Gabriele Proietti Mattia

Advanced Operating Systems
and Virtualization

NG

Department of Computer,

[10] Process Management Control and Management

Engineering “A. Ruberti”,
Sapienza University of Rome

gpm.name - proiettimattia@diag.uniroma1.it AY. 2020/2021 - v2

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it

Outline

1. Process Control Block
1. Accessing the PCB
2. The fork()/exec() model
1. KernelThreads
Out Of Memory (OOM) Killer
4. Process Starting
1. The ELF Format
2. Dynamic Linking
3. Initial Steps of Programs’ Life

w

10. Process Management 2

10. Process Management

Process Control Block

Advanced Operating Systems and Virtualization ’ IAG

Processes

The concept of a process is fundamental to any multiprogramming OS. The term process is
often used with several different meanings, for us it means an instance of a program in
execution (or even a set of data structures which describes how far the execution has
progressed).

When a process is created is almost identical to its parent:

- itreceives a logical copy of the parent’s address space
- it executes the same code of the parent, at next instruction after the fork()

But the child process has separate copies of the data (stack and heap) so that changes in the
child are invisible to the parent and vice versa.

10.Process Management = 10.1 Process Control Block 4

Processes

While earlier versions of Unix supported this model, modern ones do not. They instead
supported multithreaded applications, in which a process is composed of several user threads
(or simply threads), each of which represents a an execution flow of the process (pthread
library).

Older versions of Linux did not support multithreaded applications, so from the kernel point of
view a multithreaded application was just a normal process. So threads were created, handled
and scheduled in User Mode. Therefore if a thread was blocked for a system call, every other
thread would be blocked.

Nowadays Linux uses lightweight processes that are independent from each other but at the
same time they can share resources (e.g. memory). They are mapped, in the end, to threads. A
process in modern versions of Linux is just a group of lightweight processes, also called a
thread group (created with pthread library).

10.Process Management = 10.1 Process Control Block [

The Process Control Block

To manage processes, the kernel must have a clear picture of what each process is doing, for
instance, the priority, the state, the address space and so on. This is the role of the process
descriptor (also called Process Control Block - PCB).

Process Table
PID PCB
1 L
? : Process Control Block
: . Program counter
n L
Process Control Block el
= State
rogram counter Priority
Process Control Block Salintes Address space
State
Program counter == Open files
—— Priority .
egisters :
State Ao sisoe Other flags
Open files
Priority .
Address space Other flags
Open files
Other flags

10.Process Management = 10.1 Process Control Block 6

task_struct

The struct task_struct object represents the Process Control Block within the Linux
Kernel. This is declared in include/1linux/sched.h and it is one of the largest structures in
the kernel (almost 600 LOCs). Relevant members are:

- volatile long state
- struct mm_struct *mm
- struct mm_struct *active_mm
- pid_t pid
- pid_t tgid
- struct fs_struct *fs
- struct files_struct *files
- struct signal _struct *sig
- struct thread_struct thread /* CPU-specific state: TSS, FPU, CR2, perf events,
*
/
- 1int prio; /* to implement nice() */
- unsigned long policy /* for scheduling */
- int nr_cpus_allowed
- cpumask_t cpus_allowed

10.Process Management = 10.1 Process Control Block 7

task_struct

task_struct
state thread_info
thread_info
usage Low-level information
for the process
flags
mm_struct
. »—
run_list > Pointers to memory
» areadescriptors
tasks I
mm
tty_struct
---------- >
real_parent | = tty associated with the process
paent | .
fs_struct
tty Current directory
files_struct
e »—
thread . @ » Pointers to file
N — % descriptors
fs
fles signal_struct
>
signal Signals received
pending

Figure 3-1. The Linux process descriptor

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media, Inc.", 2005.

| Blo

rocess agement = 10.1 Process C

Process State

The state field of a process descriptor describe what is currently happening to the process.
Possible states are always exclusive:

- TASK_RUNNING the process is either executing on CPU or waiting to be executed

- TASK_INTERRUPTIBLE the process is sleeping until some condition becomes true

- TASK_UNINTERRUPTIBLE like TASK_INTERRUPTIBLE but except that raising a signal to

the process will leave the state unchanged
- TASK_STOPPED process has stopped (after signal SIGSTOP, SIGTSTP)
- TASK_TRACED process execution has stopped by a debugger

Then to the exit_state field we can have

- EXIT_ZOMBIE process terminated but the parent did not issued wait to retrieve the data,
so the kernel cannot discard it
- EXIT_DEAD the parent issued wait

10.Process Management = 10.1 Process Control Block 9

The mm member

The field mm points to a mm_struct defined in include/linux/mm_types.h. The mm_struct is
used to manage the memory map of the process:

- virtual address of the page table (pgd member)
- apointerto alist of vm_area_struct records (mmap field)

Each record tracks a user-level virtual memory area which is valid for the process. active_mmis
used to "steal" a mm when running in an anonymous process, and mm is set to NULL.

Non-anonymous processes have active_mm == mm,

386 struct mm_strict {
387

struct {
388 struct vm_area_struct *mmap; /* list of VMAs */
389 struct rb_root mm_rb;
390 u64 vmacache_seqnum; /* per-thread vmacache */
391 #ifdef CONFIG_MMU
392 unsigned long (*get_unmapped_area) (struct file *filp,
393 unsigned long addr, unsigned long len,
394 unsigned long pgoff, unsigned long flags);
395 #endif
396 unsigned long mmap_base; /* base of mmap area */
397 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
398 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
399 /* Base adresses for compatible mmap() */
400 unsigned long mmap_compat_base;
401 unsigned long mmap_compat_legacy base;
402 #endif
403 unsigned long task_size; /* size of task vm space */
404 unsigned long highest_vm_end; /* highest vma end address */
405 pgd_t * pad;

https://elixir.bootlin.com/linux/vs.11/sourcefinclude/linux/mm types.h#L386 - https://www.kernel.org/doc/html/latest/vm/active_mm.html

10.Process Management = 10.1 Process Control Block 10

https://elixir.bootlin.com/linux/v5.11/source/include/linux/mm_types.h#L386
https://www.kernel.org/doc/html/latest/vm/active_mm.html

vm_area_struct

The struct vm_area_struct describes a Virtual Memory Area (VMA). It contains:

struct mm_struct *vm_mm: the address space the structure belongs to

unsigned long vm_start:the start addressin vm_mm

unsigned long vm_end: the end address

pgprot_t vm_page_prot: access permissions of thisVMA

const struct vm_operations_struct *vm_ops: operations to deal with this structure
struct mempolicy *vm_policy: the NUMA policy for this range of addresses

struct file *vm_file: pointerto a memory-mapped file

struct vm_area_struct *vm_next, *vm_prev: linked list of VM areas per task, sorted
by address

