
Department of Computer,
Control and Management
Engineering “A. Ruberti”,
Sapienza University of Rome

Advanced Operating Systems
and Virtualization

[12] Virtualization

Gabriele Proietti Mattia

gpm.name · proiettimattia@diag.uniroma1.it A.Y. 2020/2021 · v1

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it

11. Scheduling

Outline
1. Introduction
2. Software-based Virtualization

1. VirtualBox
3. Paravirtualization
4. Hardware-assisted Virtualization

1. Virtualization of Memory
5. Linux Containers

1. cgroups
2. namespaces
3. Container Runtimes and Docker

2

Introduction

12.1

Advanced Operating Systems and Virtualization

12. Virtualization

System Virtualization

12.Virtualization ⇒ 12.1 Introduction

Virtualization allows to show different resources from the physical ones. More operating
systems can be run on the same hardware.

A Virtual Machine is a mixture of software- and hardware-based facilities. The software
component that is in charge of managing the Virtual Machine is called the Hypervisor or VMM
(Virtual Machine Monitor).

The main advantages of the virtualization are:

- isolation of different execution environments (on the same hardware)
- reduction of hardware and administration costs

4

Host & Guest
We can distinguish between:

- host system: the real system where (software implemented) virtual machines run
- guest system: the system that runs on top of a (software implemented) virtual machine

The roles of the Hypervisor are:

- managing hardware resources provided by the host system
- making virtualized resources available to the guest system in a correct and secure way

There are two kinds of hypervisors:

- Native Hypervisor: runs with full capabilities on bare metal. It resembles a lightweight
virtualization kernel operating on top of the hardware.

- Hosted Hypervisor: it runs as an application, which accesses host services via system
calls

512.Virtualization ⇒ 12.1 Introduction

Native vs Hosted Hypervisor

612.Virtualization ⇒ 12.1 Introduction

Native Hypervisor Hosted Hypervisor

https://applied-programming.github.io/Operating-Systems-Notes/9-Virtualization/

https://applied-programming.github.io/Operating-Systems-Notes/9-Virtualization/

Kinds of virtualization
We can have two kinds of virtualizations:

- software-based: the guest application code runs directly on the processor, while the guest privileged
code is translated and the translated code runs on the processor.

The translated code is slightly larger and usually runs more slowly than the native version. As a
result, guest applications, which have a small privileged code component, run with speeds very close
to native. Applications with a significant privileged code component, such as system calls, traps, or
page table updates can run slower in the virtualized environment.

- hardware-assisted: certain processors provide hardware assistance for CPU virtualization. When
using this assistance, the guest can use a separate mode of execution called guest mode. The guest
code, whether application code or privileged code, runs in the guest mode. On certain events, the
processor exits out of guest mode and enters root mode. The hypervisor executes in the root mode,
determines the reason for the exit, takes any required actions, and restarts the guest in guest mode.

When you use hardware assistance for virtualization, there is no need to translate the code. As a
result, system calls or trap-intensive workloads run very close to native speed. Some workloads, such
as those involving updates to page tables, lead to a large number of exits from guest mode to root
mode. Depending on the number of such exits and total time spent in exits, hardware-assisted CPU
virtualization can speed up execution significantly.

712.Virtualization ⇒ 12.1 Introduction

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-B14C8267-C2A4-4BF8-B680-70C2B350B325.html

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-B14C8267-C2A4-4BF8-B680-70C2B350B325.html

Software-based Virtualization

12.2

Advanced Operating Systems and Virtualization

12. Virtualization

Software-based Virtualization
The instruction of the virtual machine are executed by the native physical CPU in the host
platform, but a subset of the instruction set must be emulated.

