
Department of Computer, 
Control and Management 
Engineering “A. Ruberti”, 
Sapienza University of Rome

Advanced Operating Systems 
and Virtualization

[10] Process Management

Gabriele Proietti Mattia

gpm.name · proiettimattia@diag.uniroma1.it A.Y. 2020/2021 · v2

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it


10. Process Management

Outline
1. Process Control Block

1. Accessing the PCB
2. The fork()/exec() model

1. Kernel Threads
3. Out Of Memory (OOM) Killer 
4. Process Starting

1. The ELF Format
2. Dynamic Linking
3. Initial Steps of Programs’ Life

2



Process Control Block

10.1

Advanced Operating Systems and Virtualization

10. Process Management



Processes

410.Process Management ⇒ 10.1 Process Control Block

The concept of a process is fundamental to any multiprogramming OS. The term process is 
often used with several different meanings, for us it means an instance of a program in 
execution (or even a set of data structures which describes how far the execution has 
progressed).

When a process is created is almost identical to its parent:

- it receives a logical copy of the parent’s address space
- it executes the same code of the parent, at next instruction after the fork()

But the child process has separate copies of the data (stack and heap) so that changes in the 
child are invisible to the parent and vice versa.



Processes
While earlier versions of Unix supported this model, modern ones do not. They instead 
supported multithreaded applications, in which a process is composed of several user threads 
(or simply threads), each of which represents a an execution flow of the process (pthread 
library).

Older versions of Linux did not support multithreaded applications, so from the kernel point of 
view a multithreaded application was just a normal process. So threads were created, handled 
and scheduled in User Mode. Therefore if a thread was blocked for a system call, every other 
thread would be blocked.

Nowadays Linux uses lightweight processes that are independent from each other but at the 
same time they can share resources (e.g. memory). They are mapped, in the end, to threads. A 
process in modern versions of Linux is just a group of lightweight processes, also called a 
thread group (created with pthread library). 

510.Process Management ⇒ 10.1 Process Control Block



To manage processes, the kernel must have a clear picture of what each process is doing, for 
instance, the priority, the state, the address space and so on. This is the role of the process 
descriptor (also called Process Control Block - PCB).

The Process Control Block

10.Process Management ⇒ 10.1 Process Control Block 6



task_struct

710.Process Management ⇒ 10.1 Process Control Block

The struct task_struct object represents the Process Control Block within the Linux 
Kernel. This is declared in include/linux/sched.h and it is one of the largest structures in 
the kernel (almost 600 LOCs). Relevant members are:
- volatile long state
- struct mm_struct *mm
- struct mm_struct *active_mm
- pid_t pid
- pid_t tgid
- struct fs_struct *fs
- struct files_struct *files
- struct signal_struct *sig
- struct thread_struct thread /* CPU-specific state: TSS, FPU, CR2, perf events, ... 

*/
- int prio; /* to implement nice() */
- unsigned long policy /* for scheduling */
- int nr_cpus_allowed
- cpumask_t cpus_allowed



task_struct

810.Process Management ⇒ 10.1 Process Control Block

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.



Process State
The state field of a process descriptor describe what is currently happening to the process. 
Possible states are always exclusive:

- TASK_RUNNING the process is either executing on CPU or waiting to be executed
- TASK_INTERRUPTIBLE the process is sleeping until some condition becomes true
- TASK_UNINTERRUPTIBLE like TASK_INTERRUPTIBLE but except that raising a signal to 

the process will leave the state unchanged
- TASK_STOPPED process has stopped (after signal SIGSTOP, SIGTSTP)
- TASK_TRACED process execution has stopped by a debugger

Then to the exit_state field we can have

- EXIT_ZOMBIE process terminated but the parent did not issued wait to retrieve the data, 
so the kernel cannot discard it

- EXIT_DEAD the parent issued wait

910.Process Management ⇒ 10.1 Process Control Block



The mm member
The field mm points to a mm_struct defined in include/linux/mm_types.h. The mm_struct is 
used to manage the memory map of the process:

- virtual address of the page table (pgd member)
- a pointer to a list of vm_area_struct records (mmap field)

Each record tracks a user-level virtual memory area which is valid for the process. active_mm is 
used to "steal" a mm when running in an anonymous process, and mm is set to NULL. 
Non-anonymous processes have active_mm == mm.

