
Department of Computer,
Control and Management
Engineering “A. Ruberti”,
Sapienza University of Rome

Advanced Operating Systems
and Virtualization

[13] Security

Gabriele Proietti Mattia

gpm.name · proiettimattia@diag.uniroma1.it A.Y. 2020/2021 · v1

https://gpm.name
mailto:proiettimattia@diag.uniroma1.it

13. Security

Outline
1. Introduction
2. User Authentication
3. Internet Security
4. Secure Operating Systems

2

Introduction

13.1

Advanced Operating Systems and Virtualization

13. Security

Basic Security Aspects

13.Security ⇒ 13.1 Introduction

1. Systems must be usable by legitimate users only
2. Access is granted on the basis of an authorization, and according to the rules that are

established by some system administrator
- As for point 1, an unusable system is useless, however, in several scenarios the

attacker might only tailor system non-usability by legitimate users (so called DOS –
Denial of Service attacks)

4

Baseline Security Approaches
- Cryptography
- Authentication / Capabilities
- Security enhanced operating systems

Each approach targets specific security aspects. They should be combined together to
improve the overall security of the system.

513.Security ⇒ 13.1 Introduction

Security Aspects already mentioned
- Address randomization
- Kernel-level stack protection
- Userspace Namespaces
- Read only permission to critical data/code even when running in kernel mode
- Determination of the presence of critical instructions (e.g. those updating CR0 in x86

machines) upon module insertions (as in Linux)
- Minimization of the exposition of kernel layout data (/proc/kallsyms)

613.Security ⇒ 13.1 Introduction

User Authentication

13.2

Advanced Operating Systems and Virtualization

13. Security

User Authentication
Users can login by using passwords requested at boot, when tty + shell starts.

The passwords’ database is stored within two distinct files:

- /etc/passwd is accessible to every user
- /etc/shadow is accessible only by root

/etc/passwd

passwd has the following format:
username:passwd:UID:GID:full_name:directory:shell

username:Npge08pfz4wuk:503:100:The User:/home/username:/bin/sh

Np represents the salt (16 bit) and ge08pfz4wuk is the encrypted password. When using
shadowing, /etc/passwd has the format:

username:x:503:100:full_name:/home/username:/bin/sh

x is a placeholder, hence /etc/passwd no longer contains passwords
13.Security ⇒ 13.2 User Authentication 8

User Authentication

/etc/shadow has the format:
username:passwd:ult:can:must:note:exp:disab:reserved

where:

1. username is the user
2. passwd is the encrypted password
3. ult are the days from 1/1/1970 since the last password change
4. can day interval after which it is possible to change the password
5. must day interval after which the password must be changed
6. note day interval after which the user is prompted for password update
7. exp days after which the account is disabled if password expires
8. disab days from 1/1/1970 after which the account will be disabled
9. reserved no usage – a reserved field

913.Security ⇒ 13.2 User Authentication

/etc/shadow

User IDs
In Linux the username is only a placeholder for humans. What discriminates which user is
running a program is the UID, and the GID which is the group ID (groups are groups of users).

To each UID and GID are associated a set of capabilities.

Any process is at any time instant associated with three different UIDs/GIDs:

- Real: this tells who you are
- Effective: this tells what you can actually do
- Saved: this tells who you can become again

1013.Security ⇒ 13.2 User Authentication

UID/GID management system calls
The following system calls allow to manage the UID/EUID

- setuid()/seteuid(): available only to UID/EUID equal to 0 (root); setuid() is “non reversible”
in the value of the saved UID: it overwrites all the three used IDs while seteuid() is
reversible and does not prevent restoring a saved UID. An EUID-root user can
temporarily become a different EUID user and then resume EUID-root identity.

- getuid()/geteuid(): queries available to all users

Similar services exist for managing GID

UID and EUID values are not forced to correspond to those registered in /etc/passwd

1113.Security ⇒ 13.2 User Authentication

su and sudo
Both these commands are setuid-root, since they enable starting with the EUID-root identity

If a correct input password is given by the user, they move the real UID to root or the target
user (in case of su). After moving the UID to root, sudo executes the target command.

1213.Security ⇒ 13.2 User Authentication

Internet Security

13.3

Advanced Operating Systems and Virtualization

13. Security

Address-based Service Enabling
Based on the concept of Access Control List (ACL). Which are list of access rules based on
addresses of enabled users which are explicitly specified. This approach is very useful in for
services exposed on a network for example it is used in:

- super-servers (e.g. inetd: the internet daemon, xinetd: the extended internet demon)
- TCP containers (e.g. tcpd)

Also used since ext3 File System and it is manageable with setfacl and getfacl commands.

