
Department of Computer,
Control and Management
Engineering “A. Ruberti”,
Sapienza University of Rome

Advanced Operating Systems
and Virtualization

[11] Scheduling

Gabriele Proietti Mattia

gpm.name · proiettimattia@diag.uniroma1.it A.Y. 2020/2021 · v2

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it

11. Scheduling

Outline
1. Introduction
2. Priorities and Weights
3. Scheduler Core

1. Wait Queues
2. Scheduler Entry Point
3. Scheduler Algorithms

4. Context Switch

2

Introduction

11.1

Advanced Operating Systems and Virtualization

11. Scheduling

Process Scheduling

11.Scheduling ⇒ 11.1 Introduction

Like every time sharing system, Linux achieves the effect of an apparent simultaneous
execution of multiple processes by switching from one process to another in a very short time
frame.

The scheduling policy is concerned with when to switch and which process to choose. The
scheduling algorithm of traditional Unix operating systems must fulfill several conflicting
objectives:

- fast process response time
- good throughput for background jobs
- no starvation
- reconciliation of the needs of low- and high- priority processes and so on

4

Linux Scheduling
Linux Scheduling is based on the time sharing technique: several processes run in “time
multiplexing” because the CPU is divided into slices, one for each runnable process. Obviously
one CPU can run only one process at a given instant, therefore when the currently running
process is not terminated when its time slice or quantum expires, a process switch may take
place.

Time sharing relies on timer interrupts and is thus transparent to process, no additional code
needs to be inserted in the programs to ensure CPU time sharing.

The developing history of Linux has seen different scheduling algorithms.

511.Scheduling ⇒ 11.1 Introduction

Priorities and Weights

11.2

Advanced Operating Systems and Virtualization

11. Scheduling

Priority
In Linux, process priority is dynamic. The scheduler keeps track of what processes are doing
and adjusts their priorities periodically. In this way, processes that have been denied the use
of CPU for a long time interval are boosted by dynamically increasing their priority (and vice
versa). Process in general are:

- CPU Bound, if require a lot of cpu time
- I/O Bound, if require a lot of I/O operations

Or, according to another classification:

- interactive, if they interact a lot with the user, therefore they spend much time waiting
for keystrokes and mouse operations; these processes must be very responsive

- batch, if they do not need user interaction, since they run in background
- real-time, they have to follow strict scheduling requirements, they should be never

blocked by a lower priority process (e.g. video, sound applications)

The Linux scheduler allows only to define real-time processes.

711.Scheduling ⇒ 11.2 Priorities and Weights

Nice and RT

11.Scheduling ⇒ 11.2 Priorities and Weights

Unix demands for priority based scheduling. To each process is associated a “nice” number in
[-20, 19]:

- the higher the nice, the lower the priority
- this tells how nice a process is towards others

There is also the notion of "real time" processes

- Hard real time: bound to strict time limits in which a task must be completed (not
supported in mainstream Linux)

- Soft real time: there are boundaries, but don't make your life depend on it. Examples:
burning data to a CD ROM, VoIP

8

Priorities
In Linux, real time priorities are in [0, 99]. Here higher value means lower priority.
Implemented according to the Real-Time. Extensions of POSIX.

Both nice and rt priorities are mapped to a single value in [0, 139] in the kernel:

- 0 to 99 are reserved to rt priorities
- 100 to 139 for nice priorities (mapping exactly to [-20, 19])

Priorities are defined in include/linux/sched/prio.h

911.Scheduling ⇒ 11.2 Priorities and Weights

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.

Priorities

1011.Scheduling ⇒ 11.2 Priorities and Weights

Macros

#define MAX_NICE 19

#define MIN_NICE -20

#define NICE_WIDTH (MAX_NICE - MIN_NICE + 1)

#define MAX_USER_RT_PRIO 100

#define MAX_RT_PRIO MAX_USER_RT_PRIO

#define MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH)

#define DEFAULT_PRIO (MAX_RT_PRIO + NICE_WIDTH / 2)

ps -eo pid,rtprio,cmd ('-' = no realtime)

chrt -p pid

chrt -p prio pid

Priorities
/*
* Convert user-nice values [-20 ... 0 ... 19]
* to static priority [MAX_RT_PRIO..MAX_PRIO-1],
* and back.
*/
#define NICE_TO_PRIO(nice) ((nice) + DEFAULT_PRIO)
#define PRIO_TO_NICE(prio) ((prio) - DEFAULT_PRIO)