No particular hardware component plays a role in virtualization, but there are different
problems:

- what if ring 0 is required for guest activities? (Ring Aliasing)
- there could be the risk to bypass the VMM resource management policy in case of actual

ring 0 access

The solution: ring de-privileging. Which is implemented and assisted by:

- binary translation: for rewriting some Ring 0 instructions
- shadowing of some data structures, e.g. page table
- I/O emulation of not supported devices

912.Virtualization ⇒ 12.2 Software-based virtualization

Ring De-Privileging
A technique to let the guest kernel run at a privilege level that “simulates” 0

Two main strategies:

- 0 / 1 / 3 Model:
- VMM runs at ring 0
- Kernel guest runs at ring 1 (not typically used by native kernels)
- Applications still run at ring 3
- This is the most used approach

- 0 / 3 / 3 Model:
- VMM runs at ring 0.
- Kernel guest and applications run at ring 3.
- too close to emulation, too high costs

1012.Virtualization ⇒ 12.2 Software-based virtualization

0/1/3 Model
Applications (running at ring 3) cannot alter the state of the guest operating system (running
at ring 1). The guest operating system cannot access privileged instructions and data
structures of the host operating system we guarantee the isolation of guest systems. Any
exception must be trapped by the VMM (at ring 0) and must be properly handled (e.g. by
reflecting it into ring 1 tasks).

Issues to cope with:

- Ring aliasing
- Virtualization of the interrupts
- Frequent access to privileged resources

1112.Virtualization ⇒ 12.2 Software-based virtualization

Ring Aliasing
An OS kernel is designed to run at ring 0, while it is actually being run at ring 1 for guest
systems. This can create problems for instructions that was specifically designed for running in
Ring 0 and they cannot work anymore:

- Privileged instructions: generate an exception if not run at CPL 0 (e.g. hlt, lidt, lgdt,
invd, mov %crx)

- I/O sensitive instructions: they generate a trap if executed when CPL > IOPL (I/O
Privilege Level) (e.g. cli, sti)

- Other instructions: they are simply skipped if not in Ring 0, e.g. popf in the x86
architecture

The generated trap (general protection fault) must be handled by the VMM, so as to finally
determine how to handle it (emulation vs interpretation). If they do not generate a trap, then
they must be translated (binary translation) or hardware-assisted virtualization need to be
used.

1212.Virtualization ⇒ 12.2 Software-based virtualization

VirtualBox

12.2.1

Advanced Operating Systems and Virtualization

12. Virtualization
2. Software-based Virtualization

The Virtual Box Example
Based on hosted hypervisor with ad-hoc kernel facilities, via classical special devices (0/1/3
model).

Pure software virtualization is supported for x86:

- Fast Binary Translation (code patching) the kernel code is analysed and modified before
being executed

- Privileged instructions replaced with semantically equivalent blocks of code

1412.Virtualization ⇒ 12.2 Software-based virtualization ⇒ 12.2.1 VirtualBox

Virtualbox lives in two contexts:

- Guest context (GC): execution context for the guest system. It is based on two modes:
- Raw mode: native guest code runs at ring 3 or 1
- Hypervisor mode: VirtualBox runs at ring 0

- Host context (HC): execution context for userspace portions of VirtualBox (ring 3)
- the running thread implementing the VM lives in this context upon a mode change
- critical/privileged instructions are emulated in this context upon a GPF (General

Protection Fault, e.g. due to ring aliasing)

Execution Modes and Context

1512.Virtualization ⇒ 12.2 Software-based virtualization ⇒ 12.2.1 VirtualBox

VBOXGDT

1612.Virtualization ⇒ 12.2 Software-based virtualization ⇒ 12.2.1 VirtualBox

Description Offset DPL Base

Entry 0 (0000)
H

- null

...

Kernel Code
Segment (0060)

H
1

Kernel Data
Segment (0068)

H
1

...

Virtualbox TSSD (FFE0)
H

0

...

Hypervisor Data
Segment (FFF0)

H
0

Hypervisor Code
Segment (FFF8)

H
0

Kernel Code and Data Segments
are registered with DPL 1, they
are accessible with CPL=1

New TSSD which keeps information
about stack at Ring 0 and 1

... ...

esp0 ...

ss0 (0068)
H

esp1 unused

ss1 unused

... ...

Original TSS

... ...

esp0 (FE557000)
H

ss0 (FFF0)
H

esp1 (F70D3FF9)
H

ss1 (0069)
H

... ...

VBOX TSS

2 new segments for the Hypervisor
are added with DPL=0

VBOXIDT

1712.Virtualization ⇒ 12.2 Software-based virtualization ⇒ 12.2.1 VirtualBox

0x0

...

0xD 14 (0060)
H

0

0xE 14 (0060)
H

0

...

0x0

...

0xD 14 (FFF8)
H

0

0xE 14 (FFF8)
H

0

...