10.Process Management = 10.1 Process Control Block 11

560

vm_operations_struct

/*
* These are the virtual MM functions - opening of an area, closing and
* unmapping it (needed to keep files on disk up-to-date etc), pointer
* to the functions called when a no-page or a wp-page exception occurs.
*/
struct vm_operations_struct {
void (*open) (struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
/* Called any time before splitting to check if it's allowed */
int (*may_split) (struct vm_area_struct *area, unsigned long addr);
int (*mremap) (struct vm_area_struct *area, unsigned long flags);
/*
* Called by mprotect() to make driver-specific permission
* checks before mprotect() is finalised. The VMA must not
* be modified. Returns O if eprotect() can proceed.
®/
int (*mprotect) (struct vm_area_struct *vma, unsigned long start,
unsigned long end, unsigned long newflags);
vm_fault_t (*fault)(struct vm_fault *vmf);
vm_fault_t (*huge_fault) (struct vm_fault *vmf,
enum page_entry_size pe_size);
void (*map_pages) (struct vm_fault *vmf,
pgoff_t start_pgoff, pgoff_t end pgoff);
unsigned long (*pagesize)(struct vm_area_struct * area);

/* notification that a previously read-only page is about to become

* writable, if an error is returned it will cause a SIGBUS */
vm_fault_t (*page_mkwrite) (struct vm_fault *vmf);

10.Process Management = 10.1 Process Control Block

585
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

int (*access)(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write);

/* Called by the /proc/PID/maps code to ask the vma whether it
* has a special name. Returning non-NULL will also cause this
* vma to be dumped unconditionally. */

const char *(*name) (struct vm_area_struct *vma);

#ifdef CONFIG_NUMA
/*

*

set_policy() op must add a reference to any non-NULL @new mempolicy
to hold the policy upon return. Caller should pass NULL @new to
remove a policy and fall back to surrounding context--i.e. do not
install a MPOL DEFAULT policy, nor the task or system default
mempolicy.

int (*set_policy) (struct vm_area_struct *vma, struct mempolicy *new);

/*

* get policy() op must add reference [mpol get()] to any policy at

* (vma,addr) marked as MPOL SHARED. The shared policy infrastructure
* in mm/mempolicy.c will do this automatically.

* get policy() must NOT add a ref if the policy at (vma,addr) is not
* marked as MPOL SHARED. vma policies are protected by the mmap lock.
* If no [shared/vma] mempolicy exists at the addr, get policy() op

* must return NULL--i.e., do not "fallback" to task or system default
* policy.

*/

o

struct mempolicy *(*get_policy) (struct vm_area_struct *vma,
unsigned long addr)

12

Userspace Memory Management

Root of

red-black tree

/'

10.Process Management = 10.1 Process Control Block

task struct

active mm

mm

mm struct e——-I

mmap

mm_rb

mmap base

task size

map_count

pgd

|

Page table

10000 | 50810000

22000 | 50811000

23000 | 50812000

vm_area structe

vm_mm

vm_start

vm_end

vm_next

vm_prev

vm_rb

vm_flags

shared

linear.rb

(.

nonlinear

anon_vma

vm_file

file

f path

f mapping

NN
A\

N

1
-:—» vm area struct

vm_mm

vm_start

vm_end

vm_next

vm_prev

vm_rb

vm_flags

shared

linear.rb
nonlinear

anon_vma

vm file

address space

host

page tree

1 _mmap

1 _mmap_nonlinear

nrpages

flags

13

Userspace Memory Management

start_stack

Stack (grows down)

mmap_base

(| Memory Mapping Segment
task_struct a0 struck brk i
(/bin/gonzo) | mm > T_T
Process Memory start_brk . Heap
Descriptor

Descriptor

\ end_data BSS segment

start_data Data segment

/
end code Text segment (ELF)

start_code

https://manybutfinite.com/post/how-the-kernel-manages-your-memory/

10.Process Management = 10.1 Process Control Block

https://manybutfinite.com/post/how-the-kernel-manages-your-memory/

Userspace Memory Management

————— » vm_end: first address outside virtual memory area

———» vm_start: first address within virtual memory area

stack
(anonymous)

Memory
mapping

— o —

10.Process Management = 10.1 Process Control Block

vm_area_struct
>~ VM_READ | VM_WRITE
| VM_GROWS_DOWN
vm_next
struct file vm_area_struct
/lib/ld.so k—uvm file VM_READ | VM_EXEC
2
vm_next
struct file \ vm_area_struct
/1ib/1ibc.so «—vm_file - VM_READ | VM_EXEC
—
vm_next
\ vm_area_struct
VM_READ | VM_WRITE
e
vm_next
\ vm_area_struct
| VM_READ | vM_WRITE
L
vm_next
\ vm_area_struct
«—vm_file VM_READ | VM_WRITE
struct file VT’;pr
/bin/gonzo T' vm_area_struct
—vm_file VM_READ | VM_EXEC
Py
mmap
1
task_struct e
(/bin/gonzo) > mm_struct

Heap
(anonymous)

————P

BSS
(anonymous)

Data
(file-
backed)

e —— W

Text
(file-
backed)

https://manybutfinite.com/post/how-the-kernel-manages-your-memory/

15

https://manybutfinite.com/post/how-the-kernel-manages-your-memory/

PCB Allocation

From Kernel 2.6

Processes are very dynamic entities whose
lifetime ranges from a few milliseconds to
months. For this reason the kernel must be
able to handle many processes at the same
time and process descriptors are allocated in
dynamic memory, rather than in the memory
permanently assigned to the kernel. Therefore
PCBs can be dynamically allocated upon
request.

For each process, Linux packs two different
data structures in a single per-process
memory area: thread_info and the Kernel
Mode process stack. The length of this area is
usually 2 pages (8,192Kbytes).

10.Process Management = 10.1 Process Control Block

0x015fbfff

Stack

0x015fb000

4

Process
Descriptor

0x015fa878 |

P thread_info

0x015fa034 o o task 5
thread_info
structure

<— current
DI o —

0x015fa000

Figure 3-2. Storing the thread_info structure and the process kernel stack in two page frames

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management."
O'Reilly Media, Inc.", 2005.

PCB Allocation

union thread_union

This union is used to easily allocate thread_1info at the base of the stack, independently of its
size. It works as long as its size is smaller than the stack's, of course, this is mandatory.

1732 union thread union {

1733 #ifndef CONFIG_ARCH_TASK_ STRUCT ON_STACK
1734 struct task_struct task;

1735 #endif

1736 #1fndef CONFIG_THREAD INFO IN TASK

1737 struct thread _info thread _info;
1738 #endif
1739 unsigned long stack[THREAD SIZE/sizeof(long)];

1740 ¥}

https://elixir.bootlin.com/linux/vs.11/source/include/linux/sched.h#L 1732

10.Process Management = 10.1 Process Control Block 17

https://elixir.bootlin.com/linux/v5.11/source/include/linux/sched.h#L1732

PCB Allocation V4.3

struct thread info

This is the organization of thread_info up to version 4.3. Later on, thread_info has been
progressively deprived of most members on x86. Security implications of this struct on the
stack have been severe.

