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Chapter 1

Introduction

In the 70s, the early ages of the technology revolution, all the computational power
was gathered in single entities, and the ancestral concept of “terminal” referred
essentially to a screen which only provided you a way to communicate with the big
core in which an application was deployed. In that era, the computational power was
infinitesimal if compared to modern appliances, and the energy required to power
such systems was not insignificant.

The progressive change of the hardware manufactory methods, not only improved
the quality and reliability parameters of the products but also caused the number of
applications to exponentially grow and this also inexorably had an impact on the
people needs. If before the single-tier development was the only way of building up an
application, today we reached the possibility to miniaturize that development in the
size of a smartphone. This continuous process of computational power improvement
and miniaturizing of the hardware led to a progressive class-segmentation of the
computational devices.

The traditional view of the computational power distribution is usually layered [23,
2, 9] or, in a more exotic approach, tiered [37] and even if this may seem another kind
of classification, it is only another point of view of the same layer structure. This
classical division, that usually comprehends four entities, was not designed in a single
day by a person but it is the result of a slow and inevitable process that embodies
technology improvement, research development and also society awareness. In the
beginning, as already stated, all the computation was represented by single but big
entities, their computational power was high as well as their energy consumption.
This remembers us the modern cloud, the idea of having big computational entity
still lives today but in a different form with respect to the past. Then the possibility
to have personal computers at a reasonable cost introduced the need to connect them
to the cloud, today we have smartphones, sensors and everything that can access
to the internet, we call these end devices and as you know they can provide an
interesting computational power but with low power consumption. In some critical
applications the latency between end devices and the cloud cannot be tolerated,
for this reason new trends brought a cloud-similar architecture nearer to the client,
realizing in such a way the concept of fog/edge computing, thanks to the ease
according to which is possible to build a cloud-like architecture without necessarily
relying on the true cloud infrastructure. Then [37] also points out that there is
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another layer of computing that is composed of all of those devices that are not
powered by a battery but they are powered by other devices, like the RFID.

To summarize, the today recognized “places” in which computation can happen
are:

1. the Cloud, that was the first in history to allow the development and the
fruition of software applications;

2. the Edge, that represents the network layer but it is often called Fog since
computation does not have to necessarily happen in network devices but also
in some deployment that resembles a cloud architecture but is very near to
the user;

3. the End Devices, and therefore every battery-powered device as well as sensors,
small single-board computers;

4. Intermittent-powered devices, like RFID, devices that are powered by other
devices when needed.

This subdivision is the one that is widely adopted in literature and it is essential
for having clear in mind what is the context in which the framework that I will
present in this thesis can be placed: the Fog.

1.1 Characterization of Fog Computing Architectures

The cloud computing model introduced different strategies of how services can be
provided to the user [19]: the IaaS (Infrastructure-as-a-Service), PaaS (Platform-
as-a-Service) and SaaS (Software-as-a-Service). These three paradigms, with the
latest entry, the FaaS (Function-as-a-Service) [18], defined all the service capabilities
that the cloud can offer to the client, by satisfying the different applications and
companies needs both in terms of performance and in terms of costs.

However, the key problem of the cloud infrastructure is that the distance, and as
well described in [37], the network distance of the cloud infrastructure from the client,
is the bottleneck of using a cloud service and in some applications, especially real-
time ones, the latency that characterizes this kind of connectivity is not admissible.
It’s from this issue that the need of making the cloud nearer to the user, and it is
from this that the concept of Fog has been introduced. Actually, the computation
can also be addressed in the network devices, and we do not essentially need other
servers, that is the case in which we refer to the Edge computing. The real difference
between Fog and Edge computing is that the Fog usually interacts with the cloud.
An interesting depiction of the paradigms that come to play between the end devices
and the cloud is done by [28], we have the Fog, the Cloudlet and the MEC
(Multi-Access Edge Computing). The Fog refers to the paradigm of offloading end
devices applications and usually interacts with the cloud; the cloudlet, that is also
known as a “data center in a box”, it is focused on providing services to end devices
by relying on well-known virtualization technologies; the MEC focuses on offloading
computation in mobile networks. These three computing paradigms have all in
common the fact that they move the computation near to the end devices and the
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fact that they are composed by multiple nodes that can offer computational power
for providing a service.

In particular, in this Fog/Edge paradigm, three elements define its nature [23]: the
architecture, that can be based on the flow of data, the control of the resources or
the tenancy; the infrastructure, which regards hardware, software and middleware;
the algorithms that can refer to the discovery, the benchmarking, the load-balancing
and the placement. In general, when multiple nodes are involved in a Fog architecture
a good load balancing algorithm can help the system to accommodate more requests
because it can help to distribute wisely the load among all available nodes.

1.2 The 5G Case

In the picture of the 5G, there are some requirements that need a re-design of the
current 4G/LTE architecture [21]. In particular this new design of mobile network
is strictly in contact with the Fog environment, since it is essentially aimed to bring
the MEC thanks to the new Cloud RAN (Radio Access Network) infrastructure [13].

The mobile access network, in particular, the “last mile” of the connectivity,
is made possible thanks to base stations, that in the 4G terminology, are called
eNodeB. Every base station is composed by two essential elements: the RRU (Radio
Remote Unit) that provides the physical radio access to clients, and the BBU (Base
Band Unit) that processes the signal from the RRUs and talks directly with the
backbone.

In 5G we assist to the separation, in terms of location, of the two base station
elements and specifically, in the C-RAN architecture, BBUs are grouped together in
a pool, that can also be virtualized. This strategy has an impact on performance
because the system can automatically adapt to the various load and distribute the
power in order to satisfy the areas that are denser in terms of traffic. Aside to this
novelty, by dividing the RRUs from the BBUs it’s possible to think about putting
in the BBUs some additional computational unit that is able to offer some cloud
service. With these premises, the importance of MEC arise. The Multi-Access
Edge Computing can be considered as a cloud computing platform that offers its
services at the Radio Access Network (RAN). These services [38] can allow the
offloading [41] of computation, caching and content delivery systems, enhancement
in web performance, big data computing and applications for smart cities.

MEC allows the network provider to enable the RAN for low latency and therefore
real-time services that are brought in proximity of users. This brings with it different
challenges [21] since the network provider should allow developers to deploy services
and therefore open the network to them, but it can solve the latency problem in a
very easy way.

The MEC paradigm is a core concept of the 5G design and it seamlessly integrates
itself with the Fog paradigm.

1.3 Motivation

With this introduction to Fog computing what emerges is that the field is currently
flourishing of ideas and innovations and it opens to an incommensurable number of
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applications and further development, but in this thesis, I will try to address one
crucial problem in the Fog environment.

Both in the Fog, in MEC or in the Cloudlets multiple nodes may concur to
achieve a single goal: providing the same service. In many applications, we could
have the scenario in which a node may actually receive higher traffic with respect to
other, and substantially in some cases is convenient to a node asking for forwarding
the job request to another node. This decision, that a node needs to take, is typically
a scheduling decision and the purpose of a scheduler is the one of balance the load
in such a way the efficiency of the system is maximized. For this reason a scheduling
algorithm needs to be conceived, in particular, in this thesis, we will focus on a
subset of algorithms that allows a cooperative load balancing, as wisely classified
in [23].

After having a full panorama of the cooperative load balancing problem in
Chapter 2, I will provide the definition of a new kind of algorithm in Section 3.
Then in Chapter 4 I will show how I implemented it as a piece of a completely new
framework that I designed and developed also to be programmable with any other
kind scheduling algorithm. In Chapter 5 I will report the benchmarks’ result of the
algorithm and I will draw conclusions in the last chapter.
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Chapter 2

The Load Balancing Problem

There are different strategies for realizing a load balancing algorithm [23] between
nodes: particle swarm optimization [22] can be used, a cooperative [7] philosophy
can be addressed or we can solve the problem with the graph theory [29, 34].

The particle swarm optimization [24] is a well-known method for optimizing
continuous non-linear functions and was discovered thanks to a simulation of a
social model. In [22] such method is used for defining an SDN-based load balancing
algorithm which aims to decrease latency and increase the QoS. Instead [29] uses the
graph partition theory in order to design a Fog load balancing algorithm. Another
approach, that is used by [34] is to use a breadth first search based algorithm which
allows balancing the load while, at the same time, it allows also authenticate the
nodes.

A great part of load balancing algorithms [7, 5, 6] in Fog environment uses the
cooperation concept to operate. The idea of cooperating comes from the fact that, in
order to have an optimal load balancing, we should have a master node that knows
at any time the load status of every node. Since this would require a lot of effort
in order to maintain such node and also a lot of probe messages that should be
exchanged, is more convenient to rely on the fact that nodes are allowed to talk each
other in order to both ask the load than jobs to be executed. In this perspective,
instead of having a centralized scheduler we achieve a decentralization scheme in
which every node acts as a single scheduler and all the nodes together realize a
concept of a scheduler that is as much as possible near to the optimal one.

Before looking in deep in how the cooperative load balancing problem can be
addressed we need to make a digression about the mathematical model which can
represent a node that can make some work. After that we will analyze the currently
best working cooperative strategies for load balancing.

2.1 System Models

The modeling of an entity or multiple entities that are capable of executing jobs
falls in the field of the queuing theory, that studies how systems of these entities
behave according to some defined parameters [25]. Queueing theory is actually a
specialization of a wider class of dynamic systems called the “flow systems”, and if
we think about it a server, or in general an entity which is able to receive jobs to be
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executed, has as input a flow of jobs, that arrives at some rate, that we call λ and as
output another flow of jobs that are executed. Since executing a job takes time, the
output flow will be characterized by another rate, that we usually call µ. At this
point, it is simple to agree with the fact that, if this input flow rate to this entity is
higher than output rate, then the queue will grow infinitely since the system is not
able to cope a workload that is higher than its possibilities.

When studying queueing entities, the queue models are referred by using a
widely accepted notation, called the Kendall’s notation [20], that also allows us to
summarize the queue parameters. A queue system is identified by:

A/B/m/K

Where:

1. A is the arrival distribution. When studying a queue system, the input ready
can also be steady or unsteady, it would be very reductive to study queues
with only steady rates because we do not know what to expect when the rate
fluctuates, for this reason, the input rate is usually modeled with a distribution,
in particular, it is denoted as:

A(t) = P [time between arrivals < t] (2.1)

Some values of this parameter can be M (Markovian process, so exponen-
tial distributed arrivals time), Ek (Erlang with k as shape parameter), D
(deterministic) and G (general);

2. B is the service time distribution, that is usually denoted as:

B(x) = P [service time < x] (2.2)

3. m is the number of servers that process the queue;

4. K is the capacity of the queue;

In our analysis, we will consider one machine model with both Markovian
processes in input and output and infinite capacity, namely M/M/1, then the
same with finite capacity M/M/1/K. As last model, we will see the one that is
characterized by jobs that are executed in parallel by the same processor, namely
the M/M/1/K-PS model.