Original IDT

VBOXIDT

Interrupt must be managed by the
VMM. To this end, a wrapper for
the IDT is generated. Handler

VMM Handler
1

2

Proper handlers are instantiated,
which get executed by the
Hypervisor upon traps. VMM can
take control thanks to the ad-hoc
segment selector (1) (at the GDT
offset for the hypervisor code
segment). In case of a "genuine"
trap, the control goes to the native
kernel, otherwise the virtual
handler is executed (2).

Interrupt gate

VBOXIDT

1812.Virtualization ⇒ 12.2 Software-based virtualization ⇒ 12.2.1 VirtualBox

Gate 0x80
0x0

...

0x80 15 (0060)
H

3

...

...

0x0

...

0x80 15 (0061)
H

3

...

...

Original IDT

VBOXIDT

syscall_handler

Trampoline

Ring 1 Handler

INT 0x80 has an ad-hoc
management. The syscall gate is
modified so as to provide a
segment selector with RPL = 1 and
it indicates the GDT offset for the
code segment (at ring 1).

Hence calling a system call does
not require interaction with the
Hypervisor. The trampoline handler
is then used to launch the actual
syscall handler

Paravirtualization

12.3

Advanced Operating Systems and Virtualization

12. Virtualization

Paravirtualization

12.Virtualization ⇒ 12.3 Paravirtualization

Paravirtualization is not that different from Binary Translation. BT changes "critical" or
"dangerous" code into harmless code on the fly; paravirtualization does the same thing, but in
the source code. Of course, changing the source code allows a bit more flexibility than
changing everything on the fly, which has to happen quickly. One advantage is that
paravirtualization eliminates a lot of unnecessary "traps" by the VMM (or Hypervisor), even
more than BT.

20

The VMM offers a virtual interface (hypercall API) used
by guest OS to access resources. To run privileged
instructions, hypercalls are executed.

An example: Xen.

Hardware-assisted Virtualization

12.4

Advanced Operating Systems and Virtualization

12. Virtualization

VT-x

12.Virtualization ⇒ 12.4 Hardware-assisted Virtualization

Intel Vanderpool Technology, referred to as VT-x, represents Intel’s virtualization technology on
the x86 platform. Its goal is simplify VMM software by closing virtualization holes by design.

- ring compression (lack of OS/Applications separations if only 2 rings are used)
- non-trapping instructions (some instructions at ring 1 are not trapped, for example popf)
- excessive trapping

Eliminate need for software virtualization (i.e paravirtualization, binary translation). The CPU
flag for VT-x capability is "vmx". "VMX" stands for Virtual Machine Extensions, which adds 13
new instructions: VMPTRLD, VMPTRST, VMCLEAR, VMREAD, VMWRITE, VMCALL, VMLAUNCH,
VMRESUME, VMXOFF, VMXON, INVEPT, INVVPID, and VMFUNC. These instructions permit entering
and exiting a virtual execution mode where the guest OS perceives itself as running with full
privilege (ring 0), but the host OS remains protected.

In the Linux kernel the module that is in charge of enabling the support for VT-x (or AMD-V) is
KVM, that makes the kernel able to work as an hypervisor.

22

Virtual-Machine Extension (VMX)
Virtual Machine Extensions define CPU support for VMs on x86 by a new form of operation
called VMX operation. There are two kinds of VMX operation:

- root: VMM runs in VMX root operation
- non-root: Guest runs in VMX non-root operation

This eliminates ring de-privileging for guest OS. The VMX Transitions between VMX root
operation and VMX non-root operation are called:

- VM Entry: Transitions into VMX non-root operation.
- VM Exit: Transitions from VMX non-root operation to VMX root operation.

Registers and address space are swapped in one atomic operation. In general VM Entry and
Exit are very heavy operations at least in the first implementation, they were such heavy that
paravirtualization was faster (in terms of CPU cycles).

2312.Virtualization ⇒ 12.4 Hardware-assisted Virtualization

Virtual-Machine Extension (VMX)

2412.Virtualization ⇒ 12.4 Hardware-assisted Virtualization

Pre VT-x Post VT-x

VMM ring deprivileging of guest OS VMM executes in VMX root-mode

Guest OS aware it’s not at Ring 0 Guest OS de-privileging eliminated

Guest OS runs directly on hardware

VMCS: VM Control Structure

2512.Virtualization ⇒ 12.4 Hardware-assisted Virtualization

The virtual-machine control data structure (VMCS) is defined for VMX operation. A VMCS
manages transitions in and out of VMX non-root operation (VM entries and VM exits) as well
as processor behavior in VMX non-root operation.