/*
* 'User priority' is the nice value converted to something we
* can work with better when scaling various scheduler parameters,
* it's a [0 ... 39] range.
*/
#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))

1111.Scheduling ⇒ 11.2 Priorities and Weights

There are several fields for representing the priority in the task_struct:

- static_prio (static): priority given “statically” by a user (and mapped into kernel’s
representation);

- normal_priority (dynamic): based on static_prio and scheduling policy of a process:
tasks with the same static priority that belong to different policies will get different
normal priorities. Child processes inherit the normal priorities from their parent
processes when forked;

- prio (dynamic): it is the priority considered by the scheduler, it changes over the
process execution keeping track CPU bound processes to penalize, and I/O bound
processes to boost;

- rt_priority (static): the realtime priority for realtime tasks in [0, 99].

*static means that is assigned at process startup but then it can be changed by issuing a
system call, dynamic means that the scheduler recomputes it during the process execution

Priorities in task_struct

1211.Scheduling ⇒ 11.2 Priorities and Weights

Computing prio
In kernel/sched/core.c

p->prio = effective_prio(p);

1311.Scheduling ⇒ 11.2 Priorities and Weights

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/core.c#L1662

v5.11

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/core.c#L1642

Policy is SCHED_DEADLINE

Policy is SCHED_FIFO/RR

Check if p->prio > 100

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/core.c#L1662

Load weights
The importance of a task is not only described by the priority, but also by a load weight, used
to scale the time slice assigned to a scheduled process. The weight can be found in:

task_struct->se->load (of type struct load_weight)

1411.Scheduling ⇒ 11.2 Priorities and Weights

https://elixir.bootlin.com/linux/v5.11/source/include/linux/sched.h#L327

v5.11

https://elixir.bootlin.com/linux/v5.11/source/include/linux/sched.h#L327

Load Weights

1511.Scheduling ⇒ 11.2 Priorities and Weights

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/core.c

nice = 19

v5.11

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/core.c

Load weights

1611.Scheduling ⇒ 11.2 Priorities and Weights

Two tasks running at nice 0 (weight 1024):

→ Both get 50% of time: 1024/(1024+1024) = 0.5

Task 1 is moved to nice -1 (priority boost):

→ T1: 1277/(1024+1277) ≈ 0.55
→ T2: 1024/(1024+1277) ≈ 0.45 (10% difference)

Task 2 is then moved to nice 1 (priority drop):

→ T1: 1277/(820+1277) ≈ 0.61
→ T2: 820/(820+1277) ≈ 0.39 (22% difference)

Examples

Conclusions
Therefore for now we introduced that for a scheduling process we need:

- a set of dynamic and static priorities
- a load weight

1711.Scheduling ⇒ 11.2 Priorities and Weights

Scheduler Core

11.3

Advanced Operating Systems and Virtualization

11. Scheduling

Scheduling Classes/Policies
Every Linux process is always scheduled according to one of the following scheduling classes.
The policy is described in task_struct->policy:

- SCHED_NORMAL (also called SCHED_OTHER), conventional time-shared process, in general
has a soft priority mechanism over the 'nice' range of -20 to +19 (static priority of
100-139) which decides according to the priority which task goes first, and how much
timeslice it gets. This system dynamically alters the priority to allow interactive tasks to
go first, and is designed to prevent starvation of lower priority tasks with an expiration
policy

- SCHED_RR, is a fixed real time policy over the static range of 0-99 where a lower number
(higher priority) task will repeatedly go ahead of _any_ tasks lower priority than itself. It
is called RR because if multiple tasks are at the same priority it will Round Robin between
those tasks

- SCHED_FIFO, is a fixed real time policy the static range of 0-99 where a lower number
(higher priority) task will repeatedly go ahead of _any_ tasks with lower priority than
itself. Unlike RR, if a task does not give up the cpu it will run indefinitely even if other
tasks are the same static priority as itself.

1911.Scheduling ⇒ 11.3 Scheduler Core

Scheduling Classes/Policies
Every Linux process is always scheduled according to one of the following scheduling classes:

- SCHED_BATCH, does not preempt nearly as often as regular tasks would, thereby allowing
tasks to run longer and make better use of caches but at the cost of interactivity. This is
well suited for batch jobs.