1010.Process Management ⇒ 10.1 Process Control Block

https://elixir.bootlin.com/linux/v5.11/source/include/linux/mm_types.h#L386 - https://www.kernel.org/doc/html/latest/vm/active_mm.html 

https://elixir.bootlin.com/linux/v5.11/source/include/linux/mm_types.h#L386
https://www.kernel.org/doc/html/latest/vm/active_mm.html


The struct vm_area_struct describes a Virtual Memory Area (VMA). It contains:

- struct mm_struct *vm_mm: the address space the structure belongs to
- unsigned long vm_start: the start address in vm_mm
- unsigned long vm_end: the end address
- pgprot_t vm_page_prot: access permissions of this VMA
- const struct vm_operations_struct *vm_ops: operations to deal with this structure
- struct mempolicy *vm_policy: the NUMA policy for this range of addresses
- struct file *vm_file: pointer to a memory-mapped file
- struct vm_area_struct *vm_next, *vm_prev: linked list of VM areas per task, sorted 

by address

vm_area_struct

1110.Process Management ⇒ 10.1 Process Control Block



vm_operations_struct

1210.Process Management ⇒ 10.1 Process Control Block



Userspace Memory Management

1310.Process Management ⇒ 10.1 Process Control Block

Root of 
red-black tree



Userspace Memory Management

1410.Process Management ⇒ 10.1 Process Control Block

https://manybutfinite.com/post/how-the-kernel-manages-your-memory/ 

https://manybutfinite.com/post/how-the-kernel-manages-your-memory/


Userspace Memory Management

1510.Process Management ⇒ 10.1 Process Control Block

https://manybutfinite.com/post/how-the-kernel-manages-your-memory/ 

https://manybutfinite.com/post/how-the-kernel-manages-your-memory/


PCB Allocation

1610.Process Management ⇒ 10.1 Process Control Block

Processes are very dynamic entities whose 
lifetime ranges from a few milliseconds to 
months. For this reason the kernel must be 
able to handle many processes at the same 
time and process descriptors are allocated in 
dynamic memory, rather than in the memory 
permanently assigned to the kernel. Therefore 
PCBs can be dynamically allocated upon 
request. 

For each process, Linux packs two different 
data structures in a single per-process 
memory area: thread_info and the Kernel 
Mode process stack. The length of this area is 
usually 2 pages (8,192Kbytes).

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " 
O'Reilly Media, Inc.", 2005.

From Kernel 2.6



PCB Allocation

1710.Process Management ⇒ 10.1 Process Control Block

union thread_union

This union is used to easily allocate thread_info at the base of the stack, independently of its 
size. It works as long as its size is smaller than the stack's, of course, this is mandatory.

v5.11

https://elixir.bootlin.com/linux/v5.11/source/include/linux/sched.h#L1732 

https://elixir.bootlin.com/linux/v5.11/source/include/linux/sched.h#L1732


PCB Allocation

This is the organization of thread_info up to version 4.3. Later on, thread_info has been 
progressively deprived of most members on x86. Security implications of this struct on the 
stack have been severe.

1810.Process Management ⇒ 10.1 Process Control Block

struct thread_info

v4.3

https://elixir.bootlin.com/linux/v4.3/source/arch/x86/include/asm/thread_info.h 

https://elixir.bootlin.com/linux/v4.3/source/arch/x86/include/asm/thread_info.h


PCB Allocation

1910.Process Management ⇒ 10.1 Process Control Block

struct thread_info

v5.11

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/include/asm/thread_info.h 

Where’s the task_struct pointer?

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/include/asm/thread_info.h


Virtually Mapped Kernel Stack

2010.Process Management ⇒ 10.1 Process Control Block

Kernel-level stacks have always been the weak 
point in the system design. This is quite small: 
you must be careful to avoid overflows. Stack 
overflows (and also recursion overwrite) have 
been successfully used as attack vectors.

When an overflow occurs, the Kernel is not 
easily able to detect it. Even less able to 
counteract on it! Stacks are in the 
ZONE_NORMAL memory and are contiguous but 
access is done through the MMU via virtual 
addresses



Virtually Mapped Kernel Stack
There is no need to have a physically contiguous stack, so Andy Lutomirski within its patch 
proposed to allocate stack relying on vmalloc(). This had different benefits:

- resolved the problem of fragmentation (since you do not need anymore contiguous 
memory for the stack)

- it added graceful handling of overflows, killing the responsible process

But this had a big drawback since it introduced a 1.5μs delay in process creation which was 
unacceptable. Instead of improving vmalloc subsystem, Linus suggested to add a per-CPU 
cache of kernel-level stacks getting memory from vmalloc() has been introduced.

In the end it was also decided to move thread_info completely off the stack and its content 
was moved to the task_struct.