55 struct thread_info {

56 struct task_struct *task; /* main task structure */

57 _u32 flags; /* low level flags */

58 _u32 status; /* thread synchronous flags */
59 __u32 cpu; /* current CPU */

60 int saved_preempt_count;

61 mm_segment_t addr_limit;

62 void __user *sysenter_return;

63 unsigned int sig on_uaccess_error:1;

64 unsigned int uaccess_err:1; /* uaccess failed */

N 1

https://elixir.bootlin.com/linux/v4.3/source/arch/x86/include/asm/thread info.h

10.Process Management = 10.1 Process Control Block 18

https://elixir.bootlin.com/linux/v4.3/source/arch/x86/include/asm/thread_info.h

PCB Allocation

struct thread info

56
SiT
58
59
60

10.Process Management = 10.1 Process Control Block

struct thread_info {

unsigned long flags; /* low level flags */
unsigned long syscall_work; /* SYSCALL WORK flags */
u32 status; /* thread synchronous flags */

https://elixir.bootlin.com/linux/vs.11/source/arch/x86/include/asm/thread info.h

Where's the task_struct pointer?

V5.11

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/include/asm/thread_info.h

Virtually Mapped Kernel Stack

Kernel-level stacks have always been the weak
point in the system design. This is quite small:
you must be careful to avoid overflows. Stack
overflows (and also recursion overwrite) have
been successfully used as attack vectors.

When an overflow occurs, the Kernel is not
easily able to detect it. Even less able to
counteract on it! Stacks are in the
ZONE_NORMAL memory and are contiguous but
access is done through the MMU via virtual
addresses

10.Process Management = 10.1 Process Control Block

start of stack-»

current_thread_info-p

v

grows down

unused

thread_info

Virtually Mapped Kernel Stack

There is no need to have a physically contiguous stack, so Andy Lutomirski within its patch
proposed to allocate stack relying on vmalloc(). This had different benefits:

- resolved the problem of fragmentation (since you do not need anymore contiguous
memory for the stack)

- it added graceful handling of overflows, killing the responsible process

But this had a big drawback since it introduced a 1.5us delay in process creation which was
unacceptable. Instead of improving vmalloc subsystem, Linus suggested to add a per-CPU
cache of kernel-level stacks getting memory from vmalloc() has been introduced.

In the end it was also decided to move thread_info completely off the stack and its content
was moved to the task_struct.

https://lwn.net/Articles/692208/ - https://lwn.net/Articles/692953/

10.Process Management = 10.1 Process Control Block 21

https://lwn.net/Articles/691631/
https://lwn.net/Articles/692208/
https://lwn.net/Articles/692953/

10. Process Management
1. Process Control Block

Accessing the PCB

Advanced Operating Systems and Virtualization ’ IAG

current

current always refers to the currently-scheduled process, it is therefore architecture-specific.
It returns the memory address of its PCB (evaluates to a pointer to the corresponding
task_struct).

On early versions, it was a macro current defined in include/asm-1386/current.h it
performed computations based on the value of the stack pointer, by exploiting that the stack
is aligned to the couple of pages/frames in memory, therefore changing the stack's size
requires re-aligning this macro.

When thread_1info was introduced, masking the stack gave the address to task_struct. To
return the task_struct, the content of the task member of task_struct was returned.

Later, current has been mapped to the static __always_inline struct task_struct
*get_current(void) function. It returns the per-CPU variable current_task declared in
arch/x86/kernel/cpu/common.c. The scheduler updates the current_task variable when
executing a context switch. This is compliant with the fact that thread_1info has left the stack

10.Process Management = 10.1 Process Control Block = 10.1.1 Accessing the PCB

current

9 struct task_struct;

10

11 DECLARE_PER_CPU(struct task_struct *, current_task);

12

13 static __always_inline struct task_struct *get current(void)
14 {

15 return this_cpu_read_stable(current_task);

16 }

17

18 #define current get_current()

https://elixir.bootlin.com/linux/vs.11/source/arch/x86/include/asm/current.h#L 18

10.Process Management = 10.1 Process Control Block = 10.1.1 Accessing the PCB

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/include/asm/current.h#L18

Accessing the PCB

Upto 2.6

This function in include/linux/sched.h allows to retrieve the memory address of the PCB
by passing the process/thread pid as input.

static inline struct task_struct *find_task by pid(int pid) {
struct task_struct *p, **htable = &pidhash[pid_hashfn(pid)];
for(p = *htable; p && p->pid != pid; p = p->pidhash_next);

return p;

10.Process Management = 10.1 Process Control Block = 10.1.1 Accessing the PCB

Accessing the PCB

Since 2.6

find_task_by_pid has been replaced by:
struct task_struct *find_task_by vpid(pid_t vpid)

This is based on the notion of virtual pid. It has to do with userspace namespaces, to allow
processes in different namespaces to share the same pid numbers.

A namespace is a feature of the Linux kernel which partitions the available resources in such a
way all the process in the same namespace see the same amount of resources. At boot every
process belongs to the same namespace. Namespaces are used for implementing containers.
Namespaces are used in conjunction with cgroups, another kernel feature that limits the
usage of CPU/RAM/IO for a specific set of processes.

10.Process Management = 10.1 Process Control Block = 10.1.1 Accessing the PCB

Accessing the PCB

Up to 4.14

/* PID hash table linkage. */
struct task_struct *pidhash_next;
struct task_struct **pidhash_pprev;

There is a hash defined as below in include/1inux/sched.h
- #define PIDHASH_SZ (4096 >> 2)
- extern struct task_struct *pid_hash[PIDHASH_SZ];
- #define pid_hashfn(x) ((((x) >> 8) ~ (x)) & (PIDHASH SZ - 1))

10.Process Management = 10.1 Process Control Block = 10.1.1 Accessing the PCB

Accessing the PCB

Today

The hash data structure has been replaced by a radix tree.

- PIDs are replaced with Integer IDs (idr)
- 1idr is the kernel-level library for the management of small integer ID numbers

An idr is a sparse array mapping integer IDs onto arbitrary pointers. Look back at the data
structures lab.

10.Process Management = 10.1 Process Control Block = 10.1.1 Accessing the PCB

10. Process Management

The fork()/exec() model

Advanced Operating Systems and Virtualization ’ IAG

Creating a new process

To create a new process, a couple of fork() and exec*() calls should be issued. In general
new process share everything with the parent so it would be inefficient to truly copy all the
data. To overcome this the Linux kernel:

- implements the Copy-on-Write that allows both parent and child to read the same
physical pages, whenever one tries to write on a physical page the kernel copies its
content into a new physical page;

- lightweight processes allow both parent and child to share many kernel data structures,
such as the paging tables, open files struct and signals

Not every child need to share everything from the parent, for this reason right after a fork()
we can issue an exec*().

10.Process Management = 10.2 The fork()/exec() model 30

fork()

This function creates a new process. The return value is zero in the child and the process-id
number of the child in the parent, or -1 upon error.