- SCHED_IDLE, even weaker than SCHED_BATCH
- SCHED_DEADLINE, implementation of the Earliest Deadline First (EDF) scheduling

algorithm, augmented with a mechanism (called Constant Bandwidth Server, CBS) that
makes it possible to isolate the behavior of tasks between each other. CBS has been
replaced with Greedy Reclamation of Unused Bandwidth (GRUB) from kernel 4.13.

2011.Scheduling ⇒ 11.3 Scheduler Core

Scheduling Classes
For each scheduling class/policy a set
of standard function is defined as
follows, in this way in order to schedule
a task the scheduler core uses always
the same set of APIs. We have:
- enqueue_task(…) Called when a task enters a runnable state. It

puts the scheduling entity (task) into the red-black tree and
increments the nr_running variable.

- dequeue_task(…) When a task is no longer runnable, this function
is called to keep the corresponding scheduling entity out of the
red-black tree. It decrements the nr_running variable.

- yield_task(…) This function is basically just a dequeue followed by
an enqueue, unless the compat_yield sysctl is turned on; in that
case, it places the scheduling entity at the right-most end of the
red-black tree.

- check_preempt_curr(…) This function checks if a task that
entered the runnable state should preempt the currently running
task.

- pick_next_task(…) This function chooses the most appropriate
task eligible to run next.

- set_curr_task(…) This function is called when a task changes its
scheduling class or changes its task group.

- task_tick(…) This function is mostly called from time tick
functions; it might lead to process switch. This drives the running
preemption.

2111.Scheduling ⇒ 11.3 Scheduler Core

https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html?highlight=sched_normal#scheduling-classes - https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/sched.h#L1814

Run-queue

https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html?highlight=sched_normal#scheduling-classes
https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/sched.h#L1814

Overview
Scheduling can be activated in 2 ways: when a task goes to sleep (or yield the CPU) or by a
periodic mechanism.

2211.Scheduling ⇒ 11.3 Scheduler Core

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.

Scheduler Code Organization
General code base and specific scheduler classes are found in kernel/sched/

- core.c: the common codebase

- fair.c: implementation of the basic scheduler (CFS: Completely Fair Scheduler), it
implements SCHED_NORMAL, SCHED_BATCH and SCHED_IDLE

- rt.c: the real-time scheduler implements SCHED_FIFO and SCHED_RR

- idle_task.c: generic entry points for the idle threads and implementation of the idle
task scheduling class (not related to SCHED_IDLE) for scheduling the idle task (i.e.
do_idle)

2311.Scheduling ⇒ 11.3 Scheduler Core

Run Queues
The central data structure of the core scheduler that is used to manage active processes is
known as run queue. Each CPU has its own run queue, and each active process appears on just
one run queue.

2411.Scheduling ⇒ 11.3 Scheduler Core

struct rq {
unsigned int nr_running;
#define CPU_LOAD_IDX_MAX 5
unsigned long cpu_load[CPU_LOAD_IDX_MAX];

/* capture load from all tasks on this cpu */
struct load_weight load;
struct cfs_rq cfs;
struct rt_rq rt;
struct task_struct *curr, *idle;
u64 clock;

/* cpu of this runqueue */
int cpu;

}

Number of runnable processes in the
queue

Current load on the queue

Sub-runqueues for the cfs
and the rt schedulers

The clock of the current
run queue is updated

each time the Periodic
Scheduler is called

Pointers to the current
running process and to the
idle process to schedule
when there is no other
process to schedule

Past values of CPU load

Run Queues
DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);

#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))

#define this_rq() this_cpu_ptr(&runqueues)

#define task_rq(p) cpu_rq(task_cpu(p))

#define cpu_curr(cpu) (cpu_rq(cpu)->curr)

2511.Scheduling ⇒ 11.3 Scheduler Core

Wait Queues

11.3.1

Advanced Operating Systems and Virtualization

11. Scheduling
3. Scheduler Core

Wait Queues
Defined in include/linux/wait.h Wait Queues implement conditional waits on events: a
process wishing to wait for a specific event places itself in the proper wait queue and
relinquishes control. Therefore a wait queue represents a set of sleeping processes, which are
woken up by the kernel when some condition becomes true.

Wait Queues changed many times in the history of the kernel. In the earlier version they
suffered from the "Thundering Herd" performance problem.