2.1.1 M/M/1
The M/M/1 system model is characterized by a single server that processes jobs
at rate µ, one job at a time. The arrival rate is λ and both the arrivals than the
output are modeled as a Markovian process, and this means that their distribution
is Poissonian with rates, respectively, λ and µ. This is system is modeled with a
continuous time Markov chain (CTMC), in which every state represents the current
load of the machine1.

1This process is often called a birth-death process since the transitions in the Markov chains are
only of two types: we have the births when jobs arrives and deaths when job completes
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0 1 2 3 … …

µ µ µ µµ

λλλ λ λ

Figure 2.1. M/M/1 Queue Transition States. The transition states of a M/M/1 queue
are represented by a special Continuous Markov Chains called birth-death process, in
particular in this process birth and deaths rates are constant.

In a system like this, we are interested in two parameters: the mean number of
jobs that run in the system L (also called E[R]) and mean waiting time for a job to
be executed W (also called E[TR]). Before having a look at these results we have to
introduce a parameter that will be important in the next discussions, the occupancy
ρ that is defined as:

ρ = λ

µ
(2.3)

This parameter gives an indication of how much the entity is loaded. In the
M/M/1 the fourth parameter in the definition is missing, this means that is ∞, in
other words, the queue of the single entity can grow infinitely with no bounds and,
from this assumption, we can easily derive that the stability condition is for ρ < 1,
otherwise if the λ exceeds µ than the system is not able to satisfy the demand of
jobs and queue grows infinitely.

First of all, for deriving E[R] and E[TR] we need to find the probability of the
system to be in the state i that can be derived by considering the flows. From the
first state we have that:

λp0 = µp1 → p1 = ρp0
λp1 = µp2 → p2 = ρp1 = ρ2p0

. . .

Therefore for a given state i:

pi = ρip0 (2.4)

From the total probability theorem we have that:
∞⋃
i=0

P [State = i] = 1 =
∞∑
i=0

pi =
∞∑
i=0

ρip0

From which we can extract p0:

p0 =
( ∞∑
i=0

ρi
)−1

Now the mean number of jobs running can be easily computed as the expected
value [25]:
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L = E[R] =
∞∑
i=0

ipi = ρ

1− ρ = λ

µ− λ
(2.5)

and the mean delay is [25]:

W = E[TR] =
∞∑
i=0

E[TR|i]pi = 1
µ

1
1− ρ = 1

µ− λ
(2.6)

2.1.2 M/M/1/K

ServerQ U E U E
λ

K (max)

μ

Figure 2.2. M/M/1/K Queue representation. This queue is characterized by a single
server that processes one job at a time. The queue has a maximum length of K.

The M/M/1/K queue is a variant of the M/M/1 but with the novelty that
the queue has finite capacity K and for this reason, the resulting state-transitions
diagram has exactly K states, as depicted in Figure 2.3.

0 1 2 … K-1 K

µ µ µ µµ

λλλ λ λ

Figure 2.3. M/M/1/K Queue Transition States. If the queue has finite space, the maximum
state of the machine is K.

Solutions to this problem are again well-known in literature, in particular here
we introduce another parameter, aside L and W , that arises due to the fact the
queue is limited. Indeed, if the queue is full every new job that arrives is rejected,
so we are interested in the blocking probability PB, that is the probability that a
job that arrives at the server finds the queue full2, and the mean time for a job of
being executed TR and this includes the execution time and the waiting time that a
job encounters.

2That in many applications, simply means that the job is rejected
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Differently from the M/M/1 case, the solution that we will provide will be valid
for any ρ since the queue is limited.

We can find the blocking probability following this reasoning. The probability of
the server to be in the state i (in other words, the probability that the load of the
machine is i) can be computed from the flows. From the first state we have that:

λp0 = µp1 → p1 = ρp0
λp1 = µp2 → p2 = ρp1 = ρ2p0

. . .

Therefore for a given state i:

pi = ρip0 (2.7)

From the Equation 2.4 and from the total probability theorem we have that:

K⋃
i=0

P [State = i] = 1 =
K∑
i=0

pi =
K∑
i=0

ρip0

From which we can extract p0:

p0 = 1∑K
i=0 ρ

i
= 1− ρ

1− ρK+1 (2.8)

By combining Equations 2.7 and 2.8 we obtain:

pi = 1− ρ
1− ρK+1 ρ

i (2.9)

The blocking probability PB can be expressed as the probability that the system
is in the state K, namely:

PB = pK = 1− ρ
1− ρK+1 ρ

K (2.10)

For extracting the average waiting time for a job to be completed W we can use
the Little’s Law which states that the average number of jobs that are executed in a
server (L) in any given time is the product of their arrival rate (λ) and the average
time that they spend in the server (W ). Since we are only interested in jobs that
are actually executed and not rejected, we need to multiply λ for the factor 1− PB
thus obtaining that:

L = λ(1− PB)W

from which we can obtain the average time:

W = L

λ(1− PB) (2.11)

Now since the expected value of the number of jobs that are processed in a server
in a given time and given the state i:

L =
n∑
i=0

ipi (2.12)
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As a result, the formula that allows us to compute the average expected value of
the waiting time is:

W =
∑K
i=0 ipi

λ(1− PB) = 1− ρ
λ(1− ρK)

K∑
i=0

iρi = 1
µ− λ

− KρK+1

λ(1− ρK) (2.13)

Equations 2.10 and 2.13 are the fundamental parameters that we will use also to
evaluate also a cooperative load balancing algorithm since it will be compared with
the case in which the cooperation is not enabled, that is when a server represents a
M/M/1/K queue.

2.1.3 M/M/1/K-PS: processor-sharing

Serverλ μ
2

K-1

1

K

Figure 2.4. M/M/1/K-PS Queue representation. This queue is characterized by a single
server that processes up to K jobs in parallel and it has no queue.

On real machines, we have interleaving of processes, and this means that when
a job is currently running in CPU we can accept another job but with the fact
that every job will only use 1

2 of the CPU time, until one of two finishes. If we
suppose that a machine can have at maximum K jobs that runs in parallel then in
the extreme case a job can last until K times its normal duration when it is the only
one that runs on the CPU.

Different works found which are the distribution of sojourn times [14, 11] but
theoretically and in practice (as shown in Section 5.2) if we consider W and PB at
the steady state, models M/M/1/K and M/M/1/K-PS are equivalent.

2.2 Power-of-choices algorithms
As we discussed in the introduction, cooperative load balancing implies that nodes
exchange messages to each other in order to understand which is the current load
that is needed in order to perform a scheduling decision. But a problem arises at
this point: when a node receives a job request, does he really need to ask to every
other node its load? In any case, this would be the condition that would lead us to
an optimal solution but it’s proven that we can reduce a lot the number of probes
by choosing only a few random machines and still obtaining acceptable results.
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2.2.1 SQ(d) and loss/non-loss models

The problem is commonly presented in the following way, but it can be seen also
from very different points of view [27]. We have n FIFO servers and customers
arrive with a Poisson distribution of rate λn with λ < 1. Each customer chooses
d servers independently and uniformly at random and waits for the execution of
the service at the one that has the lowest number of customers in the queue. This
problem is addressed in [26] that defines this model as the supermarket model
and the discussed algorithm as the SQ(d) scheduling policy. What is shown is
that by choosing d = 2 we have an exponential improvement of waiting time of
customers with respect d = 1, and d = 3 only gives a constant factor improvement
with respect d = 2. This model is a non-loss model, this means that every job request
is enqueued and never rejected. Instead [40] studies the same approach but when a
server is full, meaning that a job cannot be executed in a machine that does not have
enough free resource units, thus the job is rejected. This last work introduces an
important performance coefficient, the blocking probability PB, that is defined
as the probability that a job request encounters a machine which cannot execute it
and therefore is dropped.

In the next two sections we will see an application of these two power-of-choices
paradigms (the [26] and the [40]) for realizing cooperative load balancing algorithms.
For simplicity, we will only consider cases in which there are no reward o incentive
on cooperating, but we will focus, instead, in a class of algorithms in which the
cooperation is triggered only if a certain level of load is reached, this new parameter
will be called threshold (T ).

2.2.2 PP(F) and SQ(F): the probing

An interesting cooperative algorithm based on the power-of-choices paradigm is
presented in [5]. The work extends the idea of the SQ(d) (Shortest among d) that is
the matter of [26].

In the classic SQ(d) algorithm, a worker entity is modeled as a M/M/1 queue
and there is a single scheduler entity that receives jobs. This approach reveals to
have some down sides when deployed in a Fog environment: race conditions may
arise, concurrent schedulers may assign tasks to servers that are lightly loaded. To
overcome these issues, [5] proposes a protocol that is instead based on a random
walk of a single probing over at most F Fog nodes, the SQ(F) algorithm. In this
way, every node is turned into a scheduler, so when a job arrives at a node it can
decide whether to probe F other nodes and sending the task to the less loaded or, if
this does not exist, to execute the job locally.

There are two variants of this scheme, in the first SQ(F) the probe of F node is
sequentially performed, and in the second PP(F), that is only an adaptation of the
first, we have a parallel probing mechanism.

The PP(F) algorithm implements the following strategy. When a node receives
a job F nodes are probed. The answer of a probe message will be an ACK with the
load if it is lesser than the one of the node which started the probe, otherwise NACK
is returned. If a node receives all NACK from this probing phase, then it executes the
job locally otherwise the task is sent to be executed to the node that reported the
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Algorithm Workers Model
SQ(d) non-Loss
SQ(F) non-Loss
PP(F) non-Loss
LL(d) Loss
LL(F,T) Loss

Table 2.1. Load Balancing algorithms and their worker models

less load. This approach can be used both with Local (LR) and Remote Reservation
(RR) paradigms in order to reserve servers in case of probing.

Instead in the SQ(F) algorithm, when a node receives a job it only sends one
probe message with its load and the f = F fanout parameter. Now if the probed
node’s load is lesser than the initiator node an ACK is returned and the job is
executed in this node, otherwise the probed node increments the counter f and
sends a probe to another node picking it at random without the ones that have been
already visited.

In both these two applications, machines are modeled with a M/M/1 queue, this
means that the queue can grow infinitely.

2.2.3 LL(F,T): the threshold

In the previous section, we appreciated the fact that a node can act both as a
scheduler than a worker. Since this double view of a node, makes sense to trigger
the cooperation only when the current load of a node exceeds a certain threshold:
this is the key idea of the algorithm LL(F,T) [8] that follows from the centralized
scheduler with a lossy model of LL(d) [26].

First of all, when a single node receives a job it must apply a scheduling decision
by probing d random machines and selecting the one that is Least Loaded, we call
this algorithm LL(d). Whether we choose a loss or a not-loss model for the servers,
this paradigm tends to be inefficient since the scheduling decision is biased towards
nodes that have a low load. LL(F, T ) follows the same philosophy but the probing
to F nodes is done only if the current load of the machine is higher than a threshold
T .