2110.Process Management ⇒ 10.1 Process Control Block

https://lwn.net/Articles/692208/ - https://lwn.net/Articles/692953/

https://lwn.net/Articles/691631/
https://lwn.net/Articles/692208/
https://lwn.net/Articles/692953/


Accessing the PCB

10.1.1

Advanced Operating Systems and Virtualization

10. Process Management
1. Process Control Block



current
current always refers to the currently-scheduled process, it is therefore architecture-specific. 
It returns the memory address of its PCB (evaluates to a pointer to the corresponding 
task_struct).

On early versions, it was a macro current defined in include/asm-i386/current.h it 
performed computations based on the value of the stack pointer, by exploiting that the stack 
is aligned to the couple of pages/frames in memory, therefore changing the stack's size 
requires re-aligning this macro.

When thread_info was introduced, masking the stack gave the address to task_struct. To 
return the task_struct, the content of the task member of task_struct was returned.

Later, current has been mapped to the static __always_inline struct task_struct 
*get_current(void) function. It returns the per-CPU variable current_task declared in 
arch/x86/kernel/cpu/common.c. The scheduler updates the current_task variable when 
executing a context switch. This is compliant with the fact that thread_info has left the stack

2310.Process Management ⇒ 10.1 Process Control Block ⇒ 10.1.1 Accessing the PCB



current

2410.Process Management ⇒ 10.1 Process Control Block ⇒ 10.1.1 Accessing the PCB

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/include/asm/current.h#L18 

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/include/asm/current.h#L18


Accessing the PCB

This function in include/linux/sched.h allows to retrieve the memory address of the PCB 
by passing the process/thread pid as input.

static inline struct task_struct *find_task_by_pid(int pid) {

struct task_struct *p, **htable = &pidhash[pid_hashfn(pid)];

for(p = *htable; p && p->pid != pid; p = p->pidhash_next);

return p;

}

2510.Process Management ⇒ 10.1 Process Control Block ⇒ 10.1.1 Accessing the PCB

Up to 2.6



find_task_by_pid has been replaced by:

struct task_struct *find_task_by_vpid(pid_t vpid)

This is based on the notion of virtual pid. It has to do with userspace namespaces, to allow 
processes in different namespaces to share the same pid numbers.

A namespace is a feature of the Linux kernel which partitions the available resources in such a 
way all the process in the same namespace see the same amount of resources. At boot every 
process belongs to the same namespace. Namespaces are used for implementing containers. 
Namespaces are used in conjunction with cgroups, another kernel feature that limits the 
usage of CPU/RAM/IO for a specific set of processes.

Accessing the PCB

2610.Process Management ⇒ 10.1 Process Control Block ⇒ 10.1.1 Accessing the PCB

Since 2.6



/* PID hash table linkage. */

struct task_struct *pidhash_next;

struct task_struct **pidhash_pprev;

There is a hash defined as below in include/linux/sched.h

- #define PIDHASH_SZ (4096 >> 2)
- extern struct task_struct *pid_hash[PIDHASH_SZ];
- #define pid_hashfn(x) ((((x) >> 8) ^ (x)) & (PIDHASH_SZ - 1))

Accessing the PCB

2710.Process Management ⇒ 10.1 Process Control Block ⇒ 10.1.1 Accessing the PCB

Up to 4.14



Accessing the PCB

The hash data structure has been replaced by a radix tree.

- PIDs are replaced with Integer IDs (idr)
- idr is the kernel-level library for the management of small integer ID numbers

An idr is a sparse array mapping integer IDs onto arbitrary pointers. Look back at the data 
structures lab.

2810.Process Management ⇒ 10.1 Process Control Block ⇒ 10.1.1 Accessing the PCB

Today



The fork()/exec() model

10.2

Advanced Operating Systems and Virtualization

10. Process Management



Creating a new process

10.Process Management ⇒ 10.2 The fork()/exec() model

To create a new process, a couple of fork() and exec*() calls should be issued. In general 
new process share everything with the parent so it would be inefficient to truly copy all the 
data. To overcome this the Linux kernel:

- implements the Copy-on-Write that allows both parent and child to read the same 
physical pages, whenever one tries to write on a physical page the kernel copies its 
content into a new physical page;

- lightweight processes allow both parent and child to share many kernel data structures, 
such as the paging tables, open files struct and signals

Not every child need to share everything from the parent, for this reason right after a fork() 
we can issue an exec*().

30



This function creates a new process. The return value is zero in the child and the process-id 
number of the child in the parent, or -1 upon error.