2711.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.1 Wait Queues

Wait Queues

2811.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.1 Wait Queues

Taken from 1999 Mindcraft study on Web and File Server Comparison

Thundering Herd Effect

Wait Queues
#define WQ_FLAG_EXCLUSIVE 0x01

struct wait_queue_entry {

unsigned int flags;

void *private;

wait_queue_func_t func;

struct list_head entry;

};

struct wait_queue_head {

spinlock_t lock;

struct list_head head;

};

typedef struct wait_queue_head wait_queue_head_t;

2911.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.1 Wait Queues

https://elixir.bootlin.com/linux/v5.11/source/include/linux/wait.h

For solving the Thundering Herd problem the
kernel defines two kinds of sleeping processes:

- exclusive, are selectively woken up by the
kernel

- non-exclusive, are always woken up by
the kernel

Specifies how waking up the sleeping process

https://elixir.bootlin.com/linux/v5.11/source/include/linux/wait.h

Wait Queues

- static inline void init_waitqueue_entry(struct wait_queue_entry *wq_entry,
struct task_struct *p)

- static inline void wait_event_interruptible(wq_head, condition) - sleep until a
condition gets true

- static inline void wait_event_interruptible_timeout(wq_head, condition,
timeout) - sleep until a condition gets true or a timeout elapses

- static inline void wait_event_hrtimeout(wq_head, condition, timeout)

- static inline void wait_event_interruptible_hrtimeout(wq, condition, timeout)

3011.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.1 Wait Queues

APIs

https://elixir.bootlin.com/linux/v5.11/source/include/linux/wait.h

https://elixir.bootlin.com/linux/v5.11/source/include/linux/wait.h

Wait Queues

3111.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.1 Wait Queues

Adding entry to a wait queue

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/wait.c#L18

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/wait.c#L29

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/wait.c#L18
https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/wait.c#L29

Wait Queues

3211.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.1 Wait Queues

Removing entry from a wait queue

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/wait.c#L51

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/wait.c#L51

Wait Queues

3311.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.1 Wait Queues

Tasks organization

Wait Queues

3411.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.1 Wait Queues

APIs (2)

These functions wake up TASK_NORMAL = TASK_INTERRUPTIBLE + TASK_UNINTERRUPTIBLE

- wake_up(x)
- wake_up_nr(x, nr)
- wake_up_all(x)
- wake_up_locked(x)
- wake_up_all_locked(x)

These instead only TASK_INTERRUPTIBLE

- wake_up_interruptible(x)
- wake_up_interruptible_nr(x, nr)
- wake_up_interruptible_all(x)
- wake_up_interruptible_sync(x)

Scheduler Entry Point

11.3.2

Advanced Operating Systems and Virtualization

11. Scheduling
3. Scheduler Core

Overview
Scheduling can be activated in 2 ways: when a task goes to sleep (or yield the CPU) or by a
periodic mechanism.

3611.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.2 Scheduler Entry Point

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley & Sons, 2010.

Scheduler Main Functions
The main functions used by the scheduler are:

3711.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.2 Scheduler Entry Point

Bovet, Daniel P., and Marco Cesati. Understanding the Linux Kernel: from I/O ports to process management. " O'Reilly Media,
Inc.", 2005.

Scheduler Entry Point

11.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.2 Scheduler Entry Point

The entry point for the scheduler is schedule(void) in kernel/sched.c. This is called from
several places in the kernel:

- Direct Invocation: an explicit call to schedule() is issued
- Lazy Invocation: some hint is given to the kernel indicating that schedule() should be

called soon (see need_resched)

These invocations can be triggered by the Main Scheduler or the Periodic Scheduler.

In general schedule() entails 3 distinct phases, which depend on the scheduler
implementation:

1. some checks on the current process (e.g., with respect to signal processing)
2. selection of the process to be activated
3. context switch

38

Periodic Scheduler
The function scheduler_tick() is
called from update_process_times(),
called at every tick of the current CPU
(remind the Time Management
chapter).

This function has two goals:

- managing scheduling-specific
statistics

- calling the scheduling method of
the class

3911.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.2 Scheduler Entry Point

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/core.c#L4532

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/core.c#L4532

Main Scheduler
The main scheduler function (schedule()) is invoked directly in many points in the kernel to allocate the
CPU to a process other than the currently active one. After returning from system calls the kernel also
checks whether the flag TIF_NEED_RESCHED of the current process is set (by the Periodic Scheduler for
example), and if it is checked schedule() is called.