Both processes start executing from the next instruction to the fork() call.

parent child

stack stack
fork()

heap heap

data data

text text

10.Process Management = 10.2 The fork()/exec() model 31

Processes and threads creation

fork() pthread create()
clone()
User Space
Kernel Space
sys_fork() sys_clone()
do_fork()

10.Process Management = 10.2 The fork()/exec() model

Calling sys_clone() from Userspace

Lightweight processes are created by using a function named clone().

long clone(unsigned long flags, void *child_stack, int *ptid,

int *ctid, unsigned long newtls);

When using sys_clone(), we must allocate a new stack first. By convention, userspace
memory is always allocated from userspace. Indeed, a thread of the same process share the
same address space. Also, the TLS (Thread Local Storage) must be allocated in user space, this
is architecture-dependent, thus the unsigned long type. glibc offers a uniform function but
the implementation of the syscall entry points is slightly different on every architecture.

10.Process Management = 10.2 The fork()/exec() model 33

sys_fork() and sys_clone()

SYSCALL_DEFINEO(fork)

{
return _do_fork(SIGCHLD, 0, O, NULL, NULL, 0);

SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, int
__user *, parent_tidptr, int __user *, child _tidptr, unsigned long, tls)

{

return _do_fork(clone_flags, newsp, 0, parent_tidptr,
child_tidptr, tls);

10.Process Management = 10.2 The fork()/exec() model 34

do_fork()

The do_fork() function makes use of an auxiliary function called copy_process() to set up the
process descriptor and any other kernel data structure for child’s execution. Here's the main

steps:

1. allocates a new PID, a new PCB and a new kernel stack
2. copies PCB information/data structures by using copy_process(). The information copied
depends on the passed flags. That for example are:

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
21
28
29
30
Sl
32
33
34

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CSIGNAL
CLONE_VM

CLONE_FS

CLONE_FILES
CLONE_SIGHA
CLONE_PIDFD
CLONE_PTRAC
CLONE_VFORK
CLONE_PAREN
CLONE_THREA
CLONE_NEWNS
CLONE_SYSVS
CLONE_SETTL
CLONE_PAREN
CLONE_CHILD
CLONE_DETAC
CLONE_UNTRA
CLONE_CHILD
CLONE_NEWCG
CLONE_NEWUT
CLONE_NEWIP
CLONE_NEWUS
CLONE_NEWPI
CLONE_NEWNE
CLONE_IO

0x000000ff kil
0x00000100 £¥
0x00000200 /%
0x00000400 /*

ND 0x00000800 /¥
0x00001000 /*

E 0x00002000 Vi
0x00004000 i

T 0x00008000 ki
D 0x00010000 /%
0x00020000 *

EM 0x00040000 {*
S 0x00080000 ’ il
T_SETTID 0x00100000
_CLEARTID 0x00200000
HED 0x00400000
CED 0x00800000
_SETTID 0x01000000
ROUP 0x02000000
S 0x04000000
(¢} 0x08000000
ER 0x10000000
D 0x20000000
T 0x40000000
0x80000000

set
set
set
set
set
set
set

© signal
< set

if
if
if
if
if
if
if
if

mask to be sent at exit */

VM shared between processes */

fs info shared between processes */

open files shared between processes */

signal handlers and blocked signals shared */

a pidfd should be placed in parent */

we want to let tracing continue on the child too */

the parent wants the child to wake it up on mm_release */
we want to have the same parent as the cloner */

Same thread group? */

* New mount namespace group */

share system V SEM UNDO semantics */
create a new TLS for the child */

/*
/*
/*
/*
/*

set the TID in the parent */
clear the TID in the child */
Unused, ignored */

set if the tracing process can't force CLONE PTRACE on this
set the TID in the child */
New cgroup namespace */

New utsname namespace */

New ipc namespace */

New user namespace */

New pid namespace */

New network namespace */
Clone io context */

https://elixir.bootlin.com/linux/vs.11/source/include/uapi/linux/sched.h#L 11

10.Process Management = 10.2 The fork()/exec() model

V5.11

35

https://elixir.bootlin.com/linux/v5.11/source/include/uapi/linux/sched.h#L11

do_fork() V5

2518 SYSCALL_DEFINEO(fork)

2519 {
2520 #ifdef CONFIG_MI:U Lt i 2413 /*
2521 struct kernel_clone_args args = * i ; i _ g
5 exaIsigal =gSIGcaLD, ;3}2 : Ok, this is the main fork-routine.
gggi b 2416 % It Copieslthe process, aqdlif sugcessful kigk-starts
2575 return kernel_clone(&args); 2417 * it and waits for it to finish using the VM if required.
2526 #else - 2418 § o , ,
9597 /* can not support in nommu mode */ 2419 * args->exit signal is expected to be checked for sanity by the caller.
2528 return -EINVAL; 2420 */
2529 #endif 2421 pid_t kernel_clone(struct kernel_clone_args *args)
2530 } 2422 {
2423 u64 clone_flags = args->flags;
https://elixir.bootlin.com/linux/vs.11/source/kernel/fork.c#L 2518 2424 struct completion vfork;
2425 struct pid *pid;
2426 struct task_struct *p;
2427 int trace = 0;
2428 pid_t nr;
2470
2462 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2463 add_latent_entropy();
2464
2465 if (IS_ERR(p))
2466 return PTR_ERR(p);
2474 pid = get_task_pid(p, PIDTYPE_PID);
2475 nr = pid_vnr(pid);
21A7A
4490
2497 put_pid(pid);
2498 return nr;
2499 }

https://elixir.bootlin.com/linux/vs.11/source/kernel/fork.c#l 2518

10.Process Management = 10.2 The fork()/exec() model 36

https://elixir.bootlin.com/linux/v5.11/source/kernel/fork.c#L2518

copy_process()

The function implements several checks on namespaces. Pending signals are processed
immediately in the parent process.

p = dup_task_struct(current, node);
- setup_thread stack(tsk, orig);

- copy_creds(p, clone_flags);

- copy_files(clone_flags, p);

- copy_fs(clone_flags, p);

- copy_mm(clone_flags, p); -> dup_mm()

10.Process Management = 10.2 The fork()/exec() model 37

dup_mm() YEAL

11335 /**

1336 * dup mm() - duplicates an existing mm structure

1337 * @tsk: the task struct with which the new mm will be associated.

1338 * @ldmm: the mm to duplicate.

1339 *

1340 * Allocates a new mm structure and duplicates the provided @oldmm structure

1341 * content into 1it.

1342 *

1343 * Return: the duplicated mm or NULL on failure.

