care

8.Virtual Filesystem = 8.7 Device Management = 8.7.3 Devices and VFS

Opening Device Files

In fs/devices.c there is the generic chrdev_open() function. This function needs to find the
dev-specific file operations. Given the device, number, kobject_lookup() is called to find a
corresponding kobject. From the kobject we can navigate to the corresponding cdev. The
device-dependent file operations are then in cdev->ops. This information is then cached in

the i-node

— cdev —— > file operations
inode
list
i devices ops
i cdev
struct inode

8.Virtual Filesystem = 8.7 Device Management = 8.7.3 Devices and VFS

8.7.4

8. Virtual Filesystem
7. Device Management

Classes

Advanced Operating Systems and Virtualization

NG

Overview

Devices are organized into "classes", and a device can belong to multiple classes.

The device class membership is shown in /sys/class/. Block devices for example are
automatically placed under the "block" class, this is done automatically when the gendisk
structure is registered in the kernel. To each class is associated a class object.

Most devices don't require the creation of new classes.

8. Virtual Filesystem = 8.7 Device Management = 8.7.4 Classes

struct class

48 * A class is a higher-level view of a device that abstracts out low-level
49 * implementation details. Drivers may see a SCSI disk or an ATA disk, but,
50 * at the class level, they are all simply disks. Classes allow user space
51 * to work with devices based on what they do, rather than how they are

52 * connected or how they work.

53 */

54 struct class {

55 const char *name;

56 struct module *owner;

57

58 const struct attribute_group **class_groups;

59 const struct attribute_group **dev_groups;

60 struct kobject *dev_kobj ;

61

62 int (*dev_uevent) (struct device *dev, struct kobj_uevent_env *env);
63 char *(*devnode) (struct device *dev, umode_t *mode);

64

65 void (*class_release) (struct class *class);

66 void (*dev_release) (struct device *dev);

67

68 int (*shutdown_pre) (struct device *dev);

69

70 const struct kobj_ns_type_operations *ns_type;

7/l const void *(*namespace) (struct device *dev);

72

73 void (*get_ownership) (struct device *dev, kuid_t *uid, kgid_t *gid)
74

75 const struct dev_pm_ops *pm;

76

77 struct subsys_private *p;

78 b

https://elixir.bootlin.com/linux/vs.11/source/include/linux/device/class.h#L

8. Virtual Filesystem = 8.7 Device Management = 8.7.4 Classes

https://elixir.bootlin.com/linux/v5.11/source/include/linux/device/class.h#L54

APls

static struct class sbd class = {
.name = "class_name",

.class_release = release_fn

s

int class_register(struct class *cls);

vold class_destroy(struct class *cls);

struct class *class_create(struct module *owner, const
char *name, struct lock _class_key *key)

8. Virtual Filesystem = 8.7 Device Management = 8.7.4 Classes

APls

Devices can be added to classes with the following function:

struct device *device create(struct class *class, struct device *parent,
dev_t devt, void *drvdata, const r *fmt, ...)

Specify here the class Specify here the device name string

like “/dev/sda1”

And removed with:
vold device destroy(struct class *class, dev_t devt)

8. Virtual Filesystem = 8.7 Device Management = 8.7.4 Classes

Device Class Attributes

Specify attributes for the classes, and functions to "read" and "write" the specific class
attributes.

CLASS _DEVICE_ATTR(name, mode, show, store);

This is expanded to a structure called dev_attr_name where we have (as kobjects):

- ssize_t (*show)(struct class _device *cd, char *buf);

- ssize_t (*store)(struct class_device *, const char *buf, size t count);

8. Virtual Filesystem = 8.7 Device Management = 8.7.4 Classes

8.7.5

8. Virtual Filesystem
7. Device Management

udev

Advanced Operating Systems and Virtualization

NG

Overview

udev is the userspace Linux device manager, it manages device nodes in /dev. It also handles
userspace events raised when devices are added/removed toffrom the system. The
introduction of udev has been due to the degree of complexity associated with device
management. It is highly configurable and rule-based.

Rules

Udev in userspace looks at /sys to detect changes and see whether new (virtual) devices are
plugged. Special rule files (in /etc/udev/rules.d) match changes and create files in /dev
accordingly. Syntax tokens in syntax files:

- KERNEL: match against the kernel name for the device

- SUBSYSTEM: match against the subsystem of the device

- DRIVER: match against the name of the driver backing the device

- NAME: the name that shall be used for the device node
- SYMLINK: a list of symbolic links which act as alternative names for the device node

KERNEL=="hdb", DRIVER=="ide-disk", NAME="my_spare_disk", SYMLINK+="sparedisk", MODE="0644"

8.Virtual Filesystem = 8.7 Device Management = 8.7.5 udev

Advanced Operating Systems and

Virtualization
[8] Virtual File System

LECTURER
Gabriele Proietti Mattia

BASED ON WORK BY

http://www.ce.uniroma?2.it/~pellegrini/

gpm.name - proiettimattia@diag.uniromaz.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