4011.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.2 Scheduler Entry Point

1

2

3

4

5

6

Retrieve the runqueue

Update the runqueue clock, clear the
flag TIF_NEED_RESCHED

If the task was in interruptible sleep and received a signal
the it must be promoted to a running task, in any other
case it must be deactivated (function implemented by

the scheduling class)

Notify that the task is going to be replaced and pick the
next task (if needed)

Execute the context switch, if needed

Checks if TIF_NEED_RESCHED is set and restart
from need_resched label

Mauerer, Wolfgang. Professional Linux kernel architecture. John Wiley
& Sons, 2010.

Task States
The state field in the PCB tracks the current state of the process/thread. Values are defined in
include/linux/sched.h:

- TASK_RUNNING the process is either executing on CPU or waiting to be executed
- TASK_INTERRUPTIBLE the process is sleeping until some condition becomes true
- TASK_UNINTERRUPTIBLE like TASK_INTERRUPTIBLE but they can be only woken up by the kernel, not by external signals
- TASK_STOPPED process has stopped (after signal SIGSTOP, SIGTSTP)
- TASK_PARKED
- TASK_DEAD
- TASK_WAKEKILL is designed to wake the process on receipt of fatal signals
- TASK_WAKING
- TASK_NOLOAD
- TASK_NEW the task has been just created
- TASK_STATE_MAX

Convenience macros for the sake of set_current_state:

- #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
- #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
- #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
- #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

Convenience macros for the sake of wake_up():

- #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)

All the PCBs registered in the runqueue are TASK_RUNNING.

4111.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.2 Scheduler Entry Point

Task State Transition

4211.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.2 Scheduler Entry Point

TASK_*INTERRUPTIBLE

4311.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.2 Scheduler Entry Point

In case an operation cannot be completed immediately (think of a read()) the task goes to
sleep in a wait queue. While doing this, the task enters either the TASK_INTERRUPTIBLE or
TASK_UNINTERRUPTIBLE state. At this point, the kernel thread calls schedule() to effectively
put to sleep the currently-running one and pick the new one to be activated.

Dealing with TASK_INTERRUPTIBLE can be difficult when the syscall is interrupted for example:

- at kernel level, understand that the task has been resumed due to an interrupt
- clean up all the work that has been done so far
- return to userspace with -EINTR
- userspace has to understand that a syscall was interrupted (bugs here!)

Conversely, a TASK_UNINTERRUPTIBLE might never be woken up again (the dreaded D state in
ps). TASK_KILLABLE is handy for this (since 2.6.25), same as TASK_UNINTERRUPTIBLE except
for fatal sigs.

Waking up sleeping tasks
The event a task is waiting for calls one of the wake_up*() functions on the corresponding
wait queue. A task is set to runnable and put back on a runqueue.

It the woken up task has a higher priority than the other tasks on the runqueue,
TIF_NEED_RESCHED is flagged.

4411.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.2 Scheduler Entry Point

Scheduling Algorithms

11.3.3

Advanced Operating Systems and Virtualization

11. Scheduling
3. Scheduler Core

Brief History
- v1.2: circular queue for runnable task management that operated with a round-robin

scheduling policy. This scheduler was efficient for adding and removing processes (with a
lock to protect the structure)

- v2.2: introduced the idea of scheduling classes, permitting scheduling policies for
real-time tasks, non-preemptible tasks, and non-real-time tasks. The 2.2 scheduler also
included support for symmetric multiprocessing (SMP)

- v2.4: relatively simple scheduler that operated in O(N) time (as it iterated over every
task during a scheduling event), time divided into epochs, inefficient for real-time tasks

- v2.6: O(1) scheduler, was designed to solve many of the problems with the 2.4
scheduler—namely, the scheduler was not required to iterate the entire task list to
identify the next task to schedule, very efficient but the code base was gigantic and
obscure with magic constants, difficult to maintain. Due to the pressure of these
problems and another proposal for a scheduler by Con Kolivas (the Rotating Staircase
Deadline Scheduler), the O(1) was replaced by the CFS (in v2.6.23), that is today in the
stable branch of the kernel.

46

https://developer.ibm.com/technologies/linux/tutorials/l-completely-fair-scheduler

https://developer.ibm.com/technologies/linux/tutorials/l-completely-fair-scheduler

The O(n) scheduler

11.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

The scheduling algorithm used in earlier
versions of Linux was quite simple: at every
process switch the kernel scanned the entire
list of runnable processes (O(n)), computed
their priorities and selected the “best”
process to run.