The algorithm works as follows. When a node receives a job and the current
load k < T then the job is executed locally, otherwise F nodes are probed. If among
these nodes, there is no one that has a load that is lesser than the initiator node
then the job is executed locally otherwise it is forwarded to the less loaded node.
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Chapter 3

The LL-PS(T) algorithm

In this chapter, I will present a cooperative load balancing algorithm that is based
on the ones that we discussed in Section 2 but introduces a novelty regarding the
system model that it uses. This novelty takes into account the fact that real systems
are processor sharing, thus more than one job can be executed in parallel and every
running job will spend the same proportion of CPU time (in the general case of an
Egalitarian Processor Sharing system).

3.1 Principle of Operation

K1

λ

Scheduler

①

②

③a

③b

N - 1

Figure 3.1. The LL-PS(T) principle of operation. Jobs arrive at a node with a Poisson
distribution with mean λ (1) and for every job the scheduler checks the current load: if
it is below the threshold T the job is executed locally in parallel with other running jobs
with a processor sharing fashion (3b), otherwise a random node is probed (2). At this
point, if there is a node that is less loaded than the current one, then the job is sent to
it (3a) otherwise it is executed locally (3b).



14 3. The LL-PS(T) algorithm

Every node, which participates to this protocol, acts both as a worker and as
job scheduler to a remote node, selected at random.

We call the node that receives a job for execution from an external mobile user,
the origin node. Before executing a newly received job, the origin checks how many
jobs it is currently running. If this value is lower than the threshold T then it
immediately executes the job with no other actions. Otherwise, the origin probes
one node picked at random by requesting its current load (that is the number of
currently running functions). At this point, if the origin manages to find a node
which is less loaded than itself, then it forwards the job to such a node; otherwise,
it executes the job locally. A job is dropped if both the origin and remote node
are running the maximum number of allowed functions. Algorithm 3.1 shows the
scheduling procedure.

Algorithm 3.1 The LL-PS(T) cooperative load balancing algorithm.
Input: T threshold, j job to be executed

1: procedure Schedule(T, j)
2: load← currently running functions
3: if load < T then
4: ExecuteLocally(j)
5: else
6: node← pick one random node
7: if Load(node) < load then ExecuteRemotely(j, candidate)
8: else
9: Drop(j)

3.2 System Model

First of all, the LL-PS(T) algorithm assumes that every node is represented by a
M/M/1/K-PS queue, that is equivalent to the M/M/1/K model (this has been
discussed in Section 2.1.3). The correctness of this model is assumed according to
benchmarks that have been done on a single machine, see Section 5.2).

We will see an asymptotic and an approximated model that best describes the
protocol and its implications. In order to perform this analysis, we will consider a
large number of N nodes, with N →∞. In this limit and with a random selection
policy, nodes become independent from each other [12] and we then can focus on a
single node. According to the experiments, the observed tagged node is modeled
with a Processor Sharing queue and its internal state, that is the number of currently
running jobs, is encoded with a birth-death process (Figure 3.2) where both the
birth and the death rates depend on the current state k, as detailed next.

In the standard M/M/1/K-PS model, both the birth rates and the death rates
are independent of the current state of the node. Here we make them strictly
dependent on the current state for the following reasons.

The birth rate The birth rate, defined as λk, is actually composed of two flows
of incoming jobs:
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0 1 2 … K-1 K

µ µ µ µµ

λ3λ2λ1 λK-1 λK

Figure 3.2. A node Markov chain for LL-PS(K,T)

λk = λ1k + λ2k

The first flow of jobs that determines the λ1k rate is given by the clients that
make function invocation requests to the node. When such request is received by a
node, the job is executed locally in two cases: if the state k < T or the randomly
picked node is in a state greater1 than k. Therefore, the first job rate can be defined
as:

λ1k = λ×
{

1 if k < T

π̃k otherwise
(3.1)

The second flow of jobs λ2k is determined by that jobs that are forwarded by
other nodes. A node can receive a job to be executed when its load is less than the
origin one, but there is a condition:

• if the current state k < T then the origin has to be at least in state T ;

• if the current state k ≥ T then the origin has to be at least in state k + 1

This, translated in formulas, becomes:

λ2k = λπk ×
{
π̃T if k < T

π̃k+1 otherwise
(3.2)

The death rate As happens for the birth rates, even the death one depends on
the state. This intuition is derived from a real implementation of the algorithm,
where both probing and job forwarding are CPU time consuming.

In particular, we define as penalty tasks:

(A) making a probe;

(B) replying to a probe;

(C) forwarding a job;

(D) reply for a forwarded job;

1Given the probability πi to be in the state i, the probability of a node to be in the state j ≥ k
is given by π̃k =

∑K

i=k
πi
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We model the execution of these tasks as they were processed by a M/D/1-
PS queue, following the same reasoning that we made for modeling a node, but
assuming that the service time distribution is deterministic, since we suppose that
these penalty tasks have a fixed duration µ−1

p . At this point, for determining the
overall service time of the fog node µ−1 we must take into account that after (or
before, Figure 3.3) executing a job, some CPU time is spent for executing a penalty
task. Therefore, this time, that derives from the queue definition (W = 1

2
1

µ−λ), is
added to the service time of a job µ−1

f and it considers:

• as service rate µp, the CPU time that is needed for executing a penalty task
when it is the only one that runs in the processor;

• as birth rate λp, the expected value of the flows of activities (A), (B), (C) and
(D).

Therefore:

µ−1 = µ−1
f + 1

2
1

µp − λp
(3.3)

Total Execution Time (1/µ)

JobPenalty Task

Figure 3.3. The job execution time representation in LL-PS(T)

Let the probe and forward rates denoted as λpp(k) and λpf (k), and let:

λp(k) = λpp(k) + λpf (k) (3.4)

The arrival rate of a penalty task can be defined as:

λp =
∑
k

λp(k)πk

As far as regards λpp(k) we have two cases:

1. if the current state k < T then the node only answer to probes of other
nodes (B), so for every job it receives N flows of probes at rate λ from nodes
that are at least at the state T , and the current node is selected with probability
1
N ;

2. if the current state k ≥ T then even the current node also needs to do a probe
for every job request that it receives (A), for this reason, we add a λ to the
previous result.

This reasoning leads to define:
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λpp(k) =
{ 1
N (Nλ)π̃T if k < T

λ+ 1
N (Nλ)π̃T otherwise

which becomes:

λpp(k) =
{
λπ̃T if k < T

λ+ λπ̃T otherwise

The forwarding penalties are applied again in two cases:

λpf (k) = λpf1(k) + λpf2(k)

The first case occurs when a job is forwarded (C), and this happens when the
current state is k and the state of the node to which the job is forwarded is less than
k:

λpf1(k) = λπk(1− π̃k) (3.5)

The second case is when a node replies with the result of a job that has been
forwarded to it (D). In this case, we have that the flow of that jobs depends on the
fact that the current state is k and the state of the node to which the output of the
forwarded job is sent is in state greater than k but at least T , for this reason, the
max{k + 1, T}:

λpf2(k) = λπkπ̃max{k+1,T} (3.6)

The steady state probabilities vector ~π of this chain is determined using a fixed
point algorithm that is shown in the next section.

3.2.1 Convergence

The vector of the steady state probabilities ~π can be found with a fixed point
algorithm. From the flows equations applied to the chain in Figure 3.2 we obtain
that:

πi+1 = λi(~π)
µ(~π) πi (3.7)

The algorithm that we can apply is the following:

1. start with ~π such that π0 = 1 and the other components are 0;

2. compute the flows vectors ~λ(π) and ~µ(π);

3. apply Equation 3.7;

4. normalize ~π so that ∑i πi = 1;

5. repeat from (2) until ~π converges2.
2In practice we declare the convergence when dist(~π′, ~π′′) < 10−13
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3.2.2 Parameters

From the steady state probability vector ~π we obtain the following parameters:

• the blocking probability that is the probability that the current node and
the probed node are in the state K:

PB = π2
K (3.8)

• the average number of jobs executed by a node in a time unit:

L =
∑
i

iπi (3.9)

• the total waiting time of a job to be completed (from the Little Law):

W = L

λ(1− PB) (3.10)

3.2.3 Charts

In the following results, we will assume that µf = 0.27 and µp = 0.05, these values
comes from a practical application of the algorithm (whose results are shown in
Chapter 5).

In Figure 3.4 we can see the beneficial effect of the cooperation that results in
less discarded jobs with respect to the case in which no cooperation is adopted, that
is the M/M/1/K model. The waiting time is very similar to the non-cooperation
model except when the load starts to be near the saturation level (that is when
ρ = 1) but this is still acceptable since the algorithm manages to carry out more
jobs.
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p = 0.050
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M/M/1/K-PS
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LL-PS(9)

M/M/1/K-PS

Figure 3.4. PB and W charts for LL-PS(9) and K set to 10.

Best threshold

Another result that emerges from the model is the best threshold T that maximizes
the efficiency of the algorithm. Due to the probing penalty that the model introduces,
lowering the threshold does not correspond to increasing performances as it happens
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in the model in which the penalty is not used. This because lowering the threshold
implies that jobs duration is longer and therefore also the blocking probability
increases since if a job lasts longer then higher is the probability that is the machine
is at a higher load when a job arrives. As it will be also confirmed by practical results,
the best threshold that should be used obviously depends on the ratio between the
probe service time µ−1

f and the job service time µ−1
f . We define:

η =
µ−1
p

µ−1
f

= µf
µp

The best threshold, that is the best tradeoff between the probe penalty and the
beneficial effect of cooperation is 9 for K = 10, as shown in Figures 3.5.

2 4 6 8 10

T
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P
B

Best threshold with K = 10, µ−1
f = 0.27, µ−1

p = 0.050

LL-PS(9)

Figure 3.5. Best threshold chart for PB in LL-PS(9)

Figure 3.6 shows the delay W when λ = 3.50 of LL-PS(9). The decreasing
behavior of the delay is justified by the fact that when the threshold is higher the
cooperation is limited. By limiting the cooperation, we also limit all the penalties
that are associated with it and that makes the node to persist at a higher load. As
a natural consequence, if the penalties are reduced then reduced is also the average
time that jobs spend in the system.

Efficiency

By fixing T and λ we can discover the optimal η that allows to achieve the beneficial
effect of the cooperation. It is obvious if the µ−1

p increases and becomes comparable
with the job execution time µ−1

f , then make nodes to cooperate is no more convenient.
Figure 3.7 shows the LL-PS(9) algorithm for a fixed λ = 3.50 varying the η

ratio. What emerges is that when η = 0.21 the cooperation model becomes equal to
the M/M/1/K as far as regards the PB, therefore any higher value of η makes the
cooperation not convenient. The same does not hold for the delay W which appears
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Figure 3.6. Best threshold chart for W in LL-PS(9)

to be in any case higher than the non-cooperation model, but again if it is true that
the delay is higher then it is also true that we are accepting more jobs.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

η

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

P
B

Efficiency with µ−1
f = 0.27, K = 10, λ = 3.50

LL-PS(9)

M/M/1/K-PS

0.00 0.05 0.10 0.15 0.20 0.25 0.30

η

1.50

1.75

2.00

2.25

2.50

2.75

3.00

W
(s

)

Efficiency with µ−1
f = 0.27, K = 10, λ = 3.50

LL-PS(9)

M/M/1/K-PS

Figure 3.7. Efficiency chart for PB and W , when K = 10 and λ = 3.50, in LL-PS(9)
compared with M/M/1/10 model

In Figure 3.8 a different point of view is given for the efficiency. In this case,
we have a long run with λ = [2.0, 3.6] of LL-PS(9) with six different values of η.
This chart again confirms what we have already discussed, but here is possible to
appreciate that the higher the η the sooner and the steeper is the “jump” that PB
and W have when λ increases.
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Chapter 4

Implementation

In this chapter, I will show how the framework is internally designed and realized. I
will present all the internal components and the logic behind them, but only after
motivating the raw materials that I make use as building blocks of the framework.