1344 */

1345 static struct mm_struct *dup_mm(struct task_struct *tsk,

1346 struct mm_struct *oldmm)

1347 {

1348 struct mm_struct *mm;

1349 int err;

1350

1851 mm = allocate_mm();

1352 if (!mm)

1353 goto fail nomem;

1354

1355 memcpy (mm, oldmm, sizeof (*mm));
Allocatesanew PGD 1336

— if (!mm_init(mm, tsk, mm->user_ns))

1358 goto fail nomem;

1359

1360 err = dup_mmap (mm, oldmm);

1361 if (err)

1362 goto free_pt;

1363

1364 mm->hiwater_rss = get_mm_rss(mm);

1365 mm->hiwater_vm = mm->total_vm;

https://elixir.bootlin.com/linux/vs.11/source/kernel/fork.c#L 1345

10.Process Management = 10.2 The fork()/exec() model 8

https://elixir.bootlin.com/linux/v5.11/source/kernel/fork.c#L1345

10. Process Management
2.The fork()/exec() model

Kernel Threads

Advanced Operating Systems and Virtualization ’ IAG

Kernel Thread Creation API V5.11

L. 1 TS * ; * id x
This is seen as 1 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),

4—’i§”_____,,,————’ void *data,
any other task int node,

14 const char namefmt[], ...);
by the scheduler 15

16 /**

17 * kthread create - create a kthread on the current node

18 * @threadfn: the function to run in the thread

19 * @data: data pointer for @threadfn()

20 * @namefmt: printf-style format string for the thread name

21 * @arg...: arguments for @namefmt.

22 *

23 * This macro will create a kthread on the current node, leaving it in

24 * the stopped state. This is just a helper for kthread create on node();

5 * see the documentation there for more details.

26 */

= #define kthread_create(threadfn, data, namefmt, arg...) \

28 kthread_create_on_node(threadfn, data, NUMA_NO_NODE, namefmt, ##arg)

29

30

31 struct task_struct *kthread _create_on_cpu(int (*threadfn) (void *data),

32 void *data,

38 unsigned int cpu,

34 const char *namefmt);

https://elixir.bootlin.com/linux/vs.11/source/include/linux/kthread.h#L 2

Kthreads are always stopped upon creation, they must be activated by calling wake_up_process().

10.Process Management = 10.2 The fork()/exec() model = 10.2.1 Kernel Threads 40

https://elixir.bootlin.com/linux/v5.11/source/include/linux/kthread.h#L27

Kernel Thread Daemon

330 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),

iail void *data, int node,
332 const char namefmt[],
333 va_list args)

334 {

335 DECLARE_COMPLETION ONSTACK(done) ;

336 struct task_struct *task;

337 struct kthread_create_info *create = kmalloc(sizeof(*create),

338 GFP_KERNEL) ;

339

340 if ('create)

341 return ERR_PTR(-ENOMEM) ;

342 create->threadfn = threadfn;

343 create->data = data;

344 create->node = node;

345 create->done = &done;

346

347 spin_lock(&kthread create lock);

348 list_add_tail(&create->1list, &kthréad create list);
349 spin_unlock(&kthread create logK) ;

350

351 wake_up_process (kthreadd_task) ;

https://elixir.bootlin.com/linux/vs.11/source/kernel/kthread.c#L 330

10.Process Management = 10.2 The fork()/exec() model = 10.2.1 Kernel Threads 41

https://elixir.bootlin.com/linux/v5.11/source/kernel/kthread.c#L330

Kernel Thread Daemon

630 int kthreadd(void *unused)

631 {

632 struct task_struct *tsk = current;

633

634 /* Setup a clean context for our children to inherit. */
635 set_task_comm(tsk, "kthreadd");

636 ignore_signals(tsk);

637 set_cpus_allowed_ptr(tsk, housekeeping_cpumask (HK_FLAG_KTHREAD)) ;
638 set_mems_allowed (node_states[N_MEMORY]) ;

639

640 current->flags |= PF_NOFREEZE;

641 cgroup_init_kthreadd() ;

642

643 for (55) {

644 set_current_state(TASK_INTERRUPTIBLE) ;

645 if (list_empty(&kthread create list))

646 schedule() ;

647 __set_current_state(TASK_RUNNING) ;

648

649 spin_lock(&kthread create lock);

650 while (!list_empty(&kthread create list)) {

651 struct kthread_create_info *create;

652

653 create = list_entry(kthread create_list.next,
654 struct kthread_create_info, list);
655 list_del_init(&create->1list);

656 spin_unlock(&kthread create_lock)

657

658 create_kthread(create) ;

659

660 spin_lock(&kthread create lock);

661 }

662 spin_unlock(&kthread create lock);

663 }

664

665 return 0;

666 }

https://elixir.bootlin.com/linux/vs.11/source/kernel/kthread.c#L 630

10.Process Management = 10.2 The fork()/exec() model = 10.2.1 Kernel Threads 42

https://elixir.bootlin.com/linux/v5.11/source/kernel/kthread.c#L630

10.3

10. Process Management

Out Of Memory (OOM) Killer

Advanced Operating Systems and Virtualization ’ IAG

The OOM Killer

It is implemented in mm/oom_ki1ll.c. This module is activated (if enabled) when the system
runs out of memory.

There are three possible actions:

- kill arandom task (bad)
- let the system crash (worse)
- try to be smart at picking the process to kill

The OOM Killer picks a "good" process and kills it in order to reclaim available memory.

10.Process Management = 10.3 Out of Memory (OOM) Killer L4

The OOM Killer

Entry point of the system is out_of_memory(). It tries to select the "best" process checking for
different conditions:

if a process has a pending SIGKILL or is exiting, this is automatically picked (check done
by task_will_free_mem())
Otherwise, it issues a call to select_bad_process() which will return a process to be
killed:

the picked process is then killed

if no process is found, a panic() is raised

select_bad_process()

This iterates over all available processes calling oom_evaluate_task() on them, until a
killable process is found. Unkillable tasks (i.e., kernel threads) are skipped, oom_badness()
implements the heuristic to pick the process to be killed by computing the "score" associated
with each process, the higher the higher the score the higher the probability of getting killed.

oom_badness()
A score of zero is given if:

- thetaskis unkillable
- the mm field is NULL
- if the process is in the middle of a fork

The score is then computed proportionally to the RAM, swap, and pagetable usage:

points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
mm_pgtables_bytes(p->mm) / PAGE_SIZE;

10.Process Management = 10.3 Out of Memory (OOM) Killer JAS)

10.4

10. Process Management

Process Starting

Advanced Operating Systems and Virtualization ’ IAG

How a Program is Started?

We all know how to compile a program:
gcc program.c -0 program

We all know how to launch the compiled program:
./program

The question is: why does all this work? What is the convention used between kernel and user
space?