1413.Security ⇒ 13.3 Internet Security

UNIX inetd
It controls services running on specific port numbers. Upon connection or request arrival, it
starts the actual target service and redirects sockets to stdout, stdin, stderr. The
association between port number and actual service has been based on the file
/etc/services, with format:

ftp-data 20/tcp

ftp 21/tcp

telnet 23/tcp

The inetd daemon was initially conceived as a means for resource usage optimization and it
has been then extended to cope with security.

1513.Security ⇒ 13.3 Internet Security

UNIX inetd

Configuration information for inetd is typically kept by /etc/inetd.conf.

Each managed service is associated with one line structure as

- Service name, as expressed in /etc/services
- Socket type (e.g. stream)
- Socket protocol (e.g. TCP)
- Service flag (wait/nowait) which determines the execution mode (concurrent or not)
- The user id to be associated with the running service instance (e.g. root)
- The executable file path (e.g. /usr/sbin/telnetd) and its arguments (if any)

1613.Security ⇒ 13.3 Internet Security

Configuration

xinetd Features
It provides an extension of inetd relying on

- Address based access control
- Time frame based access control
- Full log of run-time events
- DOS prevention by putting limitation on

- Maximum number of per-service instances
- Maximum number of total server instances
- Log file size
- Per machine source-connections

Its configuration file is /etc/xinetd.conf and it can be generated relying on the PERL utility
xconv.pl.

1713.Security ⇒ 13.3 Internet Security

The tcpd daemon
The tcpd daemon wraps the services managed via inetd, so as to support access control rules

- tcpd is the actual server that is activated upon a request accepted by inetd
- tcpd receives as input the service specification

Service management takes place by relying on rules coded in /etc/hosts.deny and
/etc/hosts.allow. Here we can find the specification of allowed or denied sources for a
given service. Each line is structured as daemon_list : client_list

- ALL is used to identify the whole set of managed services and all the hosts

An example (access to all inetd services allowed from the local host)

/etc/hosts.allow

ALL: 127.0.0.1

1813.Security ⇒ 13.3 Internet Security

Reverse DNS tampering
Usually host/domain specification occurs via symbolic names, rather than IP addresses. Upon
receiving a request/connection, tcpd checks with the source IP and executes a reverse DNS
(rDNS) query to get the symbolic name of the source host.

An attacker can tamper with the reverse DNS query so as to reply with an allowed
host/domain name. To cope with this attack, tcpd typically performs both forwards DNS and
reverse DNS queries so as to determine whether there is matching.

1913.Security ⇒ 13.3 Internet Security

Reverse DNS tampering

2013.Security ⇒ 13.3 Internet Security

inetd

tcpd

DNS

Connection from x.y.z.h
1

Forward the request to tcpd
2

Reverse IP
to name

3

Resolve
name to IP

4

If the resolved IP is equal to x.y.z.h
then the access is granted

Secure Operating Systems

13.4

Advanced Operating Systems and Virtualization

13. Security

Secure Operating Systems

2213.Security ⇒ 13.4 Secure Operating Systems

A secure operating system is different from a conventional one because of the different
granularity according to which we can specify resource access rules.

In this way, an attacker has lower possibility to make damages (e.g. in term of data
access/manipulation) with respect to a conventional system.

Secure operating systems examples are:

- SELinux (by NSA), included in mainstream kernel from 2003. SELinux is a security
architecture for Linux systems that allows administrators to have more control over who
can access the system. SELinux defines access controls for the applications, processes,
and files on a system. It uses security policies, which are a set of rules that tell SELinux
what can or can’t be accessed, to enforce the access allowed by a policy.

- SecurLinux (by HP)

Secure operating systems rely on the Mandatory Access Control (MAC).

Security Policies
Security policies can be discretionary or mandatory.

- a security policy is named discretionary (DAC) if ordinary users (including the
administrator) are involved in the definition of security attributes (e.g. protection
domains). Example: Unix user-group-other permission bits.

- a security policy is named mandatory (MAC) if its logics and the actual definition of
security attributes is demanded to a security policies’ administrator (who is not an actual
user/root of the system). Example: SELinux.