4.1 Materials

Before starting even to think about implementing a load balancing algorithm, it’s
necessary to conceive a possible job unit that clients can request to be executed and
that machines can easily exchange. This will be the core data structure of the entire
framework. All that follows derives from this decision.

4.1.1 The Function-as-a-Service (FaaS) paradigm

Function-as-a-Service is a really modern paradigm that probably in next years will
replace many of those interactions that are now realized with IaaS or PaaS. In the
FaaS model, the service provider offers to the user not an infrastructure or a platform
(e.g. a web server, or any other kind of endless run application) but a function,
for this reason, this model is also known as “Serverless computing”. In general, a
function can be easily moved between machines, it can be easily defined and so it
requires a very low overhead of configuration and deployment.

It’s clear that this model brings a great number of advantages either from the
provider and the user points of view [3]. The former can easily manage the scheduling
of a function, it does not need to set up an entire machine for a function but a
single machine can run a high number of functions. The latter has a convenience
when setting up the function since the user is not required to set up a brand new
environment for only running a function, he only has to write its definition and, in
many cases, declare its dependencies.

It may seem that this approach it’s the solution to any kind of computational
problem, but that’s not true. Not all the applications fit a function-as-a-service
paradigm, or only some part of it can be implemented with FaaS. Just think about a
database service or a service in which we need all the core of execution is centralized.
FaaS are perfect for easy applications and fast deployment, like machine learning
functions, websites. Further development of the concept also provides ways of



24 4. Implementation

composing functions, since there may be the case in which a single function is not
enough for handling a complex problem [4].

The Function-as-a-service paradigm is the perfect candidate for implementing
a cooperative load balancing scheduler, because a function is like a monad since it
is independent on the specific machine that runs it, it can be easily defined, it can
be easily moved between machines and so it’s easy to conceive a system in which
machines exchange each other functions to be executed.

4.1.2 OpenFaaS

There are many frameworks that allow building a FaaS infrastructure. The ones that
I considered are Apache OpenWhisk and OpenFaaS but for its spirit of innovation
and for the documentation available I chose OpenFaaS.

OpenFaaS [30] is an open source framework launched in 2017, whose purpose is
to make serverless function simple. It can run both with Kubernetes and Docker
Swarm, for its composable nature and allows the easy definition, creation, and
deployment of functions in many well-known languages like Python, Javascript, C#,
Go and many others.

The structure of OpenFaaS is stack-based, it exploits an underlying orchestrator
for creating services, represented by functions. Despite the fact that OpenFaaS can
be installed both on Docker Swarm and Kubernetes, in this framework that I am
implementing, I chose to use Docker Swarm (see Section 4.1.3 for the core features)
as backend, especially for its immediacy and simplicity. In particular, in P2PFaaS
framework, thanks to its API endpoints, OpenFaaS is used as part of its stack (see
Section 4.3).

Principle of function execution

Of particular interest, mainly for the implications on the model analysis (Section 3),
is the principle according to which a function is executed in a Docker Swarm node
(the subject matter of Section 4.1.3).

In the OpenFaaS framework, the code of a function always comes with a
Dockerfile. A Dockerfile (Listing 4.1) is a declarative-type file in which Docker
images are defined: the filesystem structure, the ports that it exposes and also com-
mands that have to be executed when the image is built. OpenFaaS has a template
of a Dockerfile for any programming language. In these files, after building and
setting up the environment for the particular language, a webserver is run, called
function watchdog [32]. The watchdog essentially provides an API gateway that
forks a function handler at every function invocation. The function handler is a
wrapper which executes the function.

FROM golang:1.10.4-alpine3.8 as builder

RUN apk --no-cache add curl \
&& echo "Pulling watchdog binary from Github." \
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&& curl -sSL
https://github.com/openfaas/faas/releases/download/0.9.14/fwatchdog >
/usr/bin/fwatchdog \

↪→

↪→

&& chmod +x /usr/bin/fwatchdog \
&& apk del curl --no-cache

# language-dependent body

ENV fprocess="./handler"
EXPOSE 8080

HEALTHCHECK --interval=2s CMD [ -e /tmp/.lock ] || exit 1

CMD ["./fwatchdog"]

Listing 4.1. The Dockerfile of a function generated by the faas-cli tool. At the top of
the file, is declared the command to download the OpenFaaS function watchdog and at
the end the command that container will run, that is the watchdog executable.

Why we need a watchdog? Essentially for performance reasons. When using a
containerization system, a container is essentially a process, so saying that the process
terminated or the container terminated is the same thing, since the container is like
a sandboxed running process. Thus having a new container (or a new process) that
starts up when requesting the execution of a function may include some unwanted
delay. For solving this problem, OpenFaaS uses its own watchdog that is bundled in
the Docker image of any function that is deployed in the system. Since the watchdog
is a web server, is always running and always ready to serve any execution request.

Anatomy of a function

The deployment of a new function in OpenFaaS can be done with the command
line tool called faas-cli. After creating a new sample function, we will have the
following items:

• Dockerfile, the file that defines the Docker image that will contain the
function and the watchdog (as mentioned in Section 4.1.2);

• function, a folder that contains the file handler.go in which we can write
the body of the function;

• main.go, a launcher of function declared in handler.go;

• template.yml contains a set of metadata that are associated to the function,
like the environment variables and the programming language;

This file structure is generated by faas-cli tool after building the function for
the first time, indeed the action of building a function consist of calling the command
docker build that reads the Dockerfile and builds the Docker image. Once the
image is ready the function can be deployed with the command faas-cli deploy
that creates a Docker Swarm service (see Section 4.1.3).
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4.1.3 Docker Swarm

P2PFaaS makes intensive use of OpenFaaS, since it allows to deploy and run functions.
For this reason, it follows the same philosophy regarding the implementation, in
particular, it relies on Docker Swarm.

Docker Swarm is a Docker’s run mode [16]. Therefore, if Docker, when running
in the standard mode, allows the containerization of applications in the machine
where it is installed, when instead it runs in swarm mode it becomes an orchestrator
since it interacts with other machines creating a cluster.

In the swarm mode, we always have to define at least a master node (that is
suggested to be replicated in an uneven number) which will know the state of every
other node and perform orchestration operation, and worker nodes that will act as
simply work executors.

Once we have set up the infrastructure we can deploy services. A service defines
the task that has to be executed on nodes and is the core unit that is scheduled
by the swarm orchestrator. In a simplistic view, a service is defined by a Docker
image1, and other parameters like how many replica of the service we need or if
the service can restart automatically when it crashes. When a service is deployed,
Docker Swarm will start it in the less loaded node, and if a replica is needed of the
same service, again it will be started in the less loaded machine, but when a request
to that service is received from the outside an internal load balancer will send
that request to less loaded node2 also by using an internal DNS (since a service must
be always available at the same port in every node). In the Docker Swarm lexicon,
a service is the definition of a task and a task is the actual running instance of the
service.

What is important is that from the external, the entire cluster will be seen as it
was a single node. This also means that if a service is deployed in a Docker Swarm,
no matter where the request for that service is done, it will be always available at
the same address and port, transparently to the user.

As it will be shown in Section 4.2, P2PFaaS will be deployed as two Docker
Swarm services.

4.1.4 Go and Rest APIs

One of the most used programming languages for building distributed applications
is Go. Go is an open source programming language developed by Google that is
focused on simplicity, reliability, and efficiency. With Go, it’s easy to write efficient
software since it does not provide complex constructs and it is a compiled language.

Another key point of Go is its natural predisposition to build REST-ful services.
In general, the most used approach for allowing containerized services to communicate
is through REST API endpoints, therefore they expose a port in an overlay network3

1A Docker image is an image of a filesystem where the application that has to be executed has
been deploy and it ready to run

2This is also known as ingress load balancing
3Also used in Docker, an overlay network is a network in which are attached containers. Docker

assigns a local IP to every container, but containers are also reachable through their name like
http://container-name:port
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for example, and then all the inter-container communication happens to HTTP
methods like GET and POST. This is the philosophy that is also used in P2PFaaS.

4.2 Design

Having gathered all the materials it’s now possible to depict a possible design of
how the system could be realized.

OpenFaaS offers all of its features, that includes the deploy, removal, and
execution of a function by mean of its REST APIs that are exposed at the specific
8080 port of the faas-swarm container. The scheduler that we want to implement
needs to execute functions in the machine where it is installed, therefore it will need
to communicate directly to OpenFaaS that will handle this kind of task. The logical
consequence of this is to deploy a scheduler like a Docker swarm service that will
be attached to the OpenFaaS overlay network, in such a way, from the scheduler
itself, OpenFaaS will be reachable at the address http://faas-swarm:8080.

One of the most important peculiarities of P2PFaaS is that the scheduler is
distributed, every machine decides where to execute jobs but this assumes that
machines know each other existence. For this reason, another service is needed, a
discovery service that is accessed by the scheduler when it wants to know where to
send jobs to be executed. A discovery service of this kind will be again deployed as
a Docker Swarm service and attached to the network where the scheduler is.

Scheduler Discovery

Swarm

P2PFaaS

Figure 4.1. P2PFaaS infrastructure. P2PFaaS is lying above OpenFaaS since it uses all of
its API Endpoints but at the same time, it is deployed as Docker Swarm service.

Figure 4.1 summarize the entire design of the P2PFaaS framework.
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4.3 Scheduler

The role of the scheduler service is that of received requests to execute functions,
make a decision about where to execute the function, finally executing it and return
the result to the client. This logic of operation expects that:

• the entire process must be transparent to the client, which does not need to
do anything more than an HTTP call as it was only OpenFaaS deployed;

• all the HTTP calls of the client must be done towards the P2PFaaS scheduler;

• the operations must be synchronous, in other words, the client is blocked until
the job is completely executed4;

• the scheduler decision must be as fast as possible in order to avoid unwanted
delays that could ruin the advantage of cooperation;

• the scheduler must be able to put jobs in the queue in case the machine is
full and it cannot execute other jobs in parallel. This particular feature is not
implemented in OpenFaaS, in other words, when executing a function with
the synchronous mode there is no limit about how many forks of the same
function we can have since OpenFaaS provides an auto-scaling mechanism
that replicates the function service if the number of requests per second is
exceeding a certain threshold.