Both processes start executing from the next instruction to the fork() call.

fork()

3110.Process Management ⇒ 10.2 The fork()/exec() model

stack

heap

data

text

parent

stack

heap

data

text

child

fork()



Processes and threads creation

3210.Process Management ⇒ 10.2 The fork()/exec() model

User Space

Kernel Space

fork() pthread_create()

clone()

sys_clone()sys_fork()

do_fork()



Calling sys_clone() from Userspace

3310.Process Management ⇒ 10.2 The fork()/exec() model

Lightweight processes are created by using a function named clone().

long clone(unsigned long flags, void *child_stack, int *ptid, 

int *ctid, unsigned long newtls);

When using sys_clone(), we must allocate a new stack first. By convention, userspace 
memory is always allocated from userspace. Indeed, a thread of the same process share the 
same address space. Also, the TLS (Thread Local Storage) must be allocated in user space, this 
is architecture-dependent, thus the unsigned long type. glibc offers a uniform function but 
the implementation of the syscall entry points is slightly different on every architecture.



sys_fork() and sys_clone()
SYSCALL_DEFINE0(fork)

{

return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);

}

SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, int 
__user *, parent_tidptr, int __user *, child_tidptr, unsigned long, tls)

{

return _do_fork(clone_flags, newsp, 0, parent_tidptr, 

child_tidptr, tls);

}

3410.Process Management ⇒ 10.2 The fork()/exec() model



do_fork()
The do_fork() function makes use of an auxiliary function called copy_process() to set up the 
process descriptor and any other kernel data structure for child’s execution. Here’s the main 
steps:

1. allocates a new PID, a new PCB and a new kernel stack
2. copies PCB information/data structures by using copy_process(). The information copied 

depends on the passed flags. That for example are:

3510.Process Management ⇒ 10.2 The fork()/exec() model

https://elixir.bootlin.com/linux/v5.11/source/include/uapi/linux/sched.h#L11 

v5.11

https://elixir.bootlin.com/linux/v5.11/source/include/uapi/linux/sched.h#L11


do_fork()

3610.Process Management ⇒ 10.2 The fork()/exec() model

v5.11

https://elixir.bootlin.com/linux/v5.11/source/kernel/fork.c#L2518

https://elixir.bootlin.com/linux/v5.11/source/kernel/fork.c#L2518 

https://elixir.bootlin.com/linux/v5.11/source/kernel/fork.c#L2518


copy_process()

3710.Process Management ⇒ 10.2 The fork()/exec() model

The function implements several checks on namespaces. Pending signals are processed 
immediately in the parent process.

- p = dup_task_struct(current, node);
- setup_thread_stack(tsk, orig);
- copy_creds(p, clone_flags);
- copy_files(clone_flags, p);
- copy_fs(clone_flags, p);
- copy_mm(clone_flags, p); -> dup_mm()



dup_mm()

3810.Process Management ⇒ 10.2 The fork()/exec() model

https://elixir.bootlin.com/linux/v5.11/source/kernel/fork.c#L1345 

Allocates a new PGD

v5.11

https://elixir.bootlin.com/linux/v5.11/source/kernel/fork.c#L1345


Kernel Threads

10.2.1

Advanced Operating Systems and Virtualization

10. Process Management
2. The fork()/exec() model



Kernel Thread Creation API

10.Process Management ⇒ 10.2 The fork()/exec() model ⇒ 10.2.1 Kernel Threads 40

v5.11

https://elixir.bootlin.com/linux/v5.11/source/include/linux/kthread.h#L27 

This is seen as 
any other task 
by the scheduler

Kthreads are always stopped upon creation, they must be activated by calling wake_up_process().

https://elixir.bootlin.com/linux/v5.11/source/include/linux/kthread.h#L27


Kernel Thread Daemon

4110.Process Management ⇒ 10.2 The fork()/exec() model ⇒ 10.2.1 Kernel Threads

https://elixir.bootlin.com/linux/v5.11/source/kernel/kthread.c#L330 

https://elixir.bootlin.com/linux/v5.11/source/kernel/kthread.c#L330


Kernel Thread Daemon

4210.Process Management ⇒ 10.2 The fork()/exec() model ⇒ 10.2.1 Kernel Threads

https://elixir.bootlin.com/linux/v5.11/source/kernel/kthread.c#L630 

https://elixir.bootlin.com/linux/v5.11/source/kernel/kthread.c#L630


Out Of Memory (OOM) Killer 

10.3

Advanced Operating Systems and Virtualization

10. Process Management



The OOM Killer

10.Process Management ⇒ 10.3 Out of Memory (OOM) Killer

It is implemented in mm/oom_kill.c. This module is activated (if enabled) when the system 
runs out of memory.

There are three possible actions:

- kill a random task (bad)
- let the system crash (worse)
- try to be smart at picking the process to kill

The OOM Killer picks a "good" process and kills it in order to reclaim available memory.