For running the algorithm, the time is
divided into epochs, at the end of an epoch,
every process has run once, using its own
quantum if possible. If a process did not use
the whole quantum, they have half of the
remaining time slice added to the new
timeslice.

47

asmlinkage void schedule(void) {
 int this_cpu, c; /* weight */
 ...
 repeat_schedule:
 /* Default process to select.. */
 next = idle_task(this_cpu);
 c = -1000; /* weight */
 list_for_each(tmp, &runqueue_head) {
 p = list_entry(tmp, struct task_struct, run_list);
 if (can_schedule(p, this_cpu)) {
 int weight = goodness(p, this_cpu, prev->active_mm);
 if (weight > c)
 c = weight, next = p;
 }
 }
}

Up to kernel 2.6.7

The O(n) scheduler

The goodness is computed as follows:

Possible values:

- -1000 never select this process to run
- 0 out of time slice (p->counter == 0)
- >0 the goodness value, the higher the better
- +1000 real-time process, always select

4811.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

The Goodness function

goodness (p) = 20 - p->nice (base time quantum)

+ p->counter (ticks left in the time quantum)

+ 1 (if page table is shared with the previous process)

+ 15 (if SMP and p was last running of the same CPU)

The O(n) scheduler

4911.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

Epoch management

...
/* Do we need to re-calculate counters? */
if (unlikely(!c)) {
 struct task struct *p;
 spin_unlock_irq(&runqueue_lock);
 read_lock(&tasklist_lock);

 for_each_task(p)
 p->counter = (p->counter >> 1) + NICE_TO_TICKS(p->nice);

 read_unlock(&tasklist_lock);
 spin_lock_irq(&runqueue lock);

 goto repeat_schedule;
}
...

6 - p->nice/4

The O(n) scheduler

Disadvantages:

- a non-runnable task is also searched to determine its goodness
- mixture of runnable/non-runnable tasks into a single runqueue in any epoch
- Performance problems on SMP, as the length of critical sections depends on system load

Advantages:

- perfect Load Sharing
- no CPU underutilization for any workload type
- no (temporary) binding of threads to CPUs

5011.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

Analysis

The O(n) scheduler

5111.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

Contention on SMP

0

1

2

3

Core 0 calls schedule()

The other cores call
schedule()

Core-0 returns

The O(1) scheduler

5211.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

From kernel 2.6.8

The O(1) scheduler has been introduced from version 2.6.8 by Ingo Molnàr. The principal
characteristic of the algorithm is that schedules tasks in constant time, independently of the
number of active processes.

It introduced:

- the global priority scale which we discussed;
- early preemption: if a task enters the TASK_RUNNING state its priority is checked to see

whether to call schedule();
- static priority for real-time tasks;
- dynamic priority for other tasks, recalculated at the end of their timeslice (increases

interactivity).

The O(1) scheduler

As we already discussed, each CPU has its own struct runqueue, the concept has been
introduced with this scheduler. However, this data structure keeps two pointers (to 2
sub-runqueues): one to the list of active processes and one to the list of expired processes.
These are not just linked list, they are pointers to struct prio_array.

5311.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

Runqueues

struct runqueue {
/* number of runnable tasks */
unsigned long nr_running;
...
struct prio_array *active;
struct prio_array *expired;
struct prio_array arrays[2];

}

struct prio_array {
int nr_active;
unsigned long bitmap[BITMAP_SIZE];
struct list_head queue[MAX_PRIO];

};

The struct prio_array maintains an array of
list_head for each possible value of the priority, so
140 linked lists and a bitmap.

The O(1) scheduler

5411.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

Runqueues

The O(1) scheduler

The idea behind the two sub-runqueues, is simple: when a task on the active runqueue uses all
of its time slice it’s moved to the expired runqueue. During this move the time slice is
recalculated (and so its priority). If no task exists on the active runqueue the pointers for the
active and the expired runqueues are swapped.

The scheduler always chooses the task on the highest priority list to execute. To make this
process efficient, a bitmap is used to defined when tasks are on a given priority list. Therefore,
on most architectures, the instruction find_first_bit_set() is used to find the highest
priority bit set in one of five 32-bit words.

As a consequence, the time it takes to find a task to execute depends not on the number of
active tasks but instead on the fixed number of priorities.