By considering these prerequisites it’s now possible to draw a list of the main
components that the scheduler needs to have. First of all, we need to interface with
other services, therefore we have:

• OpenFaaS interfacer for using the OpenFaaS services like executing func-
tions;

• discovery interfacer for using the discovery services like knowing which are
the other fog nodes;

• scheduler interfacer for using the scheduler services of other nodes, for
example for executing a function remotely.

Then we have the inner components:

1. the core scheduler that decides where running the job according to the
installed algorithm. Moreover, the scheduler may decide to use or not the
queue (point 2) because only a certain number of parallel jobs is allowed to be
executed (this will be subject matter of Section 4.3.5). As it will be described
in Section 4.3.5, the core scheduler is defined by an interface, in such a way it
can be easily changed, even at runtime;

2. the queue is a producer/consumer based, and its role is the one of putting
jobs that cannot be executed immediately (see Section 4.3.4);

4OpenFaaS also offers an asynchronous mode of operation but in the P2PFaaS case is not taken
into consideration



4.3 Scheduler 29

Endpoint Methods
/system/functions GET, POST, PUT, DELETE
/system/function/<name-of-function> GET
/function/<name-of-function> GET, POST
/monitoring/load GET
/peer/function/function POST
/configuration GET, POST
/configuration/scheduler GET, POST

Table 4.1. The list of endpoints exposed by the P2PFaaS’s scheduler on port 18080

3. the configurator manages all the configuration parameters of the system 4.3.2;

4. the in-memory db it’s a simple value storage for fast accessing 4.3.3.

ConfiguratorSchedulerQueueIn-Memory Db

OpenFaaS
INTERFACER

Discovery
INTERFACER

Scheduler
INTERFACER

API Gateway
COMPONENT

Scheduler

Figure 4.2. The P2PFaaS’s scheduler architecture. Scheduler is composed of different
units that are represented by Go packages.

The scheduler design is depicted in Figure 4.2 and as a final component, that
allows the client to access its services, we have the API gateway.

4.3.1 API Gateway

The API Gateway component exposes the services of the scheduler to clients via
REST APIs. The main endpoints are:

1. /system/functions is directly mapped to the OpenFaaS’ facilities. It can
be used with methods GET, POST, PUT and DELETE for manipulating functions:
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Header Description
X-PFog-Descriptor The name of the scheduler used
X-PFog-Timing-Probe-Messages The number of probe message used
X-PFog-Timing-Queue-Seconds “Queuing Time” in seconds
X-PFog-Timing-Faas-Execution-Seconds “Faas Execution Time” in seconds
X-PFog-Timing-Execution-Seconds “Execution Time” in seconds
X-PFog-Externally-Executed If the function has been externally executed
X-PFog-Hops The number of hops that the job did
X-PFog-Peers-List-Id List of node IDs that handled the job
X-PFog-Peers-List-Ip List of node IPs that handled the job
X-PFog-Timing-Probing-Seconds-List List of “Probing Time” in second in every node
X-PFog-Timing-Forwarding-Seconds-List List of “Forwarding Time” in second in every node

Table 4.2. HTTP Headers used by the API Gateway component. Some of the headers
are not present when the job is executed locally. Refer to Appendix A.1 for a detailed
description of the timings.

with this endpoint, it’s possible to deploy new functions, delete the existing
ones or updating them (See [31] for further references);

2. /function/<name-of-function> same of the previous one, but with this
endpoint is possible to retrieve information about a single function;

3. /monitoring/load allows getting the current load of the machine. The current
load refers to the number of parallel jobs that machine is executing, and this
information comes also with the number of maximum parallel jobs and the
maximum length of the queue.

4. /peer/function/function, this endpoint must be only used by other nodes
since it allows machines to send jobs to be executed and receive its output
once this has been executed.

5. /configuration allows to retrieve the current configuration settings of the
node and also to modify it (see Section 4.3.2).

6. /configuration/scheduler allows to retrieve the configuration of the sched-
uler since a scheduler can also have configurable parameters. This set configu-
ration can be also modified at runtime (see Section 4.3.2).

Behavior

When job a is completed, the HTTP request returns in the client and, aside of the
job output that is put in the HTTP response body, the API Gateway component
also injects in the HTTP headers other metadata that can be useful for analyzing
the system performance. The HTTP headers that are used depends on the scheduler
that is used and on the fact the job is executed in other nodes or not, however, we
can draw a list of all the headers that are used in the system, see Table 4.2.
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4.3.2 Configurator

Configuration plays an important role, especially when we are dealing with tunable
algorithms and conditions. In P2PFaaS framework there is component that only
deals with the configuration management. Its main features are:

1. loading of configuration from a JSON file in the file system at the system
boot;

2. make the configuration read-only by the other parts of the system;

3. make the configuration editable at runtime only by mean of REST API
and if there is no job running.

The feature (1) expects an obvious implementation, while the other two reserve
more attention. In particular, the feature (2) requires a double definition of the
configuration memory structure because, if it has to be read-only then the fields
has not to be exported but if the fields are not exported, then we cannot read
configuration from a JSON file since the un-marshaling operation requires that
structure’s fields are exported. For this reason, there is a double definition of the
configuration structure, one that has un-exported fields, that is the one that actually
saves the configuration in memory, and another one that has only exported fields,
that is used for decoding JSON.

Feature (3) simply sets a new configuration by reading a JSON from the HTTP
POST payload, then it checks if jobs are running (by mean of the in-memory DB,
Section 4.3.3) and if not the configuration is saved both in memory than in the
filesystem, in such a way when the system is reboot it is re-loaded.

Parameters

Configuration parameters that are mostly used by the framework are:

• OpenFaaS parameters, like host and port;

• discovery service parameters, like host and port;

• file path of JSON file for the configuration;

• listening port, that is 19000 by default;

• maximum number of running functions, that is also called K and it is
equivalent to the maximum number of parallel jobs that the system is able to
execute;

• maximum length of the queue;

Scheduler configuration

The parameters of the scheduler, that make it tunable, follow the same philosophy
of the general configuration but they are loaded in a different file and editable with
a different API endpoint.

Scheduler parameters are described in the scheduler implementation sections.
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4.3.3 In-memory db

The in-memory database is a very simple package that stores two kinds of information:

• the list of currently running functions

• the total number of functions running

The write access to this information is protected by a mutex since they are
accessed in a concurrent fashion.

4.3.4 Queue

Another component that is included in the P2PFaaS framework is the Queue and
it has been introduced for compensating the lack of this feature in the OpenFaaS
synchronous mode of operation. As seen in Section 4.1.2 when a execution request
is sent to OpenFaaS, the framework forks the process that is able to execute that
function from the Docker Swarm service that has been deployed. This process
appears to have no limits since a feature that is offered by OpenFaaS is the auto-
scaling: if the number of requests is exceeding a threshold then the function service
is auto-scaled.

Queue

Scheduler Worker

ENQUEUE

D EQUEUE

Inner Loop

Figure 4.3. P2PFaaS queue. The queue is implemented with a producer/consumer fashion.

In the P2PFaaS it’s possible to control how many of parallel executing functions
you can have and this is achieved by using a producer/consumer scheme. When
the framework is booted, a for ; ;5 loop thread is started. This loop uses two
semaphores, one that blocks it if there are no jobs to be executed and one that
blocks it if there are no consumers to execute the jobs. As depicted in Figure 4.3:

5In go language this is equivalent to create a while True loop
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• the producer is the scheduler component that is able to enqueue jobs;

• the consumers are exactly K, that is the number of maximum parallel jobs
that can be executed.

Going in deep on the internals of this mechanism we can have a look at the
main Looper function that is started in a thread when the framework boots up
(Listing 4.2).

func Looper() {
for ; ; {

consumersSem.Wait(1)
job := dequeueJob()
go executeNow(job)

}
}

Listing 4.2. Looper function of the scheduler’s queue component
Another queue’s component peculiarity is that when a job is enqueued it is

wrapped into another memory structure, the one that is shown in Listing 4.3. This
structure, aside from the metadata parameters, contains a semaphore that is used
for telling the main loop that a consumer ended to execute the function.

type QueuedJob struct {
Request *types.ServiceRequest
Semaphore *utils.Semaphore
Response *faas.APIResponse
Timings *Timings

}

Listing 4.3. QueuedJob structure in the scheduler’s queue component

4.3.5 Scheduler

The scheduler component is the core of the service. For having a general definition
of the component we can have a look at the very simple interface that describes it
in Listing 4.4.



34 4. Implementation

type scheduler interface {
GetFullName() string
GetScheduler() *Descriptor
Schedule(req *types.ServiceRequest) (*JobResult, error)

}

type Descriptor struct {
Name string `json:"name"`
Parameters []string `json:"parameters"`

}

Listing 4.4. The interface that allows to implement a scheduler is very basic since it
requires only one core function.
The core function of a scheduler is the Schedule function. It is a blocking

function that will return only when the job has been completely executed, this
because it is called by the API handler for the function execution.

Let’s now conceptually see which is the complete process that brings a function
execution request to the effective execution. The general idea is the following
(Figure 4.4) and assumes that a function f has been already deployed with OpenFaaS:

1. a client makes a HTTP GET (or POST if it needs to pass a payload) to the
endpoint of the function that will be like http://host:18080/function/f ;

2. the API handler6 wraps the request in a memory structure with all its metadata
and calls the function scheduler.Schedule() that in the schedule package
is mapped to the Schedule() function of the currently instantiated scheduler;

3. since that call is blocking, the API handler will not return until the job has
been executed;

4. upon the Schedule() return we will have in the same memory structure that
we passed to the scheduler the job output that will be returned to the user as
a HTTP response.

Api Gateway
Scheduler Queue

Schedule
Request “f”

Enqueue

Figure 4.4. The processing of a function execution request in P2PFaaS

In next sections, we will see the implementation of two schedulers, the first is
not exactly a scheduler, but a handler that executes functions only in the current
machine, the second is an implementation of a scheduler defined in literature.

6i.e. the function that handles the function<name-of-function> API endpoint
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The system is conceived in such a way that an implementation of a scheduler
should never run the function directly but it should always add it to the queue that
then executes it, so every scheduler that will be presented here will perform the
enqueue operation when the job needs to be executed locally.

Implementation of a No-Scheduler

This first kind of scheduler is a simple starting example and it is used for bench-
marking a single machine without including the cooperation with other nodes. The
only condition that it is possible to change is deciding whether to use the queue
or not, in literature when the queue is not used we have a loss model. When loss
condition is enabled, and a job request execution is received, if we have at least one
free slot (that means that the number of currently running function is less than the
maximum number of running functions) the job is executed otherwise it is rejected.