44



The OOM Killer
Entry point of the system is out_of_memory(). It tries to select the "best" process checking for 
different conditions:

- if a process has a pending SIGKILL or is exiting, this is automatically picked (check done 
by task_will_free_mem())

- Otherwise, it issues a call to select_bad_process() which will return a process to be 
killed:

- the picked process is then killed
- if no process is found, a panic() is raised

45



This iterates over all available processes calling oom_evaluate_task() on them, until a 
killable process is found. Unkillable tasks (i.e., kernel threads) are skipped, oom_badness() 
implements the heuristic to pick the process to be killed by computing the "score" associated 
with each process, the higher the higher the score the higher the probability of getting killed.

oom_badness() 

A score of zero is given if:

- the task is unkillable
- the mm field is NULL
- if the process is in the middle of a fork

The score is then computed proportionally to the RAM, swap, and pagetable usage:

points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 
mm_pgtables_bytes(p->mm) / PAGE_SIZE;

select_bad_process()

4610.Process Management ⇒ 10.3 Out of Memory (OOM) Killer



Process Starting

10.4

Advanced Operating Systems and Virtualization

10. Process Management



How a Program is Started?

10.Process Management ⇒ 10.4 Process Starting

We all know how to compile a program:

gcc program.c –o program

We all know how to launch the compiled program:

./program

The question is: why does all this work? What is the convention used between kernel and user 
space?

48



In the beginning there was init

4910.Process Management ⇒ 10.4 Process Starting



Starting a program from bash

5010.Process Management ⇒ 10.4 Process Starting

static int execute_disk_command (char *command, int pipe_in, 
int pipe_out, int async, 
struct fd_bitmap *fds_to_close) {

    pid_t pid;
    pid = make_child (command, async);

    if (pid == 0) {
        shell_execve (command, args, export_env);
    }
}

From the bash shell source - https://github.com/bminor/bash/blob/master/execute_cmd.c 

https://github.com/bminor/bash/blob/master/execute_cmd.c


Starting a program from bash

5110.Process Management ⇒ 10.4 Process Starting

https://github.com/bminor/bash/blob/f3a35a2d601a55f337f8ca02a541f8c033682247/jobs.c#L2132 

pid_t make_child (char *command, int async_p) {
    pid_t pid;
    int forksleep;
    start_pipeline();
    forksleep = 1;
    while ((pid = fork ()) < 0 && errno == EAGAIN && forksleep < FORKSLEEP_MAX) {
        sys_error("fork: retry");

        reap_zombie_children();
        if (forksleep > 1 && sleep(forksleep) != 0)
            break;
        forksleep <<= 1;
    }
    
    /* ... */

    return (pid);
}

https://github.com/bminor/bash/blob/f3a35a2d601a55f337f8ca02a541f8c033682247/jobs.c#L2132


/* These are extern so execute_simple_command can set them, and then
   longjmp back to main to execute a shell script, instead of calling
   main () again and resulting in indefinite, possibly fatal, stack
   growth. */
procenv_t subshell_top_level;

Starting a program from bash

5210.Process Management ⇒ 10.4 Process Starting

int shell_execve (char *command, char **args, char **env) {
    execve (command, args, env);
    
    READ_SAMPLE_BUF (command, sample, sample_len);
    
    if (sample_len == 0)
        return (EXECUTION_SUCCESS);

    if (sample_len > 0) {
        if (sample_len > 2 && sample[0] == '#' && sample[1] == '!')
            return (execute_shell_script(sample, sample_len, command, args, env));
        else if (check_binary_file (sample, sample_len)) {
            internal_error (_("%s: cannot execute binary file"), command);
            return (EX_BINARY_FILE);
        }
    }

    longjmp(subshell_top_level, 1);
}

https://github.com/bminor/bash/blob/f3a35a2d601a55f337f8ca02a541f8c033682247/execute_cmd.c#L5794 

https://github.com/bminor/bash/blob/master/shell.c 

https://github.com/bminor/bash/blob/f3a35a2d601a55f337f8ca02a541f8c033682247/execute_cmd.c#L5794
https://github.com/bminor/bash/blob/master/shell.c


exec*

5310.Process Management ⇒ 10.4 Process Starting

exec*() changes the program file that an existing process is running:

- it first wipes out the memory state of the calling process
- it then goes to the filesystem to find the program file requested
- it copies this file into the program's memory and initializes register state, including the 

PC
- It doesn't alter most of the other fields in the PCB. The process calling exec*() (the child 

copy of the shell, in this case) can, e.g., change the opened files

Let’s see how exec*() is implemented.



struct linux_binprm
The struct linux_binprm is in charge of keeping information about a binary file.