55

The job of the scheduler

The O(1) scheduler

5611.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

Runqueues: the bitmap

X X

X

X

X

X X X X

0

9

13

schedule() ⇢ schedule_find_first_set()
Bit 10, priority 10

Bit 139, priority
139

The O(1) scheduler

57

Prioritization

To prevent tasks from hogging the CPU and thus starving other tasks that need CPU access,
the O(1) scheduler can dynamically alter a task's priority. It does so by penalizing tasks that are
bound to a CPU and rewarding tasks that are I/O bound. I/O-bound tasks commonly use the
CPU to set up an I/O and then sleep awaiting the completion of the I/O. This type of behavior
gives other tasks access to the CPU.

Because I/O-bound tasks are viewed as altruistic for CPU access, their priority is decreased (a
reward) by a maximum of five priority levels. CPU-bound tasks are punished by having their
priority increased by up to five levels. Tasks are determined to be I/O-bound or CPU-bound
based on an interactivity heuristic. A task's interactiveness metric is calculated based on how
much time the task executes compared to how much time it sleeps. Note that because I/O
tasks schedule I/O and then wait, an I/O-bound task spends more time sleeping and waiting
for I/O completion. This increases its interactive metric.

It's important to note that priority adjustments are performed only on user tasks, not on real-time tasks.
https://web.archive.org/web/20210224190439/https://www.ibm.com/developerworks/linux/library/l-scheduler

https://web.archive.org/web/20210224190439/https://www.ibm.com/developerworks/linux/library/l-scheduler

Cross-CPU Scheduling

5811.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

Once a task lands on a CPU, it might use up its time slice and get put back on a prioritized
queue for rerunning -- but how might it ever end up on another processor?

If all the tasks on CPUi exit, the CPUi stand idle while another CPUj round-robins three, ten or
several dozen other tasks. The 2.6 scheduler must, on occasion, see if cross-CPU balancing is
needed. Every 200ms a CPU checks to see if any other CPU is out of balance and needs to be
balanced with that processor. If the processor is idle, it checks every 1ms so as to get started
on a real task earlier.

v2.6.8

https://elixir.bootlin.com/linux/v2.6.8/source/kernel/sched.c#L2245
https://elixir.bootlin.com/linux/v2.6.8/source/kernel/sched.c#L1795

https://elixir.bootlin.com/linux/v2.6.8/source/kernel/sched.c#L2245
https://elixir.bootlin.com/linux/v2.6.8/source/kernel/sched.c#L1795

Staircase Scheduler
The Staircase scheduler was proposed by Con Kolivar, 2004 but none of its schedulers have
been merged in the Kernel tree.

The goal of the staircase scheduler is to increase "responsiveness" and reduce the complexity
of the O(1) Scheduler. It is mostly based on dropping the priority recalculation, replacing it
with a simpler rank-based scheme

It is supposed to work better up to ~10 CPUs (tailored for desktop environments).

5911.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

Staircase Scheduler
The expired array is removed and the staircase data structure is used instead. An expired
process will be put back into the staircase, but at the next lower rank. It can, thus, continue to
run, but at a lower priority. When it exhausts another time slice, it moves down again. And so
on. The following little table shows how long the process spends at each priority level:

When a process reaches the end of the staircase (iteration 2), it gets the previous base priority
-1 but with one more timeslice. If a process sleeps (i.e., an interactive process) it gets back up
in the staircase.

This approach favors interactive processes rather CPU-bound ones.

6011.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

https://lwn.net/Articles/87729/

https://lwn.net/Articles/87729/

The Completely Fair Scheduler (CFS)

The Completely Fair Scheduler has been merged in October 2007. This is since then the default
Scheduler. The CFS models an "ideal, precise multitasking CPU" on real hardware.

It is based on a red-black tree, where nodes are ordered by process execution time in
nanoseconds. A maximum execution time is also calculated for each process.

The main idea behind the CFS is to maintain balance (fairness) in providing processor time to
tasks. This means processes should be given a fair amount of the processor. When the time for
tasks is out of balance (meaning that one or more tasks are not given a fair amount of time
relative to others), then those out-of-balance tasks should be given time to execute.