The flow of its operations is the following:

1. receive a job execution request (defined by the structure ServiceRequest)

2. check if loss condition is enabled and if we have enough slots

3. add the job to the queue

Algorithm 4.2 NoScheduler. A basic implementation of a scheduler that only
executes jobs in the current machine.
1: procedure Schedule(j)
2: freeSlots← memdb.GetFreeSlots()
3: if loss and freeSlots < 0 then return
4: queue.EnqueueJob(j)

Implementation of Power-Of-N algorithm

The Power-Of-N scheduling is based on the following consideration: if the machine
that received the function execution request has that its load exceeds a certain
threshold, then it asks the load level to N random nodes and it sends the request to
the less loaded one, but if no other node is less loaded than it than the function is
executed locally. This idea of scheduling is effectively a cooperative load balancing
paradigm.

The scheduler that we are going to implement must follow the previous consider-
ation and should have the following tunable parameters:

• F is the Fanout, that is the number of nodes that will be probed for their load
level and among this eventually it will be chosen the one that will execute the
function;

• T is the threshold, that is the level of load according to which it’s needed to
start asking to other nodes; in particular, the system should start cooperating
when the (K − T )th function execution request arrives;
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• MaxHops that is the maximum number of nodes that a job may pass through
before being executed (included the node that executes the job), this is only a
generalization and in our tests, it will be always set to 1;

• Loss that tells if the queue must be used or not; if it is true, then when the
(K + 1)th function execution request arrives it will be discarded.

Algorithm 4.3 Power-Of-N. In the Power-Of-N scheduler the cooperation is enabled
only when the load of the current machine exceeds K−T . In the following algorithm
we assume that: RunningFunctions is the number of function that are currently
running in the machine, RunningFunctionsMax is K namely the maximum number of
function that can run in parallel in the machine, j.PeersList is the list of peers that
handled the job and j.External tells if the job is coming from another fog node.
1: procedure Schedule(j, F, T, MaxHops, Loss)
2: balancing← RunningFunctions ≥ RunningFunctionsMax− T
3: mustExecute← j.External and j.PeersList ≥ MaxHops
4: if balancing and not mustExecute then
5: lessLoaded← GetLessLoadedOfNRandom(F)
6: if lessLoaded.RunningFunctions < RunningFunctions then
7: ExecuteJobExternally(j, lessLoaded)
8: return
9: freeSlots← memdb.GetFreeSlots()

10: if Loss and freeSlots < 0 then return
11: queue.EnqueueJob(j)

With these considerations it’s possible to define a sketch of the steps that the
scheduler follows (we call job a function execution request):

1. a new job execution request is scheduled by the API Gateway by calling the
Schedule() function;

2. the scheduler checks that two conditions are verified at the same time: the
balancing condition is reached, meaning that the current number of running
function exceeds the threshold, and that the request reached the last node of its
path and must be executed here. The only case in which the cooperation can
be started is when the first condition is true and the second is not, namely in
the case in which the load balancing condition is not achieved or the function
must necessarily be executed here since it reached the maximum number of
hops that it can do;

3. now if the previous condition is not verified then the job is enqueued in the
current machine, otherwise, from the discovery service F random machines
are obtained and, among these machines, only the less loaded is picked;

4. the scheduler now checks if the less loaded machine is also less loaded than
the current one and if this is the case then the job is sent to that machine,
otherwise it is executed locally.
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Now that we know the overall idea of the scheduler operations we can go a little
in deep about the effective implementation of this scheme. In particular, when a job
is sent from a machine to another one we will have a chain of waitings that should be
closed when the last machine, which received the job to run, has effectively executed
the job. The trickiest part of the implementation consists of updating a memory
structure that is filled upon the job completion, in other words: the client sends
a function execution request to the first node, suppose node (A), then this node
forwards the job to (B) that forwards it (C) so the client waits (A) that waits (B)
that waits (C). The system is implemented in such a way that every node when
forwards the job to the other adds to the job object (that is then JSON serialized
before sending) an item in the PeersList field (see Listing 4.5) representing the
current node. When the last node (C) executes the job its response to (B) will have
the full list of peers and the job output, so (B), when it receives it, will update find
its entry in the peers’ list, and it will add its timing information. The first node (A),
which received the client request, will instead reply to the client with the HTTP
payload represented by the job output and as HTTP headers all the metadata that
the other nodes added (see ), as:

• list of IPs and IDs of peers that handled the job;

• number of hops

• a list of all the timings information (see Appendix A.1);

type PeerJobRequest struct {
PeersList []PeersListMember `json:"peers_list"`
Function faas.Function `json:"function"`
Payload []byte `json:"payload"`
ContentType string `json:"content_type"`

}

type PeerJobResponse struct {
PeersList []PeersListMember `json:"peers_list"`
Body string `json:"body"`
StatusCode int `json:"status_code"`

}

type PeersListMember struct {
MachineId string `json:"machine_id"`
MachineIp string `json:"machine_ip"`
Timings Timings `json:"timings"`

}

type Timings struct {
ExecutionTime float64 `json:"execution_time"`
FaasExecutionTime float64 `json:"faas_execution_time"`
QueueTime float64 `json:"queue_time"`
ForwardingTime float64 `json:"forwarding_time"`
ProbingTime float64 `json:"probing_time"`
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}

Listing 4.5. P2PFaaS scheduler main types. The main struct types that are used in
the scheduler service are PeerJobRequest that represents a function execution re-
quest exchanged between nodes, PeerJobResponse that is the response to the request,
PeersListMember that represent a node that executed handled the job, Timings that is
a set of timings used (see Appendix A.1).

4.4 Discovery
The discovery service plays an important role in a peer-to-peer scheduling mechanism
since machines need to know to which ask for executing a job.

The discovery service that comes bundled with P2PFaaSis a very basic imple-
mentation of health-check-based polling mechanism. The discovery service follows
the requirements:

1. it allows the machine to know which are the other nodes that are currently
alive;

2. it automatically polls all the current known nodes to check if they are still
alive;

3. if a node is not passing the alive check then is marked as dead and removed
from the list of known nodes.

ConfiguratorDB Handler Core Loop

Discovery
INTERFACER

MongoDB
GOLANG DRIVER

API Gateway
COMPONENT

Discovery

Figure 4.5. The P2PFaaS’s discovery architecture. Discovery is composed of different
units that are represented by Go packages.

The overall idea is the following. Every node has a database where all the known
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machines are stored and it runs an endless loop that every pre-defined amount of
time loops over the known nodes asking them the list of their known nodes. In this
way, the current node can: update its list of known nodes and check if the polled
nodes are alive. How to start this process? Every node has a set of init machines
IP that they will probe at the boot of the service. Obviously, every set must have
at least an element in common with other nodes otherwise we will have nodes that
never know each other.

The discovery service architecture is depicted in Figure 4.5. The service uses
two components that allow the service to interface with other applications or other
nodes:

• discovery interfacer that allows the communication between the discovery
service of another node;

• mongodb driver which allows the communication with the MongoDB database
that is running in the current node.

Then it has three inner components:

1. db handler that manages the interaction with the database;

2. core loop that polls other machines continuously and updates the current list
of known machines;

3. configurator that manages the current configuration of the service.

As a final component, the discovery service uses an API Gateway to make its
features available to scheduler service.

4.4.1 API Gateway

The main endpoints available from the API Gateway are:

1. /list that is available only via GET method and it has a double-sided operation:
the first is to return the list of available nodes (with other metadata like the
ping time to the node, the id and the IP), the second is to update or add the
node that called the API to the current list of available nodes (this is done
only if the User-Agent of the HTTP call is the string “Machine”);

2. /configuration if called via GET it returns all the configuration values of the
parameters, otherwise with a POST it allows to update the runtime version
configuration and the configuration file that is automatically loaded at boot.

No other endpoint is requested.

4.4.2 DB Handler

The main type that represents a machine is presented in Listing 4.6. The minimal
set of fields that are needed to implement a service like the one that we have in
mind are:
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• the IP of the machine;

• the name of the machine, that is like the Linux hostname;

• the name of the fog net, if the node belongs to a specific network of fog nodes;

• the ping time;

• if the machine is declared alive or not;

• the number of times the machine did not reply to poll;

type Machine struct {
IP string
Name string
FogNetName string
Ping float64
LastUpdate time.Time
Alive bool
DeadPolls uint

}

Listing 4.6. P2PFaaS discovery machine struct type.

4.4.3 Configurator

The configurator component is designed as it happened in the scheduler (Section 4.3.2)
and again the configuration is read from a file at boot. The main parameters are:

• listening port, that describes itself

• machine IP and machine id, that are needed metadata since the IPs conven-
tionally is not retrieved automatically from the polling HTTP request (the
reason behind this is explained in Section 4.5.1);

• init servers, a hard-coded list of known servers for allowing the discovery
service to boot up;

• poll time, that is the interval between the polling of all the known nodes;

• poll timeout, that is the maximum time of waiting before giving up the poll
operation towards a node;

• MongoDB parameters as host, user, password;

• dead poll threshold, that is the number of time a machine must not reply
to poll before being marked as dead;

• network init interface name, that is needed when the IP is not explicitly
defined in configuration file, in this way, at boot, the node will try to retrieve
the IP from that network interface.
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As it happened for the scheduler, the configuration can be altered with a HTTP
POST to the proper endpoint.

4.4.4 Loop

The loop component is the core of the discovery service and it is presented in
Listing 4.7.

func PollingLooper() {
for ; ; {

// step 1
machinesToPoll, err := db.MachinesGetAliveAndSuspected()
if err != nil {

time.Sleep(30 * time.Second)
continue

}

// step 2
for _, m := range machinesToPoll {

ping, err := pollMachine(m.IP)
// check if poll succeed or not
if err != nil {

db.DeclarePollFailed(&m)
} else {

db.DeclarePollSucceeded(&m, ping.Seconds())
}

}

time.Sleep(time.Duration(config.Configuration.GetPollTime()) *
time.Second)↪→

}
}

Listing 4.7. P2PFaaS discovery main loop. This loop is the core of the discovery service
since it keeps updated the list of known nodes by polling them at a specified interval of
time.
The PollingLooper() function is started in a separate thread at the boot of

the discovery service. Its flow of operations is the following:

1. retrieve from the database all the machines that are alive and the number
of DeadPolls is greater than zero but less than the DeadPollsThreshold (so
they are suspected to be down);

2. for every retrieved machine execute a poll request and, according to the
response of this poll request, update the state of the machine.
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4.5 Deploy

The two services of P2PFaaS framework are containerized using Docker. This process
happens thanks to the service deployment that is made possible by Docker when a
node is belonging to a swarm.

The effective deployment of the system has been done both in a local machine,
by mean of the docker-machine utility and in a VMware ESXi server by manually
instantiated virtual machines.

4.5.1 Docker services setup

As already described in Section 4.1.3 we can exploit the service concept of Docker
Swarm to deploy the P2PFaaS’s services. But before using services we need the
Docker images, therefore in next sections, we will see how scheduler and discovery
images are built and finally how these are declared as services and composed as a
single stack.

Scheduler & Discovery

The scheduler and discovery images are built by using the Dockerfile shown in
Listing 2.1. As you will remember the Dockerfile is a declarative file in which we
can declare Docker images.