48

10.Process Management = 10.4 Process Starting

In the beginning there was init

kernel
init
getty getty getty getty getty getty gdm/kdm
login login login login login login X
bash bash bash bash bash bash gnome/kde

10.Process Management = 10.4 Process Starting

49

Starting a program from bash

static int execute_disk _command (char *command, int pipe_in,
int pipe _out, int async,
struct fd _bitmap *fds_to close) {
pid_t pid;
pid = make_child (command, async);

if (pid == 0) {
shell_execve (command, args, export_env);

}

From the bash shell source - https://github.com/bminor/bash/blob/master/execute_cmd.c

10.Process Management = 10.4 Process Starting 50

https://github.com/bminor/bash/blob/master/execute_cmd.c

Starting a program from bash

pid_t make_child (char *command, int async_p) {
pid_t pid;
int forksleep;
start_pipeline();
forksleep = 1;
while ((pid = fork ()) < 0 && errno == EAGAIN && forksleep < FORKSLEEP_MAX) {
sys_error("fork: retry");

reap_zombie_children();

if (forksleep > 1 && sleep(forksleep) != 0)
break;

forksleep <<= 1;

}
[* ... */
return (pid);

https://qgithub.com/bminor/bash/blob/f3a35a2d601a55f337f8ca02a541f8c033682247/jobs.c#L.2132

10.Process Management = 10.4 Process Starting 51

https://github.com/bminor/bash/blob/f3a35a2d601a55f337f8ca02a541f8c033682247/jobs.c#L2132

Starting a program from bash

int shell_execve (char *command, char **args, char **env) {
execve (command, args, env);

READ_SAMPLE_BUF (command, sample, sample_len);

if (sample_len == 0)
return (EXECUTION_SUCCESS);

if (sample_len > 0) {
if (sample_len > 2 && sample[0] == '"#' && sample[1] == "!")
return (execute_shell_script(sample, sample_len, command, args, env));
else if (check _binary file (sample, sample_len)) {
internal_error (_("%s: cannot execute binary file"), command);
return (EX_BINARY_FILE);

} Y /* These are extern so execute_simple_command can set them, and then
' longjmp back to main to execute a shell script, instead of calling
} main () again and resulting in indefinite, possibly fatal, stack
growth. */
longjmp(subshell_top_level, 1); procenv_t subshell_top_level; https://github.com/bminor/bash/blob/master/shell.c

https://github.com/bminor/bash/blob/f3azza2d6o1as5f337f8cao2as41f8c033682247/execute cmd.c#l 5794

10.Process Management = 10.4 Process Starting 52

https://github.com/bminor/bash/blob/f3a35a2d601a55f337f8ca02a541f8c033682247/execute_cmd.c#L5794
https://github.com/bminor/bash/blob/master/shell.c

exec*

exec*() changes the program file that an existing process is running:

- it first wipes out the memory state of the calling process
- itthen goes to the filesystem to find the program file requested

- it copies this file into the program's memory and initializes register state, including the
PC

- It doesn't alter most of the other fields in the PCB. The process calling exec*() (the child
copy of the shell, in this case) can, e.g., change the opened files

Let's see how exec*() is implemented.

10.Process Management = 10.4 Process Starting

53

struct linux_binprm

The struct linux_binprmisin charge of keeping information about a binary file.

struct linux_binprm {
char buf[BINPRM BUF_SIZE];
struct page *page[MAX_ARG_PAGES];
unsigned long p; /* current top of mem */
int sh_bang;
struct file* file;
int e _uid, e _gid;
kernel_cap_t cap_inheritable, cap_permitted, cap_effective;
int argc, envc;
char *filename; /* Name of binary */
unsigned long loader, exec;

https://elixir.bootlin.com/linux/vs.11/source/include/linux/binfmts.h#L17

10.Process Management = 10.4 Process Starting 54

https://elixir.bootlin.com/linux/v5.11/source/include/linux/binfmts.h#L17

In kernel 5.11 do_execve_atcommon()

d O exe‘ ve () https://elixir.bootlin.com/linux/vs.11/source/fs/exec.c#L 1855
/

int do_execve(char *filename, char **argv, char **envp, struct pt_regs *regs) {
struct linux_binprm bprm;
struct file *file;
int retval;
int {;

— file = open_exec(filename);

retval = PTR_ERR(file);
if (IS_ERR(file))
return retval;

bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
—+ memset(bprm.page, 0, MAX_ARG_PAGES*sizeof(bprm.page[0]));
bprm.file = file;
bprm.filename = filename;
bprm.sh_bang = 0; count(argv, max) counts
bprm.loader = 0; the number of strings
bprm.exec = 0;
— 1f ((bprm.argc = count(argv, bprm.p / sizeof(void *))) < 0) {
allow write _access(file);
fput(file);
return bprm.argc;

10.Process Management = 10.4 Process Starting

55

https://elixir.bootlin.com/linux/v5.11/source/fs/exec.c#L1855

do execveg)
- if ((bprm.envc = count(envp, bprm.p / sizeof(void *))) < 0) {
allow_write_access(file);
fput(file);
return bprm.envc;

}

retval = prepare_binprm(&bprm);
if (retval < 0)
goto out;

retval = copy_strings_kernel(1, &bprm.filename, &bprm);
if (retval < 0)
goto out;

bprm.exec = bprm.p;
retval = copy_strings(bprm.envc, envp, &bprm);
if (retval < 0)

goto out;

retval = copy_strings(bprm.argc, argv, &bprm);
if (retval < 0)
goto out;

—— retval = search_binary_handler(&bprm,regs);
if (retval >= 0)
/* execve success */
return retval;

10.Process Management = 10.4 Process Starting 56

do_execve()

out:
/* Something went wrong, return the inode and free the argument pages*/
allow write_access(bprm.file);
if (bprm.file)
fput(bprm.file);

for (1 = 0 ; 1 < MAX_ARG_PAGES ; i++) {
struct page * page = bprm.page[i];
if (page)

) __free_page(page);

return retval;

10.Process Management = 10.4 Process Starting 57

search_binary_handler()

The function scans a list of binary file handlers registered in the kernel. If no handler is able to
recognize the image format, syscall returns the ENOEXEC error (“"Exec Format Error”).

For ELF files we have in fs/binfmt_elf.c:

- load_elf_binary(), the function:
- loads image file to memory using mmap;
- reads the program header and sets permissions accordingly

- elf_ex = *((struct elfhdr *)bprm->buf);

10.Process Management = 10.4 Process Starting 58

10.4.1

10. Process Management
4. Process Starting

The ELF Format

Advanced Operating Systems and Virtualization ’ IAG

ELF: Executable and Linking Format

The Executable and Linking Format was originally developed and published by UNIX System
Laboratories (USL) as part of the Application Binary Interface (ABI). The Tool Interface
Standards committee (TIS) has selected the evolving ELF standard as a portable object file

format that works on 32-bit Intel Architecture environments for a variety of operating
systems.

The ELF standard is intended to streamline software development by providing developers
with a set of binary interface definitions that extend across multiple operating environments.
This should reduce the number of different interface implementations, thereby reducing the
need for recoding and recompiling code.

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format 60

The Compiling Process

/

Makefile J

!

User-created files
\

Make

Archive (ar)

-

37
Y 1

—

C/C++ Sources
And Headers

Assembly
Sources

J

v

Linker
Script
File

compiler

v
Dreprocessor |
¥

assembler |

v

_ﬂ Object File J

v

Linker

p

Library File JT_H

v

Shared
Object

J

Relocatable
File

Executable
File

J

Link Map
File

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format

ELF Format

ELF defines the format of binary executables. There are four different categories:

- Relocatable, created by compilers and assemblers. Must be processed by the linker
before being run.