6111.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

From v2.6.23

https://developer.ibm.com/technologies/linux/tutorials/l-completely-fair-scheduler

https://developer.ibm.com/technologies/linux/tutorials/l-completely-fair-scheduler

The Completely Fair Scheduler (CFS)

To determine the balance, the CFS maintains the amount of time provided to a given task in
what’s called the virtual runtime. The smaller a task’s virtual runtime - meaning the smaller
amount of time a task has been permitted access to the processor - the higher its need for the
processor. The CFS also includes the concept of sleeper fairness to ensure that tasks that are
not currently runnable (for example, waiting for I/O) receive a comparable share of the
processor when they eventually need it.

But rather than maintain the tasks in a run queue, as has been done in prior Linux schedulers,
the CFS maintains a time-ordered red-black tree. A red-black tree is a tree with a couple of
interesting and useful properties. First, it’s self-balancing, which means that no path in the
tree will ever be more than twice as long as any other. Second, operations on the tree occur in
O(log n) time (where n is the number of nodes in the tree). This means that you can insert or
delete a task quickly and efficiently.

6211.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

The Virtual Runtime

https://developer.ibm.com/technologies/linux/tutorials/l-completely-fair-scheduler

https://developer.ibm.com/technologies/linux/tutorials/l-completely-fair-scheduler

The Completely Fair Scheduler (CFS)

6311.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

With tasks stored in the time-ordered red-black tree, tasks with the gravest need for the processor (lowest virtual runtime) are stored
toward the left side of the tree, and tasks with the least need of the processor (highest virtual runtimes) are stored toward the right
side of the tree. The scheduler then, to be fair, picks the left-most node of the red-black tree to schedule next to maintain fairness. The
task accounts for its time with the CPU by adding its execution time to the virtual runtime and is then inserted back into the tree if
runnable. In this way, tasks on the left side of the tree are given time to execute, and the contents of the tree migrate from the right to
the left to maintain fairness. Therefore, each runnable task chases the other to maintain a balance of execution across the set of
runnable tasks.

https://developer.ibm.com/technologies/linux/tutorials/l-completely-fair-scheduler

https://developer.ibm.com/technologies/linux/tutorials/l-completely-fair-scheduler

The Completely Fair Scheduler (CFS)

6411.Scheduling ⇒ 11.3 Scheduler Core ⇒ 11.3.3 Scheduling Algorithms

CFS doesn’t use priorities directly but instead uses them as a decay factor for the time a task
is permitted to execute. Lower-priority tasks have higher factors of decay, where
higher-priority tasks have lower factors of delay. This means that the time a task is permitted
to execute dissipates more quickly for a lower-priority task than for a higher-priority task.
That’s an elegant solution to avoid maintaining run queues per priority.

Where have the priorities gone?

Context Switch

11.4

Advanced Operating Systems and Virtualization

11. Scheduling

Context switch starts with the function in kernel/sched/core.c

context_switch(struct rq *rq, struct task_struct *prev,

struct task_struct *next, struct rq_flags *rf)

The function does some checks on memory (*active_mm) and according to the situations
performs some operation. Remember that a context switch can happen in the following cases.

Context Switch

11.Scheduling ⇒ 11.4 Context Switch 66

v5.11

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/core.c#L4276

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/core.c#L4276

Context Switch
Then the function calls switch_to().

The switch_to() is architecture-specific and mainly executes the following two tasks:

- TSS update
- CPU control registers update

6711.Scheduling ⇒ 11.4 Context Switch

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/core.c#L4276

https://elixir.bootlin.com/linux/v5.11/source/arch/x86/include/asm/switch_to.h#L47

https://elixir.bootlin.com/linux/v5.11/source/kernel/sched/core.c#L4276
https://elixir.bootlin.com/linux/v5.11/source/arch/x86/include/asm/switch_to.h#L47

Context Switch

As you can see:

- firstly the callee-saved register are pushed
in the stack

- then the stack pointer is swapped
- in the end the callee-saved registers are

popped from the stack (since they was
pushed by the new process to be
scheduled)

After these actions the control is passed to
__switch_to that performs the switch of the
FPU registers and of FS and GS registers.

But where the instruction pointer is set?

6811.Scheduling ⇒ 11.4 Context Switch

switch_to()

Advanced Operating Systems and
Virtualization

L E C T U R E R

Gabriele Proietti Mattia

B A S E D O N W O R K B Y

http://www.ce.uniroma2.it/~pellegrini/

69

[11] Scheduling

gpm.name · proiettimattia@diag.uniroma1.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