# => image #1
FROM golang:1.12.1-alpine3.9 as build
LABEL stage=builder

RUN apk update && apk add curl git

# install dep
RUN curl https://raw.githubusercontent.com/golang/dep/master/install.sh | sh

WORKDIR /go
COPY . .

# install deps and build
RUN cd src/scheduler && dep ensure
RUN go build scheduler

# => image #2
FROM alpine:3.8

WORKDIR /home/app
COPY --from=build /go/scheduler .

EXPOSE 18080

CMD ["./scheduler"]
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Listing 4.8. P2PFaaS scheduler Dockerfile. This Dockerfile actually uses two images,
the first for building the scheduler, and the second for running it.
Since Go is a compiled language the strategy of creating the executable consists

of two steps:

1. the actual compiling of the code by using a golang builder image;

2. the running of the executable in a final image.

This division of the process is due to the fact that building images (as for example
the one for Go) are bigger in size with respect a simple Alpine Linux7 images used
only for running the server.

In a Dockerfile, images are defined by the directive FROM. In particular, both
for the scheduler and the discovery we use:

1. golang:1.12.1-alpine3.9 that is an image based on alpine and ready for
compiling Go projects but it is also enriched with dep that is a well-known
packet manager for Go;

2. alpine:3.8 that is a clean alpine Linux image used only for running the
scheduler/discovery executable.

The Dockerfile used for the scheduler and discovery actually the same and
what changes is only the name of the executable and of directories. The images are
built with the commands:

• docker build -t scheduler

• docker build -t discovery

Then the images can be used in service definition, as explained in next section.

Composition

Service definition and composition are done with a docker-compose.yml file, a
configuration file in which it’s possible to define services (that are based on docker
images) and compose them building what, in a Docker Swarm context, is called
stack.

version: "3.3"
services:

scheduler:
image: scheduler
volumes:

- "/var/lib/boot2docker:/var/lib/boot2docker"
environment:

env: production

7Alpine Linux [1] is a very lightweight Linux distribution that is often used for DevOps due to
its size and flexibility.
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P2P_FOG_DEV_ENV: production
ports:

- 18080:18080
networks:

- func_functions
secrets:

- basic-auth-user
- basic-auth-password

deploy:
restart_policy:

condition: any
delay: 5s

Listing 4.9. P2PFaaS scheduler service definition in docker-compose.yml.

In Listing 4.9 the definition of the scheduler service is presented, and it is
composed of:

1. the image to use, whose name is the same built in Section 4.5.1

2. the environment variables, that in this case are used for setting the production
environment;

3. the ports that are used;

4. the Docker network to which the container will be attached, that is func_-
functions a Docker network that is created by OpenFaaS, and we need to
attach to this in order to use the OpenFaaS API service;

5. the secrets, that are the ones declared by OpenFaaS and they are needed to
exploit the OpenFaaS API facilities;

6. deploy conditions, like the auto-restart of the container in case of crash;

Elements (4) and (5) are declared as “external” in Listing 4.10 since they are
created by OpenFaaS when it is deployed.

networks:
func_functions:

external: true
secrets:

basic-auth-user:
external: true

basic-auth-password:
external: true

Listing 4.10. P2PFaaS services secrets and network definition in docker-compose.yml.
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Another service that is declared in P2PFaaS’s stack is MongoDB that is used by
the discovery service. In Listing 4.11 its definition is presented, but now the image
mongo:latest is pulled from the official Docker image repository.

mongo:
image: mongo:latest
restart: always
environment:

MONGO_INITDB_ROOT_USERNAME: root
MONGO_INITDB_ROOT_PASSWORD: example

networks:
- func_functions

Listing 4.11. P2PFaaS services MongoDB definition in docker-compose.yml.
The final P2PFaaS docker-compose.yml file is composed, in order, by Listing 4.9

for scheduler and discovery, then 4.11 and finally 4.10. Once all the images are built
the stack can be deployed with the command docker stack deploy, in particular,
a bash script that allows to completely deploy the stack is shown in Listing 4.12
and it is useful when the same stack must be deployed in a high number of different
machines.

#!/bin/sh
# deploy the stack
cd ../../
cd stack-discovery
docker build -t discovery:latest .
cd ..
cd stack-scheduler
docker build -t scheduler:latest .
cd ..
cd stack
docker stack rm p2p-fog
docker stack deploy -c docker-compose-local.yml p2p-fog

# remove unused images and containers
docker system prune -f --volumes

Listing 4.12. P2PFaaS bash deploy script. This script allows the complete deploy of
the framework, and it is run with the full clone of all the git repositories of P2PFaaS.
Note that the last command is used for cleaning all the data used by the old deploy of
the framework since before deploying a new version the old one is dismissed with the
command docker stack rm p2p-fog.
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Figure 4.6 shows the output of the command docker service ls, that is used
to show a complete list of all the deployed services in a swarm, after a full deploy of
P2PFaaS , OpenFaaS and the Pigo Face Detector function (see Chapter 5).

Figure 4.6. Docker Swarm services after a full deploy of P2PFaaS

4.5.2 Testing environment with docker-machine

Figure 4.7. boot2docker virtual machine starting up
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Docker Machine [17] is a tool, officially provided by Docker, which allows an easy
an fast configuration of virtual machine with Docker installed. A very reductive
list of Docker Machine’s features comprehends the creation of virtual machines and
their management via terminal without ssh but using the Docker API facilities.

The first P2PFaaS’s test-bed was deployed by creating a number of virtual
machines with the command:

docker-machine create -d virtualbox <vm-name>

And then its management can be enabled with the command:

docker-machine env <vm-name>

Specifically, this allows to use all the Docker commands in the terminal as we were
on the specified machine, not by using ssh but exploiting the Docker APIs that are
exposed at Docker daemon’s port 2375.

boot2docker and VM configuration

The standard VM image that is used by docker-machine is boot2docker [10]
(Figure 4.7), a very lightweight Linux image that is specifically designed for running
Docker. Actually, the image is a fork of TinyCore Linux [39].

The particularity of this image is that it runs completely on RAM but it allows
you to attach also a disk in order to make some changes persistent. These changes
regard, for example, the deployed services that must be run at the machine boot,
the ssh keys and other tools that are needed. In this environment, no other service
is provided beyond Docker, this also allows to have a clean space where Docker
services run without possible noise of unwanted services.

Since docker-machine allows complete management of the VM from the host
terminal, no particular configuration of the vm image is done, since the P2PFaaS’s
source code is loaded from the host machine and all the commands are issued from
the host.

4.5.3 Production environment with VMware ESXi

The production environment in which P2PFaaS has been deployed is the one in
which benchmarks have been done (Chapter 5). In this environment I decided not
to use boot2docker image since its usage in production is highly discouraged [10].

The base Linux image that I used is based on Debian 9 “Stretch” [15] that I
prepared in the following way:

1. installed Docker;

2. installed P2PFaaS node ssh key and authorized benchmarker’s one;

3. installed OpenFaas by pulling from GitHub;

4. installed P2PFaaS by pulling all the relative repositories

This image has been then cloned for having in total 8 machines.
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4.5.4 Production environment with Raspberry Pi
Deploying the framework in Raspberry Pi [35], the well-known low cost board with
Linux, required me to use another base image since I decided not to use the default
Raspbian8 [36] image which does not come with Docker. Indeed, the installation of
Docker in the Raspberry Pi requires to use a script which adds new repositories to
apt. For this reason, I deployed the framework on a base image called “HypriotOS”
that is an ARM-compatible image designed to work with Raspberry Pi that also
comes with Docker pre-installed. The project is mature and the image is stable and
it is perfect for deploying OpenFaaS and the P2PFaaS framework.

Starting from this image the followed the same preparing process that I described
for Debian (Section 4.5.3).

8As the name suggests, it is a fork of Debian that is heavily optimized for running in Raspberry
Pi.
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Chapter 5

Benchmarks

By having defined the theoretic and the implementation part of the framework we
can now analyze its performance. Indeed in the next sections, I will present a series
of plots of benchmarks make also a comparison with the mathematical model. The
plots will deal with:

• single machine benchmarks, to prove that effectively the M/M/1/K-PS
model fits the framework implementation when cooperation is disabled;

• long run benchmarks, to show the advantage offered by the LL-PS(T) algo-
rithm with respect to the non-cooperating model;

• best threshold benchmarks, to understand which should be the best threshold
to use for the LL-PS(T) algorithm;

• resources charts, to inspect the impact of the algorithm on CPU, RAM and
network resources.

The benchmarks that I will present will regard the Pigo Face Detector function,
a prebuilt function which is able to detect faces within a photograph. For using this
function the image must be passed as HTTP payload and the response will be the
same image but with yellow squared faces. Therefore a certain part of the network
transmission delay comprehends the exchange of the photo.

5.1 Environment

Results of benchmarks that are presented in the next sections have obtained done by
using a total of three servers with VMWare ESXi as bare metal hypervisor. Every
server is an IBM BladeCenter HS22 with two Intel Xeon X5560 @ 2.80Ghz for a
total of 8 physical and 16 logical cores, and 25GB of RAM. These three servers have
been configured in this way:

• Server #1 has 4 VM with Debian 9 and P2PFaaS deployed, every VM has 1
core, 3GB of RAM and 8GB of disk assigned and reserved; in this setup, every
VM represent a fog node;

• Server #2 is as Server #1;
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• Server #3 has 1 VM with CentOS, 8 cores, 4GB of RAM and 25GB of disk;
this VM is the one that performs benchmarks.

So benchmarks of the framework with LL-PS(T) have been conducted on a total
of 8 physical nodes. Benchmarks on single nodes have been conducted in the same
environment but with cooperation disabled.

In this testing environment, the Pigo Face Detector has a duration of ≈ 0.27s
and µf = 3.70, I also assume (if not explicitly stated) that the maximum number of
parallel running jobs is K = 10.

5.2 Single Machine

The first kind of tests that I conducted on P2PFaaS was related to measuring if a
single machine with cooperation disabled reflected the M/M/1/K model. As we
already discussed in Section 2.1.3, if we consider the delay as seen by the client and
the blocking probability, models M/M/1/K and M/M/1/K-PS are equivalent.

Since OpenFaaS does not put any limit on the number of functions that are
running in parallel on a swarm I used my framework with the NoScheduler scheduler
that we discussed in Section 4.3.5. In this way the only feature that is used from
the framework is dropping requests when load is K.

Figures 5.1 and 5.2 shows the Pigo Face Detector function with K = 10 and
K = 20 respectively compared with the M/M/1/K model. As we can easily see, the
experiments confirms that the model is correct, namely a single physical machine
that drops jobs when load is K and executes jobs in parallel is modeled with a
M/M/1/K. This has been foreseen since models M/M/1/K-PS and M/M/1/K are
equivalent if we only consider the average total delay W for executing a job and the
blocking probability PB.