2313.Security ⇒ 13.4 Secure Operating Systems

Boot Time Attacks

2413.Security ⇒ 13.4 Secure Operating Systems

Startup
rootkits

Horse Pills Services

Horse Pills

25

A boot-time attack which is based on init scripts loaded into a ramdisk and the usage of
namespaces. An infected ramdisk can easily take control of the machine.

What an infected ramdisk could do:
- load modules
- cryptsetup
- find and mount rootfs
- enumerate kernel threads
- clone (CLONE_NEWPID, CLONE_NEWNS)
- remount root
- mount scratch space
- fork()

- hook initrd updates
- backdoor shell

- waitpid()
- shutdown/reboot

13.Security ⇒ 13.4 Secure Operating Systems

- remount /proc
- make fake kernel threads
- clean up initrd
- exec init

Userspace System Internal Attacks
An attack is said to be internal if it exploits an application that is installed and/or active in the
system. The attacker can either be an external user or one registered as a legitimate system
user.

The classical internal attacks are:

- Trojan horses
- Login spoofing (ctrl+alt+del)
- Logical bombs
- Backdoors
- Buffer overflows

2613.Security ⇒ 13.4 Secure Operating Systems

Buffer overflow protection methods
The main countermeasures against buffer overflow attacks are:

- Stack randomization (upon exec() calls)
- Canary random tags as cross checks in the stack before returning

2713.Security ⇒ 13.4 Secure Operating Systems

Non-Executable Address Space Regions
x86_64 architectures provide page/region protection against instruction fetch. It is based on
the XD flag in the entries of the page tables.

This support was not available on i386 machines, and this is one reason why the
PROT_READ/PROT_EXEC flags of mmap() are sometimes collapsed into the same protection
semantic.

To enable instruction fetch from the stack on x86_64 you can use the “-z execstack” option
of gcc.

2813.Security ⇒ 13.4 Secure Operating Systems

Exploit-based DOS: Ping of Death
This attack appeared in 1996, and is based
on an inconsistency within the IP protocol in
common kernels.

- IPv4 forbids a packet to be larger than
64 Kb

- IP allows for packet fragmentation,
with reconstruction at the destination

However, the offset of a fragment has been
based on 16 bits within the header, so that
we might specify a fragment that stands
beyond the maximum packet bound. In this
case the operating system kernel writes the
fragment out of the boundaries of the
actual buffer selected for the receipt.

2913.Security ⇒ 13.4 Secure Operating Systems

Intrusion Detection Systems (IDS)
Security can be improved, not definitely guaranteed. We need systems able to detect that
something wrong is going on.

This allows for:

- Designing countermeasures for new attacks
- Protect resources in case of an ongoing attack

Intrusion detection systems (IDS) rely on two classical paradigms:

- Anomaly Detection
- Misuse Detection

3013.Security ⇒ 13.4 Secure Operating Systems

Intrusion Detection Systems (IDS)

This paradigm relies on the assumption that attacks are anomalous (infrequent), hence any
anomalous event is assumed to represent an attack.

It is based on defining what are the admissible (normal) events, and in identifying any other
event as an attack. Events that are normal (but not identified as normal ones) can be identified
as attacks (false positives). False positives can trigger countermeasures (e.g. system halt) that
might not be actually required. We might also experience false negatives in case an attack
only relies on a sequence of admissible (normal) events

3113.Security ⇒ 13.4 Secure Operating Systems

Anomaly Detection

Intrusion Detection Systems (IDS)

It is based on a-priori identification of attack events which are registered into the IDS.

A true attack cannot be identified as such in case it is not coded in the a priori knowledge base,
hence we can experience false negatives.

3213.Security ⇒ 13.4 Secure Operating Systems

Misuse Detection

Classic IDS Types
- Honeypots
- File integrity checkers, that are useful for libraries and modules but they can fail if the

system is subverted
- Log checkers (e.g. fail2ban)

- Typically do not work in real time
- Network intrusion detection systems

3313.Security ⇒ 13.4 Secure Operating Systems

Intrusion Detection Systems (IDS)

3413.Security ⇒ 13.4 Secure Operating Systems

Advanced Operating Systems and
Virtualization

L E C T U R E R

Gabriele Proietti Mattia

B A S E D O N W O R K B Y

http://www.ce.uniroma2.it/~pellegrini/

35

[13] Security

gpm.name · proiettimattia@diag.uniroma1.it

http://www.ce.uniroma2.it/~pellegrini/
https://gpm.name
mailto:proiettimattia@diag.uniroma1.it
http://creativecommons.org/licenses/by-nc/4.0/