5410.Process Management ⇒ 10.4 Process Starting

struct linux_binprm {
char buf[BINPRM_BUF_SIZE];
struct page *page[MAX_ARG_PAGES];
unsigned long p; /* current top of mem */
int sh_bang;
struct file* file;
int e_uid, e_gid;
kernel_cap_t cap_inheritable, cap_permitted, cap_effective;
int argc, envc;
char *filename; /* Name of binary */
unsigned long loader, exec;

};

https://elixir.bootlin.com/linux/v5.11/source/include/linux/binfmts.h#L17 

https://elixir.bootlin.com/linux/v5.11/source/include/linux/binfmts.h#L17


do_execve()

5510.Process Management ⇒ 10.4 Process Starting

int do_execve(char *filename, char **argv, char **envp, struct pt_regs *regs) {
struct linux_binprm bprm;
struct file *file;
int retval;
int i;

file = open_exec(filename);

retval = PTR_ERR(file);
if (IS_ERR(file))

return retval;

bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
memset(bprm.page, 0, MAX_ARG_PAGES*sizeof(bprm.page[0]));
bprm.file = file;
bprm.filename = filename;
bprm.sh_bang = 0;
bprm.loader = 0;
bprm.exec = 0;
if ((bprm.argc = count(argv, bprm.p / sizeof(void *))) < 0) {

allow_write_access(file);
fput(file);
return bprm.argc;

}

In kernel 5.11 do_execve_atcommon()
https://elixir.bootlin.com/linux/v5.11/source/fs/exec.c#L1855 

count(argv, max) counts 
the number of strings

https://elixir.bootlin.com/linux/v5.11/source/fs/exec.c#L1855


do_execve()

5610.Process Management ⇒ 10.4 Process Starting

if ((bprm.envc = count(envp, bprm.p / sizeof(void *))) < 0) {
allow_write_access(file);
fput(file);
return bprm.envc;

}

retval = prepare_binprm(&bprm);
if (retval < 0)

goto out;

retval = copy_strings_kernel(1, &bprm.filename, &bprm);
if (retval < 0)

goto out;

bprm.exec = bprm.p;
retval = copy_strings(bprm.envc, envp, &bprm);
if (retval < 0)

goto out;

retval = copy_strings(bprm.argc, argv, &bprm);
if (retval < 0)

goto out;

retval = search_binary_handler(&bprm,regs);
if (retval >= 0)

/* execve success */
return retval;



do_execve()

5710.Process Management ⇒ 10.4 Process Starting

out:
/* Something went wrong, return the inode and free the argument pages*/
allow_write_access(bprm.file);
if (bprm.file)

fput(bprm.file);

for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
struct page * page = bprm.page[i];
if (page)

__free_page(page);
}

return retval;



search_binary_handler()
The function scans a list of binary file handlers registered in the kernel. If no handler is able to 
recognize the image format, syscall returns the ENOEXEC error (“Exec Format Error”).

For ELF files we have in fs/binfmt_elf.c:

- load_elf_binary(), the function:
- loads image file to memory using mmap;
- reads the program header and sets permissions accordingly
- elf_ex = *((struct elfhdr *)bprm->buf);

5810.Process Management ⇒ 10.4 Process Starting



The ELF Format

10.4.1

Advanced Operating Systems and Virtualization

10. Process Management
4. Process Starting



ELF: Executable and Linking Format

6010.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format

The Executable and Linking Format was originally developed and published by UNIX System 
Laboratories (USL) as part of the Application Binary Interface (ABI). The Tool Interface 
Standards committee (TIS) has selected the evolving ELF standard as a portable object file 
format that works on 32-bit Intel Architecture environments for a variety of operating 
systems.

The ELF standard is intended to streamline software development by providing developers 
with a set of binary interface definitions that extend across multiple operating environments. 
This should reduce the number of different interface implementations, thereby reducing the 
need for recoding and recompiling code.



The Compiling Process

10.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format 61



ELF Format
ELF defines the format of binary executables. There are four different categories:

- Relocatable, created by compilers and assemblers. Must be processed by the linker 
before being run.

- Executable, all symbols are resolved, except for shared libraries’ symbols, which are 
resolved at runtime.

- Shared object, a library which is shared by different programs, contains all the symbols’ 
information used by the linker, and the code to be executed at runtime.

- Core file, a core dump.

ELF files have a twofold nature

- compilers, assemblers and linkers handle them as a set of logical sections;
- the system loader handles them as a set of segments.