2 4 6 8 10

λ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
B

Pigo Face Detect - NS(10) - (µ=3.5714)

Experiment

Model M/M/1/10

2 4 6 8 10

λ

0.5

1.0

1.5

2.0

2.5

3.0

W
(s

)

Pigo Face Detect - NS(10) - (µ=3.5714)

Experiment

Model M/M/1/10

Figure 5.1. PB and W charts for without cooperation for Pigo Face Detect and K set to
10 compared with the M/M/1/K model
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5.3 Beneficial Effect of Cooperation

In this section, I will present a series of benchmark that has been done on the
LL-PS(T) algorithm to measure its convenience compared with the case in which
the cooperation is not used. I called them “Long Run” tests because they have been
done on a wide range of λ but with a low number of requests in order to make them
last about 24 hours.

5.3.1 LL-PS(K-1)

The first set of benchmarks of the LL-PS(T) algorithm has been done by choosing
and T = K − 1, the reason of this particular value will be explained later, now we
only focus on the convenience that the cooperation introduces with respect to the
case in which a machine only executes jobs on its own.

In order to reach a good compromise between the duration of the test and the
“stability”1 of the results I chose a range of λ from 2.0 to 3.6, since µ = 1/0.27 then
it makes no sense to go beyond λ = 3.6 given that for having ρ = 1, that is the
saturation point, then λ = 3.7.

Figure 5.3 shows the results of the benchmark. What clearly emerges is that
the cooperation allows to reduce the blocking probability, in other words, it allows
to carry out more jobs with respect the non-cooperation case, that is represented
by the model M/M/1/10-PS. This because when we start to do probing then it is
more likely that we find a machine that is less loaded than us and by forwarding
to it function invocations then we are able to drop fewer requests, thus reducing
the blocking probability. From the delay point of view, we can observe a different
behavior, meaning that the total delay as seen by the clients is more or less equal
to the case in which the cooperation is not used but until λ = 3.0 (ρ = 0.85) then

1For “stability” here I intend how much the curves oscillates, indeed if the number of samples
is too low then it may be difficult to understand the results. However, the higher is the number
of samples the longest is the duration of the benchmark. In these benchmarks samples are the
function invocations.
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the delay becomes higher. However, this is acceptable if consider the fact that more
jobs are served.
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Figure 5.3. PB and W charts of LL-PS(K-2) benchmark with λ = [2.0, 3, 6] at steps of 0.1
also compared with the model described in Section 3.2.

Another characteristic that we can observe is how the model essentially catches
the behavior of the system.

5.4 Best threshold
Since the penalty that characterizes the model LL-PS(T) increases with the load λ
and the threshold T , makes sense to understand which is the best threshold that
should be used for maximizing performances. The series of benchmarks that I will
present here has been focused on a single value of λ, i.e. the one that correspond to
ρ ≈ 0.95 but trying all possible values of the threshold. Again this kind of set up
has been done to make the test duration of about 24hrs.

5.4.1 LL-PS(T)
Figure 5.4 shows blocking probability and PB and total delay W when λ is fixed at
3.50. The model again catches the essential behavior of the real system, in particular
for the blocking probability the local minimum when T = 9 emerges. This point is
the one that represents the best tradeoff between the beneficial effect of cooperation
for load balancing and the penalty.

As far as regards the delay, the decreasing behavior is justified by the fact that
when the threshold is higher the cooperation is limited. By limiting the cooperation,
we also limit all the penalties that are associated with it and that makes the node
to persist at a higher load. As a natural consequence, if the penalties are reduced
then reduced is also the average time that jobs spend in the system.

Another key point that emerges from these charts is that the model does not
exactly catch the experiments as happens when λ varies. This can be explained
if we consider the fact that the model offers an asymptotic approximation that is
valid for a number of nodes N →∞. Since the experiment involved only 8 nodes
such discrepancy is expected, and what is relevant is that the model catches the
implications of the penalty on the performances.



5.4 Best threshold 53

2 4 6 8 10

T

0.03

0.04

0.05

0.06

0.07

0.08

P
B

Best threshold with K = 10, µ−1
f = 0.27, µ−1

p = 0.050

LL-PS(T)

Experiment

2 4 6 8 10

T

1.8

2.0

2.2

2.4

2.6

W
(s

)

Best threshold with K = 10, µ−1
f = 0.27, µ−1

p = 0.050

LL-PS(T)

Experiment
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5.4.2 Resources

Figures 5.5, 5.6 and 5.7 shows the resources consumption of a single node during the
just discussed “Best Threshold” benchmark. The test started at 16:30 on 06/14/2019
and ended at 16:00 on 06/15/2019, then the benchmark for every value of the
threshold, from 0 to 10, lasted 2 hours. The gaps that are observable in the CPU
and in the network utilization charts are the 5 minutes intervals between the tests2.

If the CPU and the RAM charts show a relatively stationary behavior, the
network activity one is characterized by a depression on the first values of the
threshold, T = 10 and T = 9. This because when the threshold is very high, the
number of probes and job forwarding is lower and less network resource is used.
When the threshold decreases, the number of cooperation interactions starts to
increase, consuming network resources. Indeed, the chart shows that the network
cap is reached from T = 8, when about 6 Mbit/s are used both in the uplink
and in the downlink. If we consider that the eight benchmarking machines are
connected to the same 100 Mbit/s switch, every machine’s link should have a
capacity 100/8 = 12.5 Mbit/s, as the chart shows.

Figure 5.5. Network activity chart during the “Best Threshold” benchmark of LL-PS(T)

2Therefore, in total, there are 11 segments, one for every value of the threshold for T = 10 to
T = 0, in order.
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Figure 5.6. CPU utilization chart during the “Best Threshold” benchmark of LL-PS(T)

Figure 5.7. RAM utilization chart during the “Best Threshold” benchmark of LL-PS(T)

5.5 Timings Decomposition

When running benchmarks of a distributed algorithm, one key analysis that can
be done, in order to understand how the system behaves, is the study of timings
and delays. For this reason in P2PFaaS when a function invocation returns, a set of
timings is returned, you can read the Appendix A.1 for a full description of them.

5.5.1 LL-PS(K-1)

For this set of charts, we again set T = K − 1. Figure 5.8 shows the trend of both
the Forwarding and the Probing Time and since these two activities requires CPU
time and network resources, it’s clear that the higher the load the higher the delay
since more machines are simultaneously doing the same operations and the CPU
is also used for executing the functions. This reasoning explains why the probing
starts from 6ms with λ = 2.0 and ends with 20ms at λ = 3.60, the same for the
Forwarding Time that starts with 15ms when λ = 2.0 and ends with 45ms when
λ = 3.60. When the Pigo Face Detection function is called, the photo to be processed
is passed as a payload, and this also happens when nodes forward jobs to other
nodes: the entire payload is transferred for every forwarded job. Moreover, making
a probe and forwarding jobs requires that data is encapsulated and serialized in
JSON. Therefore, as modeled in 3.2, probing and forwarding introduce penalties,
both for the network and for CPU resources.

By having collected all the timings information we can depict a decomposition
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like the one in Figure 5.9.
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Chapter 6

Conclusions

In this thesis, I tried to go through the entire path from the theory to the practical
application of a cooperative load balancing algorithm. In the beginning, I proposed
the idea and I tried to define the best mathematical model that is able to describe
it. Then I realized it by creating an entire framework that is able to implement any
possible scheduler by using FaaS as job model. As a final step, I demonstrated that
what I supposed, in theory, is then verified to happen in reality.

As happens with people, cooperation between nodes is an important key factor
that can be exploited in order to improve performances.

6.1 Future Work

I want to conclude this thesis with a glance at what are the possible improvements
that can be done with the P2PFaaS framework in some aspects that I did not
consider deliberately.

6.1.1 Security

In the development of the framework, security has not been addressed however
if the system needs to be deployed in a production environment there are some
improvements that need to be taken into account.

OpenFaaS implements a basic authentication that is done via HTTP headers
but P2PFaaS does not provide any kind of authentication, this means that theo-
retically OpenFaaS can be managed through P2PFaaS. Therefore a first security
improvement that can be done is related to the authentication of the API endpoint
through HTTP headers, moreover P2PFaaS could use the same credentials that are
used for OpenFaaS.

As far as regards the communication that happens between nodes, not only it
is not authenticated but it is also not encrypted. Therefore, as a second security
improvement, a sort of HTTPS connection should be implemented for allowing
secure communication between nodes.
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6.1.2 Metrics

Another aspect that could be addressed regards the metrics. In P2PFaaS the only
metrics that are available are the ones that are provided in the HTTP headers of
the function response. A possible improvement, that also follows the OpenFaaS
philosophy regards the implementation of a standard interface of providing metrics,
for example by using Prometheus [33] a monitoring framework. Prometheus should
be deployed as a service aside the P2PFaaS Scheduler and Discovery services, then
it can receive metric data from the framework. Prometheus will offer at a given port
a standardized way for obtaining metrics data.
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Appendices
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Appendix A

P2PFaaS’s Scheduler
peculiarities

A.1 Timings decomposition
For having a deep understanding of all the possible delays that may affect the
execution of a function, I inserted different time checkpoint during the execution of
a function. This allows to decompose the total delay that is seen by the client.

The timings that are captured by P2PFaaS and that are returned in the HTTP
headers, after the execution of a function are the following:

• Execution Time (also called execTime): it’s the time between the OpenFaaS
call to execute the function and the time in which the job output is returned;

• OpenFaaS Execution Time (also called faasExecTime): it’s the duration time
of the function as reported by OpenFaaS;

• Probing Time (also called probingTime): it’s the total time for obtaining the
list of all the machines, selecting F at random and checking the load;

• Forwarding Time (also called forwardingTime): it’s the time that is spent
for transferring a job from the machine in which the job is requested to the
machine that will actually execute it. This time is computed by starting a
timer as soon as the job leaves the machine and stopping it when the job result
is returned: from this time the “OpenFaaS Execution Time” is subtracted;

• Queue Time (also called queueTime): it’s the time that a job spends in the
queue before being executed;

• Delay (also called W ): it’s the total execution time as seen by the client.
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Appendix B

Benchmarking scripts

An important role in the P2PFaaS framework is played by the benchmarking scripts
that I designed for testing the framework. There are essentially two scripts that I
used for generating all the benchmark results in Chapter 5:

1. a single machine benchmark script that is designed for generating a flow of
requests for a single machine;

2. a multi machine benchmark script that is designed for generating parallel
flows of requests for multiple machines.

All the scripts are written in Python and their output is then processed and
plotted with another series of scripts that uses the matplotlib library for creating
the charts.

The single machine benchmark takes as input the host, the URL of the function
and a range of lambda values and then generates a flow of requests. This flows can
also be Poissonian and, if it is the case, the waiting time between a request and
the next one is picked from an exponential distribution of parameter λ. The result
code of every request, that is 200 if the job is executed and 500 if it is rejected, is
then written to a file by computing the total delay and by also parsing the HTTP
response headers that contains other useful information about the execution of the
function.

The multi machine benchmark script exploits the single machine one for bench-
marking multiple machines in parallel by creating threads, every thread handles the
benchmarking suite of a single machine. Upon the termination of all the threads,
the script is then able to gather all the results in a single output file.
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