- Executable, all symbols are resolved, except for shared libraries’ symbols, which are
resolved at runtime.

- Shared object, a library which is shared by different programs, contains all the symbols
information used by the linker, and the code to be executed at runtime.

- Core file, a core dump.

1

ELF files have a twofold nature

- compilers, assemblers and linkers handle them as a set of logical sections;
- the system loader handles them as a set of segments.

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format

ELF Format

Relocatable File Executable File
ELF Header
(optional, ignored) Program Describes segments
Header
. / A
Sections < > Segments
N /
Describes Secti> pection ional, i d
Header (optional, ignored)

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format

63

ELF™a Linux executable walkthroug

DISSECTED FILE

.‘\ / HEADE{JBW

TECHYC
CENTIRCA

fory

SECTION

CONTENTS OF THE E BLE

SMPLEARM

HEADER”

0 [OR EX

https://upload.wikimedia.org/wikipedia/commons/e/e4/ELF Executable and

ELF HEADER

o=

PROGRAM H'EIAP‘E'E TABLE

CODE

Sy

DATA

SR8 LI

SECTIONS NAMES

SECTONHEADER TABLE

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format

HEXADECIMAL Dt

ANGE ALBERTIN fg
CORKAM.COM

ASCI DUMP

FELDS VALUES EXPLAMATION
1 e_igent
EI_MAG ex7F, “ELF
34 Of 1 W1
@0 80 89 €0 09 B8 LELF.. bttt ;
4060 08 08 ..(I
34 20 28 8@ oxél
94 08 e
o
ONR THE TABLE
Ry
5 Mo e 000 @ LAD
@1 09 B@ 90 00 08 60 88 00 00 20 e OACED
96 08 pe ae @5 8@ @9 B¢ 80 @0 09 B0 exse ae OADED
pfilesz ex98
ARM ASSEMBLY EQUIVALENT C CODE
nov 12,
T mid e P a0 i, pe, 020
£ £3 1 18 6F E2'B1 40 AR E3 ©1 70 AB E3 bt
96 69 Be EF 81 80 AB E3 ©! 70 AD E3 B e @9 EF svea ~write(sTOOUT FILEND, “Wello MorTdl\n", TenCHello World]\n));
nov
nov 7, 3)
sve o cedindh:
‘ STRNGS
SECTION NAMES
shrtrtab rodata
8605 b0 90 60 08 60 88 09 90 @0 08 B0 6P 90 68 . -
8 09 Be @9 @0 09 ©0 9B 3 88 6D BE B2 80 0Y 6O SECTION HEADER TABLE
88 08 60 89 00 09 80 9B (60 4 6 0¢ | ol g
86 09 B0 80 68 3 €0 08 20 @0 08 8@ 2 e
80 98 P 80 9C 92 €0 9P 9O 26 09 0@ B @0 99 P8 6
1 08 @ @8 82 20 o0 9@ 82 @e 9@ es 2
60 9 66 00 B3 80 @0 06 09 86 08 68
88 03 B0 @0 0P 09 80 8B ©l 40 o8 ¢
6 68 60 ap @0 0d @0 6B 9 06 09 B9
88 68 60 39 @0 93 @0 9B 98 88 6B Be BA 00 09 60

Linkable Format diagram by Ange Albertini.png

https://upload.wikimedia.org/wikipedia/commons/e/e4/ELF_Executable_and_Linkable_Format_diagram_by_Ange_Albertini.png

Relocatable File

A relocatable file or a shared object is a collection of sections. Each section contains a single

kind of information, such as executable code, read-only data, read/write data, relocation
entries, or symbols.

Each symbol’s address is defined in relation to the section which contains it. For example, a
function’s entry point is defined in relation to the section of the program which contains it.

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format 65

Section Header

typedef struct {
ELf32_Word sh_name; /* Section name (string tbl index) */
ELf32_Word sh_type; /* Section type */
ELf32_Word sh_flags; /* Section flags */
ELf32_Addr sh_addr; /* Section virtual addr at execution */
ELf32_Off sh_offset; /* Section file offset */
ELf32 _Word sh_size; /* Section size in bytes #*/
ELf32_Word sh_link; /* Link to another section */
ELf32_Word sh_info; /* Additional section information */
ELf32 _Word sh_addralign; /* Section alignment */
ELf32_Word sh_entsize; /* Entry size if section holds table #*/
} E1f32_Shdr;

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format 66

Section Header
Types and Flags

Types:
- PROGBITS: The section contains the program content (code, data, debug information).
- NOBITS: Same as PROGBITS, yet with a null size,
- SYMTAB and DYNSYM: The section contains a symbol table.
- STRTAB: The section contains a string table.
- REL and RELA: The section contains relocation information.
- DYNAMIC and HASH: The section contains dynamic linking information.

Flags:
- WRITE: The section contains runtime-writeable data.

- ALLOC: The section occupies memory at runtime.
- EXECINSTR: The section contains executable machine instructions.

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format

Sections
Examples

- .text: contains program’s instructions
- Type: PROGBITS
- Flags: ALLOC + EXECINSTR

- .data: contains pre-initialized read/write data
- Type: PROGBITS
- Flags: ALLOC + WRITE

.rodata: contains pre-initialized read-only data
- Type: PROGBITS
- Flags: ALLOC

- .bss: contains uninitialized data. Will be set to zero at startup.
- Type: NOBITS
- Flags: ALLOC + WRITE

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format 68

Executable Files

Usually, an executable file has only few segments:

- Aread-only segment for code.
- Aread-only segment for read-only data.
- Aread/write segment for other data.

Any section marked with flag ALLOC is packed in the proper segment, so that the operating
system is able to map the file to memory with few operations.

If .data and .bss sections are present, they are placed within the same read/write segment.

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format 69

Program Header

typedef struct {
ELf32_Word p_type; /* Segment type */
ELf32_Off p_offset; /* Segment file offset */
ELf32_Addr p_vaddr; /* Segment virtual address */
ELf32_Addr p_paddr; /* Segment physical address */
ELf32 _Word p_filesz; /* Segment size in file #*/
ELf32 _Word p_memsz; /* Segment size in memory */
ELf32_Word p_flags; /* Segment flags */
ELf32_Word p_align; /* Segment alignment */

} E1f32_Phdr;

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format

Linker’s Role

ELF Header
- ELF Header
Section 1
Section 2 \ Prog. Header Table
Section n Segment 1
Sec. Header Table ST o
Relocatable File 1
Segment 3
ELF Header
: Executable File
Section 1
Section 2
Section n
Sec. Header Table