10.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format 62



ELF Format

6310.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format



6410.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format

https://upload.wikimedia.org/wikipedia/commons/e/e4/ELF_Executable_and_Linkable_Format_diagram_by_Ange_Albertini.png 

https://upload.wikimedia.org/wikipedia/commons/e/e4/ELF_Executable_and_Linkable_Format_diagram_by_Ange_Albertini.png


Relocatable File

6510.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format

A relocatable file or a shared object is a collection of sections. Each section contains a single 
kind of information, such as executable code, read-only data, read/write data, relocation 
entries, or symbols.

Each symbol’s address is defined in relation to the section which contains it. For example, a 
function’s entry point is defined in relation to the section of the program which contains it.



Section Header
typedef struct {

Elf32_Word sh_name; /* Section name (string tbl index) */

Elf32_Word sh_type; /* Section type */

Elf32_Word sh_flags; /* Section flags */

Elf32_Addr sh_addr; /* Section virtual addr at execution */

Elf32_Off sh_offset; /* Section file offset */

Elf32_Word sh_size; /* Section size in bytes */

Elf32_Word sh_link; /* Link to another section */

Elf32_Word sh_info; /* Additional section information */

Elf32_Word sh_addralign; /* Section alignment */

Elf32_Word sh_entsize; /* Entry size if section holds table */

} Elf32_Shdr;

6610.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format



Section Header

Types:

- PROGBITS: The section contains the program content (code, data, debug information).
- NOBITS: Same as PROGBITS, yet with a null size.
- SYMTAB and DYNSYM: The section contains a symbol table.
- STRTAB: The section contains a string table.
- REL and RELA: The section contains relocation information.
- DYNAMIC and HASH: The section contains dynamic linking information.

Flags:

- WRITE: The section contains runtime-writeable data.
- ALLOC: The section occupies memory at runtime.
- EXECINSTR: The section contains executable machine instructions.

6710.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format

Types and Flags



Sections

- .text: contains program’s instructions
- Type: PROGBITS
- Flags: ALLOC + EXECINSTR

- .data: contains pre-initialized read/write data
- Type: PROGBITS
- Flags: ALLOC + WRITE

- .rodata: contains pre-initialized read-only data
- Type: PROGBITS
- Flags: ALLOC

- .bss: contains uninitialized data. Will be set to zero at startup.
- Type: NOBITS
- Flags: ALLOC + WRITE

6810.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format

Examples



Executable Files
Usually, an executable file has only few segments:

- A read-only segment for code.
- A read-only segment for read-only data.
- A read/write segment for other data.

Any section marked with flag ALLOC is packed in the proper segment, so that the operating 
system is able to map the file to memory with few operations.

If .data and .bss sections are present, they are placed within the same read/write segment.

6910.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format



Program Header

typedef struct {

Elf32_Word p_type; /* Segment type */

Elf32_Off p_offset; /* Segment file offset */

Elf32_Addr p_vaddr; /* Segment virtual address */

Elf32_Addr p_paddr; /* Segment physical address */

Elf32_Word p_filesz; /* Segment size in file */

Elf32_Word p_memsz; /* Segment size in memory */

Elf32_Word p_flags; /* Segment flags */

Elf32_Word p_align; /* Segment alignment */

} Elf32_Phdr;

7010.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format



Linker’s Role

7110.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format



Static Relocation

7210.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format

...
1bc1: e8 00 00 00 00 (call ???)
1bc6: 83 c4 10 add $0x10, %rsp
1bc9: a1 00 00 00 00 (movb 0x0, %eax)

...
2bd7: 55 push %rbp
2bd8: 48 89 e5 mov %rsp, %rbp

732e 6d79 6174 0062 732e 7274 6174 0062
732e 7368 7274 6174 0062 742e 7865 0074
642e 7461 0061 622e 7373 6174 0062 7865

␀ f o o ␀ m y _ v a r ␀

text section

data section

string table

offset info addend

1bc2 0 /off 4

1bca 1 / addr 0

.text.rela table

symbol table

name value section

1 2bd7 text

5 812f data

(1)

(2)

(1)

(2)

(1)

(1)

(2)

(2)

info tells you the index in the symbol 
table and the type of the symbol

value is the address in the section

(1)

(1) (2) name is the position of the name in the string table



Symbols Visibility

73

A symbol can be:

- strong, a strong symbol replaces a weak one and if two strong symbols have the same 
name the linker resolves in favour of the first; by default every symbol is strong

- weak, more modules can have a symbol with the same name of a weak one, the 
declared entity cannot be overloaded by other modules; It is useful for libraries which 
want to avoid conflicts with user programs.

gcc version 4.0 gives the command line option -fvisibility:

- default: normal behaviour, the symbol is seen by other modules;
- hidden: two declarations of an object refer the same object only if they are in the same 

shared object;
- internal: an entity declared in a module cannot be referenced even by pointer;
- protected: the symbol is weak;

10.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format



Symbols Visibility

int variable __attribute__ ((visibility (“hidden”)));

#pragma GCC visibility push(hidden)

int variable;

int increment(void) {

return ++variable;

}

#pragma GCC visibility pop

7410.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.1 The ELF Format

Set the default declaration as 
hidden in the scope



Dynamic Linking

10.4.2

Advanced Operating Systems and Virtualization

10. Process Management
4. Process Starting



Program Entry Point
The main() function is not the actual entry point for the program. glibc inserts auxiliary 
functions. The actual entry point is called _start.