The VMCS consists of six logical groups:

- Guest-state area: processor state saved into the guest-state area on VM exits and
loaded on VM entries.

- Host-state area: processor state loaded from the host-state area on VM exits.
- VM-execution control fields: fields controlling processor operation in VMX non- root

operation.
- VM-exit control fields: fields that control VM exits.
- VM-entry control fields: fields that control VM entries.
- VM-exit information fields: read-only fields to receive information on VM exits

describing the cause and the nature of the VM exit.

MMU Virtualization with VT-x: VPIDs

26

First generation VT-x forces TLB flush on each VMX transition, but this obviously has as a
consequence:

- performance loss on all VM exits
- performance loss on most VM entries, since the guest page tables are not always

modified always

Better VMM software control of TLB flushes is beneficial and thus is was introduced the VPID:

- 16-bit Virtual-Processor-ID field in the VMCS
- cached linear translations tagged with VPID value
- no flush of TLBs on VM entry or VM exit if VPID active
- TLB entries of different virtual machines can all co-exist in the TLB

12.Virtualization ⇒ 12.4 Hardware-assisted Virtualization

Virtualization of Memory

12.4.1

Advanced Operating Systems and Virtualization

12. Virtualization

Shadow Page Tables

12.Virtualization ⇒ 12.4 Hardware-assisted Virtualization ⇒ 12.4.1 Virtualization of Memory

Granting the guest OS direct access to the MMU would mean loss of control by the
virtualization manager, some of the work of the x86 MMU needs to be duplicated in software
for the guest OS using a technique known as shadow page tables. This involves denying the
guest OS any access to the actual page table entries by trapping access attempts and
emulating them instead in software.

The x86 architecture uses hidden state to store segment descriptors in the processor, so once
the segment descriptors have been loaded into the processor, the memory from which they
have been loaded may be overwritten and there is no way to get the descriptors back from the
processor. Shadow descriptor tables must therefore be used to track changes made to the
descriptor tables by the guest OS.

28

Shadow Page Tables

2912.Virtualization ⇒ 12.4 Hardware-assisted Virtualization ⇒ 12.4.1 Virtualization of Memory

However, this has different drawbacks:
- maintaining consistency between guest page tables and

shadow page tables leads to an overhead: VMM traps
- loss of performance due to TLB flush on every

“world-switch”
- memory overhead due to shadow copying of guest page

tables

https://userpages.umbc.edu/~dgorin1/451/virtualization/HWvirtualization.htm

Thanks to shadowing we can go directly from blue
to green, without passing to grey

https://userpages.umbc.edu/~dgorin1/451/virtualization/HWvirtualization.htm

Nested / Extended Page Tables (EPT)

3012.Virtualization ⇒ 12.4 Hardware-assisted Virtualization ⇒ 12.4.1 Virtualization of Memory

The Extended Page-Table mechanism (EPT) is used to support the virtualization of physical
memory. It translates the guest-physical addresses used in VMX non-root operation.

Guest-physical addresses are translated by traversing a set of EPT paging structures to
produce physical addresses that are used to access memory.

Nested / Extended Page Tables (EPT)

3112.Virtualization ⇒ 12.4 Hardware-assisted Virtualization ⇒ 12.4.1 Virtualization of Memory

https://userpages.umbc.edu/~dgorin1/451/virtualization/HWvirtualization.htm

As you can see in the picture above, a CPU with hardware support for nested paging caches both the Virtual memory
(Guest OS) to Physical memory (Guest OS) as the Physical Memory (Guest OS) to real physical memory transition in
the TLB. The TLB has a new VM specific tag, called the Address Space IDentifier (ASID). This allows the TLB to keep
track of which TLB entry belongs to which VM. The result is that a VM switch does not flush the TLB. The TLB entries
of the different virtual machines all coexist peacefully in the TLB… provided the TLB is big enough of course!

https://userpages.umbc.edu/~dgorin1/451/virtualization/HWvirtualization.htm

Nested / Extended Page Tables (EPT)