Relocatable File 2

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format 71

Static Re I ocatio n info tells you the index in the symbol

table and the type of the symbol

1 text section /
(1) o o o "
1bcl: €800 00 00 00 (call 2??2) offset info addend
1bc6: 83 c4 10 add $0x10, %rsp @ a
’ 1bc2 B /off 4
1bc9: a1[00 @0 00 00 (movb 0x0, %eax) ¢ o
2 () 2
@ 1bca 1/ addr 0
2bd7: |55 push %rbp
2bd8: 48 89 e5 mov %rsp, %rbp .text.rela table
] - value is the address in the section
E ata section L
732e 6d79 6174 0062 732e 7274 6174 0062 name value section
732e 7368 7274 6174 0062 742e 7865 0074
@1 2bd7 text
642e 7461 0061 622e 7373 6174 0062 7865
® 5 812f data
I string table \ symbol table
““foo'wmy _ wvar'™ _ . _ _
(@) B) name is the position of the name in the string table

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format 72

Symbols Visibility

A symbol can be:

strong, a strong symbol replaces a weak one and if two strong symbols have the same
name the linker resolves in favour of the first; by default every symbol is strong

weak, more modules can have a symbol with the same name of a weak one, the
declared entity cannot be overloaded by other modules; It is useful for libraries which
want to avoid conflicts with user programs.

gcc version 4.0 gives the command line option -fvisibility:

default: normal behaviour, the symbol is seen by other modules;

hidden: two declarations of an object refer the same object only if they are in the same
shared object;

internal: an entity declared in a module cannot be referenced even by pointer;

protected: the symbol is weak;

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format 73

Symbols Visibility

int variable __ attribute ((visibility (“hidden™)));

#pragma GCC visibility push(hidden)

int variable;
Set the default declaration as

int increment(void) { hidden in the scope

return ++variable;

}
#pragma GCC visibility pop

10.Process Management = 10.4 Process Starting = 10.4.1 The ELF Format 74

10.4.2

10. Process Management
4. Process Starting

Dynamic Linking

Advanced Operating Systems and Virtualization ’ IAG

Program Entry Point

The main() function is not the actual entry point for the program. glibc inserts auxiliary
functions. The actual entry point is called _start.

The Static Relocation works at linking time but you obviously do not want to include all the
libraries that you use in your program in your executable file, this because eats up memory
and almost all the programs use the same set of libraries (e.g. the stdlib). Symbols that are not
included in the final executable file are resolved with the Dynamic Linking that is performed
by the kernel when the program starts.

The Kernel starts the dynamic linker which is stored in the .interp section of the program
(usually /1ib/1ld-1inux.so.2). If no dynamic linker is specified, control is given at address
specifiedin e_entry.

10.Process Management = 10.4 Process Starting = 10.4.2 Dynamic Linking

Dynamic Linking

Initialization steps:

Self initialization

Loading Shared Libraries
Resolving remaining relocations
Transfer control to the application

The most important data structures which are filled are:
- Procedure Linkage Table (PLT), used to call functions whose address isn't known at link
time
- Global Offsets Table (GOT), similarly used to resolve addresses of data/functions

10.Process Management = 10.4 Process Starting = 10.4.2 Dynamic Linking

Dynamic Linking
Data Structures
- .dynsym: a minimal symbol table used by the dynamic linker when performing
relocations
- .hash: a hash table that is used to quickly locate a given symbol in the .dynsym, usually

in one or two tries.
- .dynstr: string table related to the symbols stored in .dynsym

These tables are used to fill the GOT table, that is populated upon need (lazy binding).

10.Process Management = 10.4 Process Starting = 10.4.2 Dynamic Linking

Dynamic Linking
Steps
The first PLT entry is special. Other entries are identical, one for each function needing

resolution.
A jump to a location which is specified in a corresponding GOT entry

1.
2. Preparation of arguments for a resolver routine
3. Calltothe resolver routine, which resides in the first entry of the PLT

The first PLT entry is a call to the resolver located in the dynamic loader itself.

10.Process Management = 10.4 Process Starting = 10.4.2 Dynamic Linking

Dynamic Linking
Steps

When func is called for the first time:

1. PLT[n]is called, and jumps to the address
pointed to it in GOT[n]

2. This address points into PLT[n] itself, to
the preparation of arguments for the

Code:

call func@PLT

resolver. COT:
3. Theresolver is then called, by jumping to PLT: it
— 0]: P <zddr>
PLT[O] PL:EEi resolver

4. The resolver performs resolution of the

PLT[n]: -

actual address of func, places its actual o ST
. prepare resolver
address into GOT[n] and calls func. jmp PLT[0]

10.Process Management = 10.4 Process Starting = 10.4.2 Dynamic Linking

Dynamic Linking
Steps after the first resolution

Code:

call func@PLT

PLL:

PLT[O]:

call resalver

PLT[n]: -

jmp *GOT[n]
prepare resalver
Jmp PLT[O]

10.Process Management = 10.4 Process Starting = 10.4.2 Dynamic Linking

10. Process Management
4. Process Starting

Initial Steps of Programs’ Life

Advanced Operating Systems and Virtualization ’ IAG

Initial Steps

So far the dynamic linker has loaded the shared libraries in memory. GOT is populated when
the program requires certain functions. Then, the dynamic linker calls _start

Suggested by ABI to mark outermost frame
< _start>: *///”’,,,,—f””’/’/’
xor %ebpM the pop makes argc go into %esi
pop %esi

mov %esp, %ecx <~ Y%espisnow pointing at argv. The mov puts argv

and $OxFFfffffo, %esp into %ecx without moving the stack pointer
push %eax ‘*\\\\\\\ . . .
push %esp Align the stack pointer to a multiple of 16 bytes

push %edx

push $0x8048600

push $0x8048670

push %ecx

push %esi

push $0x804841c ,/
call 8048338 <__libc_start_main>

me—ow
nop This instruction should never be executed

repare parametersto __libc_start_main %eax is
. Prepare p tersto __libc_start %
garbage, to keep the alignment

10.Process Management = 10.4 Process Starting = 10.4.3 Initial Steps of Programs’ Life

Userspace Life of a Program

loader
preinitarrayl..n _start
_ libe_start_main
_ libe_csu_init main exit
3 3
A A
_init initarrayl..n at_exitl..n finiarrayl..n destructorl..n
Y \
A
__gmon_start__ frame_dummy __do_global_ctors_aux
A
A

constructorsl..n

10.Process Management = 10.4 Process Starting = 10.4.3 Initial Steps of Programs’ Life

Stack Layout at Program Startup

local variables of main
saved registers of main

return address of main
argc
argv
envp

main()

__libc_start_main()

stack from startup code

argc
argv pointers

NULL that ends argv][]

environment pointers

NULL that ends envpl[] kernel
ELF Auxiliary Table

argv strings

environment strings

program name

NULL

10.Process Management = 10.4 Process Starting = 10.4.3 Initial Steps of Programs’ Life

Advanced Operating Systems and
Virtualization

[10] Process Management

LECTURER
Gabriele Proietti Mattia

BASED ON WORK BY

http://www.ce.uniroma?2.it/~pellegrini/

gpm.name - proiettimattia@diag.uniromaz.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