The Static Relocation works at linking time but you obviously do not want to include all the 
libraries that you use in your program in your executable file, this because eats up memory 
and almost all the programs use the same set of libraries (e.g. the stdlib). Symbols that are not 
included in the final executable file are resolved with the Dynamic Linking that is performed 
by the kernel when the program starts. 

The Kernel starts the dynamic linker which is stored in the .interp section of the program 
(usually /lib/ld-linux.so.2). If no dynamic linker is specified, control is given at address 
specified in e_entry.

7610.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.2 Dynamic Linking



Initialization steps:

- Self initialization
- Loading Shared Libraries
- Resolving remaining relocations
- Transfer control to the application

The most important data structures which are filled are:

- Procedure Linkage Table (PLT), used to call functions whose address isn't known at link 
time

- Global Offsets Table (GOT), similarly used to resolve addresses of data/functions

Dynamic Linking

7710.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.2 Dynamic Linking



- .dynsym: a minimal symbol table used by the dynamic linker when performing 
relocations

- .hash: a hash table that is used to quickly locate a given symbol in the .dynsym, usually 
in one or two tries.

- .dynstr: string table related to the symbols stored in .dynsym

These tables are used to fill the GOT table, that is populated upon need (lazy binding).

Dynamic Linking

7810.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.2 Dynamic Linking

Data Structures



Dynamic Linking

The first PLT entry is special. Other entries are identical, one for each function needing 
resolution.

1. A jump to a location which is specified in a corresponding GOT entry
2. Preparation of arguments for a resolver routine
3. Call to the resolver routine, which resides in the first entry of the PLT

The first PLT entry is a call to the resolver located in the dynamic loader itself.

7910.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.2 Dynamic Linking

Steps



Dynamic Linking

When func is called for the first time:

1. PLT[n] is called, and jumps to the address 
pointed to it in GOT[n]

2. This address points into PLT[n] itself, to 
the preparation of arguments for the 
resolver.

3. The resolver is then called, by jumping to 
PLT[0]

4. The resolver performs resolution of the 
actual address of func, places its actual 
address into GOT[n] and calls func.

8010.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.2 Dynamic Linking

Steps



Dynamic Linking

8110.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.2 Dynamic Linking

Steps after the first resolution



Initial Steps of Programs’ Life

10.4.3

Advanced Operating Systems and Virtualization

10. Process Management
4. Process Starting



10.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.3 Initial Steps of Programs’ Life

Initial Steps
So far the dynamic linker has loaded the shared libraries in memory. GOT is populated when 
the program requires certain functions. Then, the dynamic linker calls _start

83

<_start>:
xor %ebp, %ebp
pop %esi
mov %esp, %ecx
and $0xfffffff0, %esp
push %eax
push %esp
push %edx
push $0x8048600
push $0x8048670
push %ecx
push %esi
push $0x804841c
call 8048338 <__libc_start_main>
hlt
nop
nop

Suggested by ABI to mark outermost frame

the pop makes argc go into %esi

%esp is now pointing at argv. The mov puts argv 
into %ecx without moving the stack pointer

Align the stack pointer to a multiple of 16 bytes

This instruction should never be executed 

Prepare parameters to __libc_start_main %eax is 
garbage, to keep the alignment



Userspace Life of a Program

8410.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.3 Initial Steps of Programs’ Life



Stack Layout at Program Startup

8510.Process Management ⇒ 10.4 Process Starting ⇒ 10.4.3 Initial Steps of Programs’ Life

argc
argv pointers
NULL that ends argv[]
environment pointers
NULL that ends envp[]
ELF Auxiliary Table
argv strings
environment strings
program name

NULL

stack from startup code

return address of main
argc
argv
envp

local variables of main
saved registers of main

kernel

__libc_start_main()

main()



Advanced Operating Systems and 
Virtualization

L E C T U R E R

Gabriele Proietti Mattia

B A S E D  O N  W O R K  B Y

http://www.ce.uniroma2.it/~pellegrini/ 

86

[10] Process Management

gpm.name · proiettimattia@diag.uniroma1.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