3212.Virtualization ⇒ 12.4 Hardware-assisted Virtualization ⇒ 12.4.1 Virtualization of Memory

Pros / Cons

Advantages:

- Simplified VMM design
- Guest page table modifications need not to be trapped, hence VM exits reduced
- Reduced memory footprint compared to shadow page table algorithms

Disadvantages:

- TLB miss is very costly since guest-physical address to machine address needs an extra
EPT walk for each stage of guest-virtual address translation

Linux Containers

12.5

Advanced Operating Systems and Virtualization

12. Virtualization

Linux Containers

12.Virtualization ⇒ 12.5 Linux Containers 34

Underlying Kernel Mechanisms

3512.Virtualization ⇒ 12.5 Linux Containers

The kernel mechanisms used for implementing containers are:

- cgroups: manage resources for groups of processes

- namespaces: per-process resource isolation

- seccomp: limit the possible syscalls to be executed to exit(), sigreturn(), read() and
write(), the last two only to already-opened file descriptors

- capabilities: privileges and permissions available to processes

cgroups

12.5.1

Advanced Operating Systems and Virtualization

12. Virtualization
5. Linux Containers

cgroups

Control Groups provide a mechanism for aggregating/partitioning sets of tasks, and all their
future children, into hierarchical groups with specialized behaviour.

Definitions

- A cgroup associates a set of tasks with a set of parameters for one or more subsystems.
- A subsystem is a module that makes use of the task grouping facilities provided by

cgroups to treat groups of tasks in particular ways. A subsystem is typically a “resource
controller” that schedules a resource or applies per-cgroup limits, but it may be anything
that wants to act on a group of processes, e.g. a virtualization subsystem.

- A hierarchy is a set of cgroups arranged in a tree, such that every task in the system is in
exactly one of the cgroups in the hierarchy, and a set of subsystems; each subsystem has
system-specific state attached to each cgroup in the hierarchy. Each hierarchy has an
instance of the cgroup virtual filesystem associated with it.

3712.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 cgroups

Overview

cgroups

3812.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 cgroups

Overview

cgroups

From the user space side the cgroups subsystem can be controlled and displayed by sysfs,
but it is mounted as a pseudo filesystem, for this reason it is under /fs/, in particular in the
folder /sys/fs/cgroup.

3912.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 cgroups

As seen from userspace

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01

cgroups

4012.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 cgroups

As seen from userspace

cgroups

4112.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 cgroups

As managed by the kernel

Control Groups extends the kernel as follows:

- each task in the system has a reference-counted pointer to a css_set.
- a css_set contains a set of reference-counted pointers to cgroup_subsys_state

objects, one for each cgroup subsystem registered in the system. There is no direct link
from a task to the cgroup of which it's a member in each hierarchy, but this can be
determined by following pointers through the cgroup_subsys_state objects. This is
because accessing the subsystem state is something that's expected to happen
frequently and in performance-critical code, whereas operations that require a task's
actual cgroup assignments (in particular, moving between cgroups) are less common. A
linked list runs through the cg_list field of each task_struct using the css_set,
anchored at css_set->tasks.

- a cgroup hierarchy filesystem can be mounted for browsing and manipulation from user
space.

You can list all the tasks (by PID) attached to any cgroup.

cgroups

4212.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 cgroups

As managed by the kernel

cgroups

4312.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 cgroups

As managed by the kernel

callbacks

namespaces

12.5.2

Advanced Operating Systems and Virtualization

12. Virtualization
5. Linux Containers

namespaces

4512.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 namespaces

namespaces limit the scope of kernel-level names and data structures at process granularity.

There are 8 kinds of namespaces:

- mnt (mount points, file systems), this namespace virtually partitions the file system and
consequently processes running in separate mount namespaces cannot access files
outside of their mount point

- pid (processes), the first processes spawn as children of PID 1, which forms the root of
the process tree. The process namespace cuts off a branch of the PID tree, and doesn’t
allow access further up the branch. Processes in child namespaces will actually have
multiple PIDs - the first one representing the global PID used by the main system, and
the second PID representing the PID within the child process tree, which will restart from
1

- net (network stack) this namespace manages which network devices a process can see.

As seen from userspace

https://www.cloudsavvyit.com/742/what-are-linux-namespaces-and-what-are-they-used-for/

https://www.cloudsavvyit.com/742/what-are-linux-namespaces-and-what-are-they-used-for/

namespaces

4612.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 namespaces

- ipc (System V IPC) this namespace controls whether or not processes can talk directly to
one another

- uts (unix timesharing) this namespace controls hostname and domain information, and
allows processes to think they’re running on differently named servers

- user (UIDs) this namespace allows process to have “virtual root” inside their own
namespace, without having actual root access to the parent system

- cgroup controls which cgroups a process can see, and does not assign it to a specific
cgroup

- time The time namespace allows processes to see different system times in a way similar
to the UTS namespace

By default, any process you run uses the global namespaces, and most process on your system
do as well unless otherwise specified.

As seen from userspace

https://www.cloudsavvyit.com/742/what-are-linux-namespaces-and-what-are-they-used-for/

https://www.cloudsavvyit.com/742/what-are-linux-namespaces-and-what-are-they-used-for/

namespaces

There are three system calls for management:

- clone(): create new process, new namespace, attach to namespace
- unshare(): create new namespace, attach current process to it
- setns(int fd, int nstype): join an existing namespace

Each namespace is identified by a unique inode symlinked from in /proc/<pid>/ns

4712.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 namespaces

As seen from userspace

namespaces

For each namespace type, a default namespace exists (the global namespace). struct
nsproxy is shared by all tasks with the same set of namespaces.

4812.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 namespaces

As managed by the kernel

namespaces

Example for the UTS namespace

4912.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 namespaces

As managed by the kernel

namespaces

Example for the net namespace

A network device belongs to exactly one namespace. A socket belongs to exactly one
namespace. A new namespace only includes the loopback device. Communication between
namespaces are handled via veth or unix sockets.

5012.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 namespaces

As managed by the kernel

namespaces vs cgroups
Differently to cgroups, namespaces implements information isolation by changing what a
process can see (fs, time, hostnames and not the resources like CPU, RAM) and not how much
resources a process can use.

5112.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.1 namespaces

Container Runtimes and Docker

12.5.3

Advanced Operating Systems and Virtualization

12. Virtualization
5. Linux Containers

Containers

12.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.3 Containers Runtimes and Docker

A light form of resource virtualization based on kernel mechanisms. Differently from VMs:

- a container is a user-space construct
- multiple containers run on top of the same kernel
- illusion that they are the only one using resources (cpu, memory, disk, network)

Come implementations offer support for:

- container templates
- deployment / migration
- union filesystems

53

Container Runtimes
We already discussed all the facilities that the kernel offers for implementing isolation
between processes. A container runtime is a set of tools and binaries that implements
containers by using the underlying kernel facilities.

There are many container runtimes available and they can be classified according to their
capabilities. High level runtimes allows to create and manage container images for example,
instead low level ones only allows for basic container facilities.

5412.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.3 Containers Runtimes and Docker

LXC
LXC is a container runtime which allows to create a container. An LXC container is a userspace
process created with the clone() syscall:

- with its own pid namespace
- with its own mnt namespace
- net namespace is configurable

Container templates can be found in /usr/share/lxc/templates

For creating a container by using a template you can use the following:

lxc-create -t ubuntu -n containerName

5512.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.3 Containers Runtimes and Docker

Docker
The well-known Docker is a Container Engine, not a container runtime. It allows to manage:

- Docker Containers that are started from images
- Docker Images which are read-only images which contains the filesystem of a container.

Images are based on layers for storage efficiency, if multiple images shares the same
layers they are only downloaded once. When containers are started they write on a new
layer and then it can be merged.

- Docker Registries which are repositories of Docker Images

Under the hood, the modern versions of Docker relies on containerd as container runtime.

5612.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.3 Containers Runtimes and Docker

Docker

5712.Virtualization ⇒ 12.5 Linux Containers ⇒ 12.5.3 Containers Runtimes and Docker

(Docker)

(Containerd)

cgroups, namespaces

Advanced Operating Systems and
Virtualization

L E C T U R E R

Gabriele Proietti Mattia

B A S E D O N W O R K B Y

http://www.ce.uniroma2.it/~pellegrini/

58

[12] Virtualization

gpm.name · proiettimattia@diag.uniroma1.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

